Correcting the recruitment process error variance for bias due to recruitment estimation error.

By Mike Bergh, OLSPS Marine, 2 November 2025

1 Summary

The recruitment process error variance σ_R^2 can be calculated from recruitment estimates produced by stock assessments such as age structured production models and general integrated stock assessments. These recruitment estimates are subject to estimation error and this has implications for the reliability of the estimate of σ_R^2 . Equations presented here show that recruitment estimation error most likely causes positive bias in estimates of σ_R^2 . Two possible bias correction procedures are proposed, based on the estimation error variance derived from either the Hessian matrix or Markov chains from Bayesian analyses. Application to South African sardine shows that the scale of the effect can be very substantial. For CTS the bias corrected estimate of σ_R^2 is about half of the uncorrected estimate (referred to as the 'putative estimates'). This has implications for the risk measure (the simulated probability of resource biomass falling below a low level), a very important performance statistic for Management Strategy Evaluations (MSEs) currently being carried out for the development of a management procedure for South African sardine. It is proposed that an appropriate bias correction such as is proposed here is applied to the 'putative' recruitment process error variance estimate before using these in MSEs.

2 Method

Sardine recruitment R_y is assumed to be driven by a component $\widetilde{R_y}$ that is a function Q of spawning biomass SSB_y , say $\widetilde{R_y} = Q(SSB_y)$ and another component that is year specific and causes recruitment to deviate from $\widetilde{R_y}$, $R_y = \widetilde{R_y}e^{\xi_y}$. ξ_y is typically assumed to be a normally distributed random variate with mean 0 and variance σ_R^2 ($\sigma_R^2 = VAR(\xi_y)$). Here σ_R^2 is referred to as the recruitment process error variance. In stock assessment analyses an estimate of R_y , say $\widehat{R_y}$, is used to obtain an estimate of ξ_y , $\widehat{\xi_y}$, from the equation;

$$\widehat{\xi_{\nu}} = ln(\widehat{R_{\nu}}/\widetilde{R_{\nu}}). \tag{1}$$

The 'putative' estimator

$$\widehat{\sigma_R}^2 = Var(\widehat{\xi_y}) = \frac{\sum_{\forall y} \widehat{\xi_y}^2}{(n-1)}$$
 (2)

is then used, for n= the number of years for which there are recruitment estimates. But, whereas $R_y = \widetilde{R_y} e^{\xi_y}$,

$$\widehat{R_{y}} = \widetilde{R_{y}} e^{\xi_{y} + \eta_{y}},\tag{3}$$

where η_y is an estimation error term, reasonably assumed to be normally distributed, which has a mean of 0 and a variance of $\sigma_{\eta}^{\ 2}$. Therefore

$$\widehat{\xi_{\mathcal{V}}} = \xi_{\mathcal{V}} + \eta_{\mathcal{V}} \tag{4}$$

and

$$Var(\widehat{\xi_{v}}) = Var(\xi_{v}) + Var(\eta_{v}) + 2Cov(\xi_{v}, \eta_{v})$$
(5)

For the plausible situation in which process and estimation errors are independent, the 'putative' estimate of the recruitment process error variance is

$$\widehat{\sigma_R}^2 = \sigma_R^2 + \sigma_\eta^2. \tag{6}$$

This suggests that a more reliable estimate of σ_R^2 (than the 'putative' estimate) is the bias corrected quantity $\sigma_R^2 = \widehat{\sigma_R}^2 - \sigma_\eta^2$. Two possible sources of information about σ_η^2 , the estimation error variance, are (i) the standard errors of estimation of $\widehat{R_y}$ provided by the inverse of the Hessian matrix, and (ii) the variance in $\widehat{R_y}$ derived from converged Markov chains from Bayesian analyses. The standard errors based on method (i) are given in Table A1 of FISHERIES/2025/OCT/SWG-PEL/53, or can be obtained for method (ii) from Figures 2a to 5b of FISHERIES/2025/OCT/SWG-PEL/56 which provide 60 elements of a converged Markov chain, sufficient to provide variance estimates. Here Method (i) is implemented. The values given in Table A1 of FISHERIES/2025/OCT/SWG-PEL/53 are the standard errors of estimation of $\widehat{R_y}$, effectively

the year specific estimates of the estimation standard errors $\sigma_{\widehat{R_y}}$ or $\sqrt{Var(\widehat{R_y})}$ in notation suitable for calculations that follow. To allow calculations to proceed further it is assumed that $\widehat{R_y} = E(\widehat{R_y})$, and $\widehat{\mu} = ln\widehat{R_y}$. Since possible realizations of recruitment in year y due to estimation error are assumed to be lognormally distributed, the following equations follow from standard theory about the lognormal distribution;

$$E(\widehat{R_{y}}) = e^{\widehat{\mu} + \sigma_{\eta}^{2}/2} \tag{7}$$

$$\widehat{Var(R_{\nu})} = (e^{\sigma_{\eta}^2} - 1)e^{\widehat{2\mu} + \sigma_{\eta}^2}$$
(8)

