Building bridges with ridges

Raju Venugopalan Brookhaven National Laboratory

EIC workshop, STIAS, Stellenbosch U, Feb. 3rd, 2012

High Multiplicity pp collisions

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST)

Run / Event: 139779 / 4994190

(c) Copyright CERN, 2010. For the benefit of the CMS Collaboration.

Wei Li, MIT

Lin

Relativistic Heavy Ion Collisions

4

The p+p ridge

 \boldsymbol{Q}

CMS reports a remarkable structure seen in two particle correlation spectrum as a function of angular variables $\Delta \eta$, $\Delta \Phi$ in very high multiplicity p+p collisions CMS, arXiv:1009.4122

Back to back jet correlation in p+p

Collision Geometry:

Two particle correlations: CMS results

Two particle correlations: CMS results

 Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 for two hadrons in the intermediate 1 < p_T, q_T < 3 GeV

Wei Li, MIT

Two particle correlations: p_T systematics

• Signal not present for p_T , $q_T > 3$ GeV

See Inside

Particles That Flock: Strange Synchronization Behavior at the Large Hadron Collider

Scientists at the Large Hadron Collider are trying to solve a puzzle of their own making: why particles sometimes fly in sync

Scientific American, February (2011)

The high-energy collisions of protons in the LHC may be uncovering "a new deep internal structure of the initial protons," says Frank Wilczek of the Massachusetts Institute of Technology, winner of a Nobel Prize

"At these higher energies [of the LHC], one is taking a snapshot of the proton with higher spatial and time resolution than ever before"

What's the underlying dynamics?

Large number of models with a range of speculations

 A similar ridge was seen in heavy ion collisions @ RHIC (and now in HI collisions @ LHC) -is it hydrodynamic flow ?

 I will argue that the p+p ridge is an intrinsic QCD effect - providing a snapshot of frozen wee (small x) multi-parton correlations in the proton wave function

In contrast, the A+A ridge is entirely due to hydrodynamic flow...

Long range rapidity correlations as a chronometer

Long range correlations sensitive to very early time (fractions of a femtometer ~ 10⁻²⁴ seconds) dynamics in collisions

Nuclear wavefunction in high energy QCD: The Color Glass Condensate

Gelis, Iancu, Jalilian-Marian, RV: Ann. Rev. Nucl. Part. Sci. (2010), arXiv: 1002.0333

Dynamically generated semi-hard "saturation scale" opens window for systematic weak coupling study of non-perturbative dynamics

High multiplicity events in p+p

High multiplicity events likely correspond to high occupation numbers $(1/\alpha_s)$ in the proton wave functions for $p_T \le Q_s$

I will emphasize this point further shortly

The saturated proton: two particle correlations

Correlations are induced by color fluctuations that vary event to event - these are local transversely and have color screening radius $\sim 1/Q_s$

These graphs (called "Glasma graphs"), which generate long range rapidity correlations, are highly suppressed for $Q_s \ll p_T$

However, effective coupling of sources to fields with $k_T \le Q_s = 1/g$ ("saturation")

Power counting changes for high multiplicity events by α_s^8 ! These graphs become competitive with usual pQCD graphs

Glasma flux tube picture: two particle correlations proportional to ratio $1/Q_s^2/S_T$

Only certain color combinations of "dimers" give leading contributions ...iterating combinatorics for 2, 3, n...gives

2-particle n-particle correlations

Gelis, Lappi, McLerran

Multiplicity distribution: Leading combinatorics of dimers gives the negative binomial distribution

$$\begin{split} P_n^{\mathrm{N.B.}}(\bar{n},k) &= \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\bar{n}^n k^k}{(\bar{n}+k)^{n+k}} \\ k &= \zeta \frac{(N_c^2-1)Q_S^2 S_\perp}{2\pi} \\ k &= \mathbf{x} : \text{Poisson} \\ \mathbf{x} &= \mathbf{x} : \text{Poisson} \end{split}$$

Yang-Mills computation shows picture is robust for 2 part. Corr. and gives $\zeta \sim 1/3 - 3/2 \dots O(1)$

Saturation models: from HERA to RHIC/LHC

Unintegrated gluon dist. from dipole cross-section:

$$\frac{d\phi(x,k_{\perp}|s_{\perp})}{d^2s_{\perp}} = \frac{k_{\perp}^2 N_c}{4\,\alpha_s} \,\int_0^\infty d^2r_{\perp} \,e^{ik_{\perp}\cdot r_{\perp}} \left[1 - \frac{1}{2}\,\frac{d\sigma_{\mathrm{dip.}}^p}{d^2s_{\perp}}(r_{\perp},x,s_{\perp})\right]^2$$

 k_{T} factorization to compute inclusive gluon dist. at a given impact parameter:

$$\frac{dN_g(b_{\perp})}{dy \, d^2 p_{\perp}} = \frac{16 \, \alpha_s}{\pi C_F} \frac{1}{p_{\perp}^2} \int \frac{d^2 k_{\perp}}{(2\pi)^5} \int d^2 s_{\perp} \frac{d\phi_A(x, k_{\perp}|s_{\perp})}{d^2 s_{\perp}} \, \frac{d\phi_B(x, p_{\perp} - k_{\perp}|s_{\perp} - b_{\perp})}{d^2 s_{\perp}}$$

