Course Title: Astronomical Instrumentation Course Instructor: Sabyasachi Chattopadhyay, Nicolas Erasmus, Siddharth Maharana Course Credits: 1 Lecture Hours: 24 Lab/practical Hours: 10

1. Course Overview:

This is an advanced course on optical-IR astronomical instrumentation which aims to develop understanding of practical issues of instrument development in students. The course consists of 24 hours of lectures divided into 6 sections : detectors, optics, spectroscopy, polarimetry, adaptive optics and photonics. Individual sections would have their associated lab/practical sessions to be hosted at SAAO. The sections are associated with preliminary assessment of assignments and quizzes along with a project, a midterm and a final exam. This course is geared towards making students knowledgeable for participating in instrumentation discussions as well as readying them to design instruments specific to different scientific goals.

2. Course Break Down:

- a. Detectors: Week 4 February Preliminary assessment method : Quiz Lecture Hours: 4, 2 lectures 2 hours each Lab Hours: 2, Week 3 March
 - i. Quantum Efficiency
 - ii. Semiconductor
 - iii. CCD and CMOS detectors
 - iv. Charge Transfer
 - v. Readout Electronics
 - vi. Electronic Noise
- b. Optics: Week 1 March
 Preliminary assessment method : Assignment
 Lecture Hours: 4, 2 lectures 2 hours each
 Lab Hours: 2, Week 4 March
 - i. Geometric/ray optics
 - ii. Aberrations
 - iii. Designing optical systems
 - iv. Interference
 - v. Diffraction
- c. Polarimetry: Week 3 February Preliminary assessment method : Assignment Lecture Hours: 4, 2 lectures 2 hours each Lab Hours: 2, Week 4 April
 - i. Light vectors
 - ii. Stokes parameters
 - iii. Measurement
 - iv. Error propagation
- d. Spectroscopy: Week 2 March
 - Preliminary assessment method : Assignment Lecture Hours: 4, 2 lectures 2 hours each Lab Hours: 2, Week 2 May
 - i. Anamorphic magnification
 - ii. Diffraction grating
 - iii. Echelles
 - iv. Grating efficiency
 - v. Integral field spectroscopy
 - vi. Multi-object spectroscopy
- e. Astro-photonics: Week 2 April Preliminary assessment method : Quiz Lecture Hours: 4, 2 lectures 2 hours each Lab Hours: 2, Week 3 May
 - i. Waveguides principles
 - ii. Transmission losses in waveguides
 - iii. Focal ratio degradation

- iv. Photonic lanterns
- v. Arrayed WaveGuides
- f. Adaptive Optics: Week 3 April Preliminary assessment method : Quiz Lecture Hours: 4, 2 lectures 2 hours each
 - i. Atmospheric seeing
 - ii. Turbulence and mitigation
 - iii. Strehl Ratio
 - iv. AO systems (phase space)
 - v. AO systems (mode space)

3. Resources: (only for further reading)

- a. Astronomical Optics by Daniel Schroeder
- b. To Measure the Sky by Frederick Chromey
- c. Detection of Light, by George H. Rieke

4. Breakdown of lab/practical tasks:

- a. Detectors: Measure Gain and Read Noise
- b. Optics: Characterize spherical aberration
- c. Spectroscopy: Measure resolving power
- d. Polarimetry: Measure polarization from supplied data
- e. Astro-photonics: Measure focal ratio degradation

5. Requirements of attending the course:

- a. Undergraduate physics
- b. School mathematics

6. Skills to be developed during the course:

- a. Deriving instrument specific requirements from astronomical science goals
- b. Ability to participate in instrument related discussion

7. Assessment:

- a. Assignment: 12% (4% each)
- b. Quiz: 12% (4% each)
- c. Attendance: 10%
- d. Practical: 20% (4% each)
- e. Project: 11%
- f. Midterm: 15%
- g. Final: 20%