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The species-area relationship (SAR) of an ecologically defined region quantifies the

way species number S in a survey increases with area A surveyed. It has long been

fundamental to discussions of species richness (Arrhenius 1921; Gleason 1922; Pre-

ston 1960; Rosenzweig 1995; Lomolino 2001), which is one of the central problems

of theoretical ecology, and it has also been used in applied ecology (Ney-Nifle and

Mangel 2000; Driver et al. 2003; Ulrich 2005). SAR’s are routinely presented as

real-valued functions S = f(A), often

S = cAz , (1)

though competing forms of f exist (Connor and McCoy 1979; Lomolino 2001).

Such an SAR does not model spatial variability; in applications the variability in

S at a given size A is smoothed out by taking an average. Here view S as instead

intrinsically variable at all scales of A—in other words, as multifractal. We propose

a two-parameter multiplicative cascade to model of this phenomenon. We derive
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a graphical characterisation of multi-fractality and density variation across scales.

Our model generalises Equation 1, of which it retains the scaling properties recently

emphasised in the literature (Harte et al. 1999; Harte et al. 2001; Lennon et al.

2002; Ostling and Harte 2003; He and Legendre 2002; Maddux 2004; Ostling et al.

2004; Pueyo 2006; Martin and Goldenfeld 2006).

As an application, we show that data on spatial variability in richness of Proteaceae

in the Cape Floristic Region.

1 Model description

Consider a rectangle with area A0 that contains S0 species (the geometric assump-

tions can be relaxed, as we do when considering real data). Bisect the rectangle into

two congruent rectangles of area A1 = 2−1A0, then bisect each of these with a line

at right angles to the previous bisector to reach four rectangles of area A2 = 2−2A0.

Continue this process, reaching 2k rectangles of area Ak = 2−kA0 after k bisections.

This is the basis of the Hartean derivation (Harte et al. 1999), from which we now

depart.

As each parent rectangle is split in two, spatial heterogeneity in species richness

implies that its offspring inherit unequal amounts of species. Denote by p1 the

fraction of species inherited by the richer half and by p2 the fraction inherited by

the poorer half. Since every species in the larger rectangle must occur in at least

one of the smaller rectangles, we have p1 + p2 ≥ 1. At each stage, the position of

the richer half is randomly assigned.

[Figure 1 about here.]

The simplest case is when p1 and p2 are constant; this assumption implies self-

similarity. After k bisections the heterogeneity is captured in the binomial (p1 +

p2)
k =

∑k

j=0

(

k
j

)

pk−j
1 pj

2. Thus species richness takes the (k + 1) values pk−j
1 pj

2S0

for j = 0 to k, and each level of richness occurs in
(

k

j

)

of the 2k rectangles of area

2−kA0. If one denotes by Pk(S = n) the probability that a rectangle of area 2−kA0

contains n species, then we can restate this result as the species richness distribution

Pk(S = S0p
k−j
1 pj

2) =

(

k

j

)

/2k. (2)
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Equation 2 applies to any self-similar density which is variable at every scale, and

is perhaps the simplest of all models with this property. Typical realisations are

shown in Figure 2. Moreover, the support of the density may be any geometric

object with finite area, because for a given slope such an area has a unique bisector,

and hence the subdivision process described above is shape-independent.

[Figure 2 about here.]

One can visualise the variability of S versus A in a simple diagram: plot S =

pk−j
1 pjS0 versus A = 2−k, where j = 0 to k for k = 0 to kmax. This gives (k + 1)

vertical lines, the leftmost of which has k + 1 points and the rightmost a single

point. On a loglog plot (see Figure 3) these vertical lines are bounded by a triangle

with its vertex at (log(A0), log(S0)) on the right and two lines sloping up to it. The

line through the upper bounds of richness has slope log(p1)/ log(2), and the line

through the lower bounds of richness has slope log(p2)/ log(2). It is obvious that a

model which produces a diagram very like Figure 3 must essentially be the same as

Equation 2. In fact, any multifractal density will have a roughly triangular footprint

in a loglog plot of density versus sample area. As we show below, this is also true

for at least some data. We suggest that the triangular footprint is a simple way to

characterise a multifractal density.