Solving for $\sigma_{\eta,\gamma}^2$;

$$\sigma_{\eta,y}^{2} = ln \left(\widehat{Var(R_{y})} / E(\widehat{R_{y}})^{2} + 1 \right). \tag{9}$$

3 Results

Using the WTS values from Table A1 of FISHERIES/2025/OCT/SWG-PEL/53 (see Table 1 here for WTS) produces the estimates of $\sigma_{\eta,y}^2$ plotted in Figure 1¹. These show considerable variability over time, with an average of 0.571. From the data in Table 1, the putative estimate of σ_R^2 , $\widehat{\sigma_R}^2$ =2.84 and $\widehat{\sigma_R}=1.68$ for WTS. The bias correction implied by application of Method (i), using the average over all years of $\sigma_{\eta,y}^2$ of 0.571 reduces the estimate of σ_R^2 from 2.84 to 2.27 and σ_R from 1.68 to 1.51.

For CTS, application of Method (i) based on the data from Table A1 of FISHERIES/2025/OCT/SWG-PEL/53 (see the data presented in Table 2 reduces the estimate of σ_R from 1.05 to 0.50.

The bias correction implied by application of Method (i), and the data from Table 2

Table 2 (provided by Table A1 of FISHERIES/2025/OCT/SWG-PEL/53), and using the average over all years of $\sigma_{n,v}^2$ of 0.966, reduces the estimate of σ_R^2 from 1.02 to 0.25 and σ_R from 1.05 to 0.50.

¹ It is evident from Figure 1 that the σ_{η}^2 values are year specific, hence the introduction of the y subscript in $\sigma_{\eta,\gamma}^2$.

Table 3 presents the size of the correction across a wider range of values of $\widehat{\sigma_R}$ and $\overline{\sigma_n}$.

4 Discussion and Conclusion

Estimates of σ_R^2 based on estimates of recruitment using a 'putative' estimator will be positively biassed when the process error and estimation error are independent, as seems plausible. Two different sources of estimation error information are highlighted, viz. (i) from standard errors derived from the inverse of the Hessian matrix, and (ii) from Markov chains. Both of these are available for South African sardine. A method based on the Hessian based standard errors shows the size of the bias in the recruitment process error variance σ_R^2 given by the 'putative' estimate, $\widehat{\sigma_R^2}$. This bias may be relatively small, as is the case for WTS using available data, or can be very substantial, as is the case for CTS. For CTS the bias correction reduces the recruitment process error variance estimates by half. This has implications for risk calculations in MSE's for a revised sardine OMP. It is proposed that a bias correction procedure such as the one described here be applied when these MSEs are carried out.

5 References

Bergh, M.O. 2025. Estimates of the relationship between harvest proportion and B/B0 for sardine based on revised S/R relationships and indirect consideration of predator/prey effects. FISHERIES/2025/OCT/SWG-PEL/58

De Moor, C.L. 2025a. Responses to Requests from the Technical Task Group. FISHERIES/2025/OCT/SWG-PEL/53.

De Moor, C.L. 2025b. Further Responses to Requests from the Technical Task Group. FISHERIES/2025/OCT/SWG-PEL/56.

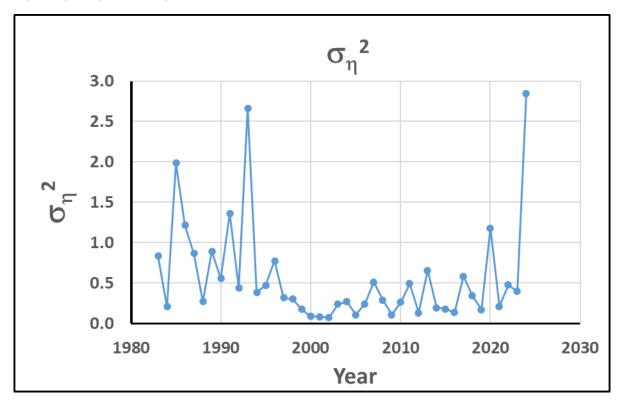


Figure 1. Error variance estimates σ_{η}^2 calculated using Method (i) described here and information provided in Table A1 of FISHERIES/2025/OCT/SWG-PEL/53.

Table 1. Table of estimates of WTS recruitment and its standard error as reported in FISHERIES/2025/OCT/SWG-PEL/56. The estimate itself is taking here to be the expectation of recruitment for the purpose of calculations reported here.