FROM EDITH: The multifractal model that we propose here is very close to the

one proposed by Stanley and Meakin (see Box) in the context of porous media

modelling. It may be considered as the simplest multifractal model which could

serve as a case study in the framework of multifractal theory, since its interpretation

in the special case of species abundance modelling appears here is obvious. It might

be generalized in many other applications where multifractal have been used so far

only as statistical tools (e.g. Borda de Agua). This model can be fully analysed

mathematically, for example its Reyni dimensions can be calculated exactly (see

box). We also show that it results in a triangular signature that can be considered

as a new indicator of the multifractal nature of a set of experimental data.

[Figure 3 about here.]

In the limit as k → ∞, each rectangle is a scaled copy of the any of the larger ones.

The scaling applies not only to size but also to density: as we rescale the smaller
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to the size of the larger, we must also rescale all densities in proportion so that

the average densities are equal. In this sense, the density defined by Equation 2 is

exactly self-similar. It therefore has all the scaling properties that derive from self-

similarity (Harte et al. 1999; Harte et al. 2001). In fact, it reduces to Equation 1 as

follows. Define a = (p1 + p2)/2. One can show that the average number of species

in a rectangle of area 2−kA0 is akS0. Then Equation 1 is easily derived (Harte et al.

1999), with a = 2−z. Because of self-similarity as k → ∞, the same value of z holds

for any rectangle irrespective of its average density.

[I DON’T WANT TO TALK ABOUT WHETHER ENTIRE GLOBE HAS ONE

SELF-SIMILAR SPECIES DENSITY]

2 Case study: spatial variability in species rich-

ness of Cape Proteaceae

We consider all species in the family Proteaceae that occur in the Cape Floristic

Region (Takhtajan 1986; Rebelo 1991; Laurie et al. submitted , ) (CFR henceforth).

This is the smallest of the worlds six floristic regions, among which it has the highest

endemicity. The latitudinal range is from 30◦S to 34◦S. The CFR contains almost

the entire fynbos biome. The map of the CFR was rasterised at 1′ resolution. The

fynbos biome occurs in 9 426 of the resulting 1′ × 1′ cells. By permission of Tony

Rebelo of SANBI we obtained species richness for each fynbos cell; for a map see

Figure 6.

We also obtained richness and fynbos area at 9 other scales; see Figure 4 for a

loglog plot. We estimated z ≈ 0.47 by least squares fit of Equation 1 to the

94260 (log(Ai), log(Si)) data pairs (Laurie et al. submitted , ), and we note that

this implies that p1 + p2 ≈ 1.44.

[Figure 4 about here.]

We calculated the approximate Renyi dimensions (see Box) of the data, and com-

pared them to the exact Renyi dimensions of the model, always keeping p1 + p2 =

1.44. By varying p1, it is easy to see that there must be a best fit, and that it

must occur near p1 = 0.83; see Figure 5. In other words, we claim that the spatial
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pattern of species richness predicted by the model for the square in Figure 6(a) is

equivalent to the observed richness at a comparable scale as seen on the map in

Figure 6(b).

[Figure 5 about here.]

[Figure 6 about here.]

We can test the estimate p1 = 0.83, p2 = 0.61 by looking at the data in other

ways. First we compare scatterplot of the data in loglog space with the triangular

footprint of the model. The data do fill a roughly triangular region, and we see

from Figure 7 that again the best fit is near p1 = 0.83. We use k = 14 because

the model then has a larger number of finest scale units than the data, so that one

would expect the data to correspond to a subset of the model.

[Figure 7 about here.]

A more exacting test is to compare histograms of the data to histograms derived

from Equation 2 for various levels of k; see Figure 8. We see by the approximate

match between the largest predicted richness and the largest observed richness that

the model is in qualitative agreement with the data. Note that the map in Fig-

ure 6(b) predicts 0 < S < 31 as against observed 1 < S < 38, also qualitatively in

good agreement.

[Figure 8 about here.]
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BOX 1: Renyi dimensions and approximate Renyi dimensions

Exact Renyi dimensions for densities known on tesselations of arbitrary mesh size

The Renyi dimensions of an object with possibly varying density are given by [GIVE

REF]

D(q) =























lim
r→0

1

q − 1

log
∑N(r)

i=1 pq
i (r)

log r
if q 6= 1

lim
r→0

∑N(r)
i=1 pi(r) log pi(r)

log r
if q = 1,

(3)

where r is a characteristic length, pi is the proportion of the density in box i, and it

takes N identical boxes with length r to cover the object. For a fractal object D(0)

is a non-integer; for a standard fractal like the Sierpinski gasket D is a constant;

for a multifractal D may be a curve.

Substituting the probabilities from Equation 2 into Equation 3 gives

D(q) =























log(pq
1 + pq

2) − q log(p1 + p2)

(1 − q) log(
√

2)
if q 6= 1

(p1 + p2) log(p1 + p2) − p1 log(p1) − p2 log(p2)

(p1 + p2) log(
√

2)
if q = 1.

(4)

This formula yields the exact Renyi dimensions in Figure 5.

Note that spatially homogeneous species richness is not fractal in the geometric

sense, even when it satisfies Equation 1 (in which case p1 = p2 = a = 2−z).

The 2-dimensional multifractal constructed by Stanley and Meakin (1988) takes k/2

steps to reach 2k rectangles of area 2−kA0 and its parameters are the same p1 and p2

that we use. Denoting by DSM the Renyi dimensions of their multifractal (Perrier

et al. 2006), one has DSM = 2D + 2, where D is given by Equation 4.

Approximate Renyi dimensions for densities known only from data on irregular

domains

We noted above that a cascade of bisections is possible on any domain with finite

area. Nevertheless, real data the calculation implied by Equation 3 is usually in-

feasible. We used the following approximation. Assume that the data are available
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at several scales Ai, where A0 is the area of the whole region. At each such scale,

randomly select from the data m replicates such that mAi ≈ A0. The slope of lin-

ear regression of Sq against A then yields D(q) in the standard way (Perrier et al.

(2006)). Obviously this requires that the m replicates at each scale represent the

true variability and that many scales over a large range are available; the Protea

Atlas CFR data that we used met both requirements. We chose only those Ai with

m or more data in the sample, and easily had enough scales for good estimates of

D(q) (all fits had R2 > 0.99).
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Borda-de Água, L., Hubbell, S., and McAllister, M. 2002. Species-area curves, di-

versity indices, and species abundance distributions: a multi-fractal analysis.

The American Naturalist 159, 138–155.

Connor, E. and McCoy, E. 1979. The statistics and biolgogy of the species-area

relationship. The American Naturalist 113, 791–833.

Driver, A., Desmet, P., Rouget, M., Cowling, R., and Maze, K. 2003. Succulent

Karoo Ecosystem Plan. Technical Report CCU 1/03, Cape Conservation Unit

of the Botanical Society of South Africa, Cape Town.

Gleason, H. A. 1922. On the relation between species and area. Ecology 3, 158–

162.

Harte, D. 2001. Multifractals: Theory and Applications Chapman & Hall/CRC,

Boca Raton.

Harte, J., Blackburn, T., and Ostling, A. 2001. Self-similarity and the relationship

between abundance and range size. The American Naturalist 157, 374–386.

Harte, J. and Kinzig, A. 1997. On the implications of species-area relationships

for endemism, spatial turnover, and food web patterns. Oikos 80, 417–427.

7



Harte, J., Kinzig, A., and Green, J. 1999. Self-similarity in the distribution and

abundance of species. Science 284, 334–336.

Harte, J., McCarthy, S., Taylor, K., Kinzig, A., and Fischer, M. 1999. Estimating

species-area relationships from plot to landscape scale using species turnover

data. Oikos 86, 45–54.

He, F. and Legendre, P. 2002. Species diversity patterns derived from species-area

models. Ecology 83, 1185–1198.

Lennon, J. J., Kunin, W. E. and Hartley, S. 2002. Fractal species distributions

do not produce power-law species-area relationships. Oikos 97, 378–386.