Year	$E(\widehat{R_y})$	$\sqrt{Var(\widehat{R}_y)}$	Year	$E(\widehat{R_y})$	$\sqrt{Var(\widehat{R}_y)}$	
1983	0.312	0.356	2004	2.098	1.169	
1984	1.346	0.644	2005	5.989	2.026	
1985	0.055	0.138	2006	2.007	1.049	
1986	0.026	0.040	2007	3.051	2.490	
1987	0.075	0.088	2008	3.867	2.247	
1988	0.677	0.378	2009	10.194	3.423	
1989	0.462	0.554	2010	2.726	1.489	
1990	1.177	1.015	2011	3.206	2.556	
1991	1.555	2.649	2012	5.965	2.219	
1992	5.720	4.226	2013	0.584	0.561	
1993	0.026	0.095	2014	1.861	0.861	
1994	6.693	4.588	2015	1.449	0.640	
1995	3.338	2.593	2016	3.175	1.211	
1996	6.292	6.811	2017	0.995	0.884	
1997	7.271	4.442	2018	2.409	1.540	
1998	6.570	3.905	2019	7.446	3.195	
1999	14.673	6.449	2020	1.127	1.690	
2000	36.235	10.881	2021	2.494	1.202	
2001	36.965	10.893	2022	3.014	2.355	
2002	32.898	8.864	2023	4.400	3.065	
2003	3.205	1.662	2024	1.124	4.520	

Table 2. Table of estimates of CTS recruitment and its standard error as reported in FISHERIES/2025/OCT/SWG-PEL/56. The estimate itself is taking here to be the expectation of recruitment for the purpose of calculations reported here. Recruitment values of zero were excluded from the calculations.

Year	$E(\widehat{R_y})$	$\sqrt{Var(\widehat{R}_y)}$	Year	$E(\widehat{R_y})$	$\sqrt{Var(\widehat{R}_y)}$	
1983			2004	0.000	0.002	
1984	0.200	0.725	2005	0.000	0.001	
1985	1.714	0.698	2006	0.126	0.736	
1986	3.160	1.270	2007	1.348	1.961	
1987	0.400	0.264	2008	0.000	0.007	
1988	0.401	0.441	2009	2.414	0.936	
1989	2.098	0.976	2010	0.639	0.545	
1990	0.278	1.198	2011	1.530	1.633	
1991	2.395	1.981	2012	0.000	0.000	
1992	3.320	2.459	2013	1.336	0.453	
1993	0.903	0.361	2014	0.183	0.776	
1994	4.228	1.728	2015	0.000	0.000	
1995	0.860	1.221	2016	0.000	0.000	
1996	9.099	4.579	2017	0.000	0.000	
1997	1.771	2.730	2018	0.000	0.000	
1998	2.215	2.159	2019	0.000	0.000	
1999	0.000	0.002	2020	0.755	0.758	
2000	0.000	0.001	2021	2.714	1.147	
2001	0.000	0.000	2022	1.331	1.675	
2002	0.000	0.000	2023	0.000	0.015	
2003	0.408	0.650	2024	1.673	4.387	

Table 3. A table of adjusted estimates of σ_R for given values of the putative estimates $\widehat{\sigma_R}$ and the estimation standard deviation in 'log-space', σ_n .

		σ_{η}									
		0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
$\widehat{\sigma_R}$	0.70	0.43	0.36	0.26	0.00						
	0.80	0.58	0.53	0.47	0.39	0.28	0.00				
	0.90	0.71	0.67	0.62	0.57	0.50	0.41	0.30	0.00		
	1.00	0.84	0.80	0.76	0.71	0.66	0.60	0.53	0.44	0.31	0.00
	1.10	0.95	0.92	0.89	0.85	0.80	0.75	0.70	0.63	0.55	0.46
	1.20	1.07	1.04	1.01	0.97	0.94	0.89	0.85	0.79	0.73	0.66
	1.30	1.18	1.15	1.13	1.10	1.06	1.02	0.98	0.94	0.89	0.83
	1.40	1.29	1.26	1.24	1.21	1.18	1.15	1.11	1.07	1.03	0.98
	1.50	1.40	1.37	1.35	1.33	1.30	1.27	1.24	1.20	1.16	1.12
	1.60	1.50	1.48	1.46	1.44	1.41	1.39	1.36	1.32	1.29	1.25
	1.70	1.61	1.59	1.57	1.55	1.53	1.50	1.47	1.44	1.41	1.37
	1.80	1.71	1.70	1.68	1.66	1.64	1.61	1.59	1.56	1.53	1.50
	1.90	1.82	1.80	1.79	1.77	1.75	1.72	1.70	1.67	1.65	1.62
	2.00	1.92	1.91	1.89	1.87	1.85	1.83	1.81	1.79	1.76	1.73