Laurie, H., Rebelo, A. G., Silander Jr, J. A. and Smit, W. submitted. Spatial

variation in power-law species-area curves for a single clade in a single biome.

EER submitted.

Lomolino, M. 2001. The species-area relationship: new challenges for an old

pattern. Progress in Physical Geography 25, 1–21.

Maddux, R. D. 2004. Self-similarity and the species-area relationship. The Amer-

ican Naturalist 103, 616–626.

Martin, H. G. and Goldenfeld, N. 2001. On the origin and robustness of power-

law species-area relationships in ecology. Proceedings of the National Academy

of Sciences of the USA 103, 10310–10315.

Nichols, J. D., Boulinier, T., Hines, J. E., Pollock, K. H. and Sauer, J. R. 2001.

Inference methods for spatial variation in species richness and community

composition when not all species are detected. Conservation Bioloty 12, 1390–

1398.

Matter, S., Hanski, I., and Gyllenberg, M. 2002. A test for the metapopulation

model of the species-area relationship. Journal of Biogeography 29, 977–983.

Ney-Nifle, M. and Mangel, M. 2000. Habitat loss and changes in the species-area

relationship. Conservation Biology 14, 893–898.

Ostling, A. and Harte, J. 2003. A community-level fractal property produces

power-law species-area relationships. Oikos 103, 218–224.

Ostling, A., Harte, J., Green, J. L. and Kinzig, A. P. 2004. Self-similarity, the

power-law form of the species-area relationship and a probability rule: a reply

to Maddux. The American Naturalist 163, 627–633.

8



Perrier, E., Tarquis, A. and Dathe, A. 2006. A program for fractal and multifrac-

tal analysis of two-dimensional binary images: computer algorithms versus

mathematical theory. Geoderma 134, 284–294.

Preston, F. 1960. Time and space in the variation of species. Ecology 41, 611–627.

Pueyo, S. 2006. Self-similarity in species-area relationship and in species abun-

dance distribution. Oikos 112, 156–162.

Preston, F. 1962. The canonical distribution of commonness and rarity. Ecol-

ogy 43, 185–215 and 410–432.

Rosenzweig, M. 1995. Species diversity in space and time. Cambridge: Cambridge

University Press.

Rebelo, A. 1991. Protea Atlas Manual: instruction booklet to the Protea Atlas

Project. Cape Town: Protea Atlas Project.

Stanley, H. E. and Meakin, P. 1988. Multifractal phenomena in physics and chem-

istry. Nature 335, 405–409.

Takhtajan, A. 1986. Floristic Regions of the World. Berkeley, CA: University of

California Press.

Ulrich, W. 2005. Predicting species numbers using species-area and endemics-area

relations Biodiversity and Conservation 14, 3351–3362.

AU Ulrich, W Buszko, J TI Habitat reduction and patterns of species loss SO

BASIC AND APPLIED ECOLOGY PY 2004 VL 5 IS 3 BP 231 EP 240 UT

ISI:000223142100003 ER

9



List of Figures

1 Multiplicative cascade, stages k = 0, 1, 2 and 3. At each stage,
there are 2k bisections. p1 is the fraction of richness inherited by the
richer half, p2 is the fraction of richness inherited by the poorer half.
Position of richer half is randomly chosen among the two possibilities
at each bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Realisations with p1 = 1, p2 = 0.6, and (a) k = 2, (b) k = 3, (c)
k = 6 and k = 14. Density scale is the same in all four cases: the
maximum richness is p2

1, which appears as black squares in the k = 2
example, and the minimum richness is p14

2 , which appears only in the
k = 14 example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The footprint of Equation 2 in loglog space. Here, S0 = 400, A0 =
210, p1 = 0.8, p2 = 0.6 and k ranges from 0 to 10. . . . . . . . . . . . 13

4 Loglog scatterplot of all data (blue) with best fit of S = cAz (black),
obtained by least squares regression on the log-transformed data.
Data points (A, S) show area A and species number S in a k′ × k′

tetrad centred on one of the 1′×1′ cells, where k = 1, 3, 7, 15, 31, 63, 127, 255, 511
or 1023. Only 5% of the resulting data points appear in the figure,
but all the points were used in the regression. . . . . . . . . . . . . . 14

5 Renyi spectra of various model parameterisations (red) compared to
the data (blue). Model parameters satisfy p1 + p2 = 1.44 in each
case. (a) p1 = 0.72 (b) p1 = 0.80 (c) p1 = 0.83 (d) p1 = 0.86 and (e)
p1 = 0.94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 (a) The square shows spatial variation predicted by the model using
k = 14 and the best parameter estimates p1 = 0.83, p2 = 0.61.
(b) The map shows Proteaceae richness in the Cape Floristic Region
at 1′ × 1′ resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Loglog scatterplots of data (blue) with model predictions (red). Model
uses k = 14 and S0 = 421, the extrapolation using z = 0.47 in Equa-
tion 1 from the observed S = 372 at A = 9426 to S0 at A0 = 214. In
each case p1 + p2 = 1.44. (a) p1 = 0.72 (b) p1 = 0.80 (c) p1 = 0.83 . 17

8 Histograms of model prediction (red) versus data (blue). In all cases,
the model uses p1 = 0.83, p2 = 0.61 and various k and S0 = 421.
Data (blue) for corresponding sample area. SHOULD REWRITE
TO EXPLAIN THE SUBTITLES . . . . . . . . . . . . . . . . . . . 18

10



k = 0

1

k = 1

p1 p2

k = 2

p2
1 p2

2

p1p2 p1p2

k = 3

p2
1p2

p3
1

p1p
2
2

p2
1p2

p3
2

p1p
2
2

p2
1p2

p1p
2
2

Figure 1: Multiplicative cascade, stages k = 0, 1, 2 and 3. At each stage, there are
2k bisections. p1 is the fraction of richness inherited by the richer half, p2 is the
fraction of richness inherited by the poorer half. Position of richer half is randomly
chosen among the two possibilities at each bisection
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(a) (b)

(c) (d)

Figure 2: Realisations with p1 = 1, p2 = 0.6, and (a) k = 2, (b) k = 3, (c) k = 6
and k = 14. Density scale is the same in all four cases: the maximum richness is p2

1,
which appears as black squares in the k = 2 example, and the minimum richness is
p14
2 , which appears only in the k = 14 example.
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Figure 3: The footprint of Equation 2 in loglog space. Here, S0 = 400, A0 = 210,
p1 = 0.8, p2 = 0.6 and k ranges from 0 to 10.
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Figure 4: Loglog scatterplot of all data (blue) with best fit of S = cAz (black),
obtained by least squares regression on the log-transformed data. Data points (A, S)
show area A and species number S in a k′ × k′ tetrad centred on one of the 1′ × 1′

cells, where k = 1, 3, 7, 15, 31, 63, 127, 255, 511 or 1023. Only 5% of the resulting
data points appear in the figure, but all the points were used in the regression.
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(a) (b)

(c)

(d) (e)

Figure 5: Renyi spectra of various model parameterisations (red) compared to the
data (blue). Model parameters satisfy p1 + p2 = 1.44 in each case. (a) p1 = 0.72
(b) p1 = 0.80 (c) p1 = 0.83 (d) p1 = 0.86 and (e) p1 = 0.94
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Figure 6: (a) The square shows spatial variation predicted by the model using
k = 14 and the best parameter estimates p1 = 0.83, p2 = 0.61.
(b) The map shows Proteaceae richness in the Cape Floristic Region at 1′ × 1′

resolution.
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(a)

(b)

(c)

Figure 7: Loglog scatterplots of data (blue) with model predictions (red). Model
uses k = 14 and S0 = 421, the extrapolation using z = 0.47 in Equation 1 from the
observed S = 372 at A = 9426 to S0 at A0 = 214. In each case p1 + p2 = 1.44. (a)
p1 = 0.72 (b) p1 = 0.83 (c) p1 = 0.94
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Figure 8: Histograms of model prediction (red) versus data (blue). In all cases, the
model uses p1 = 0.83, p2 = 0.61 and various k and S0 = 421. Data (blue) for cor-
responding sample area. SHOULD REWRITE TO EXPLAIN THE SUBTITLES
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