Saturation models: fits to RHIC/LHC incl. p+p data

Kowalski, Motyka, Watt

e+p constrained fits give good description of hadron data Tribedy,RV

"Global analysis" of bulk distributions

10₁ lηI<0.5 п CMS 7 TeV (×1) IP-Sat Data m=0.4 IP-Sat ALICE 2.36 TeV (×0.1 30 4.4 TeV 0.2 TeV rcBK A+A A+A ICE 0.9 TeV (× 0.01 m =0.4 (GeV) p+p p+p m =0.4 (GeV) UA5 0.9 TeV (× 0.01) 10 UA5 0.2 TeV (× 0.001) m =0.2 (GeV) -m=0.2 (GeV) 25 10⁻² PHOBOS (dN /dŋ)/N BRAHMS <u>с</u> И 104 20 μp/Nb 15 N 10-6 10 10⁻⁸ 20 30 50 60 n 10³ 10² 10 ىيا0 10 3 4 5 _4 -3 2 $\sqrt{s_{NN}}$ (GeV) η • h, n=2.2 hl < 0.5 IP-Sat 10-2 ••• ζ=1 ■ h^{*}, η=3.2 - ζ = 0.155 10 — ζ́=0.05 $dN/d^2 p_T d\eta \, (GeV^{-2})$ π⁰, η=4 - STAR 200 GeV 10-10-2 10-3 $\zeta = 1/6$ for both ⊆¹⁰⁴ 10p+p and A+A 10-5 10 A+A d+Au 200 GeV 10- rcBK 10-6 10-7 10⁻⁸ 4.5 0.5 1 1.5 2 2.5 3 3.5 4 600 100 200 300 400 500 700 800 р_т (GeV) n

Tribedy, RV, 1112.2445

Back to the near side ridge in high multiplicity p+p collisions

Long range di-hadron correlations

Gelis,Lappi,RV (2009)

Long range di-hadron correlations

RG evolution of two particle correlations (in mean field approx) expressed in terms of "unintegrated gluon distributions"

Caveat: Contribution of higher 4-pt. Wilson line correlators not included

Dumitru, Jalilian-Marian; Kovner, Lublinsky (2011)

The p+p ridge: azimuthal corr. from Glasma graphs

Dumitru; Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, RV

For $p_T = q_T$, the largest contribution to two particle correlation is from $\Delta \Phi \approx 0, \pi$

Systematics of the correlation

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, RV, Phys. Lett. B697:21 (2011) Dusling, RV

Systematics of the correlation

Systematics of the correlation

Near-side correlation sensitive to diffuseness of wavefunction

Quantitative description of pp ridge

$$N_{\rm trig} = \int_{-2.4}^{+2.4} d\eta \int_{p_T^{\rm min}}^{p_T^{\rm max}} d^2 \mathbf{p}_T \int_0^1 dz \frac{D(z)}{z^2} \frac{dN}{d\eta \, d^2 \mathbf{p}_T} \left(\frac{p_{\rm T}}{z}\right)$$

Assoc. Yield =
$$\frac{1}{N_{\text{trig}}} \int_0^{\Delta\phi_{\min.}} d\Delta\phi \frac{d^2N}{d\Delta\phi} - \frac{d^2N}{d\Delta\phi} \Big|_{\Delta\phi_{\min.}}$$

Only parameter fit to yield data is K =2.3

 $D_1 = 3(1-x)^2 / x$

 $D_2 = 2(1-x) / x$

Dependence on transverse area cancels in ratio...

Subtracts any pedestal "phi-independent" correlation

Quantitative description of pp ridge

Dusling, RV, 1201.2658

Quantitative description of pp ridge

Dusling, RV, 1201.2658

What about flow in p+p ?

Glasma flux tubes provide the long range rapidity correlation

Dumitru, Gelis, McLerran, RV; Gavin, McLerran, Moschelli Radial ("Hubble") flow of the tubes provides the azimuthal collimation

Voloshin; Shuryak

What about flow in p+p ?

With increasing flow, the pedestal gets collimated

Associated yield reflects the p_T dependence of the Glasma pedestal

Can accommodate only very small re-scattering / flow contribution

A+A ridge is all flow

Theory issues

 Collimation in Glasma graphs is from N_c² suppressed graphs.
Intrinsic leading N_c four point correlators give no collimation (Dumitru, Jalilian-Marian, Petreska) ?? – pomeron loop effects ? (Kovner talk)

 Multiple-scattering and evolution of two-gluon correlations can be computed for dense-dense sources systematically

(Gelis,Lappi,RV; Lappi,Schenke,RV, in progress)

 More systematic "global" analysis of single (and double ?) inclusive distributions can constrain even simpler models

Experimental issues

• Current experiments (especially at the LHC) can strongly constrain theory

Need fragmentation functions at forward rapidities

• Need more data on yield for wider p_T^{Trig} , p_T^{Assoc} and N_{ch} , three particle corr.

• Compute correlation with Δη for triggered η_p

Summary: bridges from ridges

Ridges (and their pedestals) carry important dynamical information necessary to construct a successful theory of multiparticle production in QCD

They provide key insight into the formation and evolution of strong color fields in heavy ion collisions

EXTRA SLIDES

Ridge from flowing flux tubes

Glasma flux tubes get additional qualitative features right:

i) Same flavor composition as bulk matter ii) Ridge independent of trigger p_T -geometrical effect iii) Signal for like and unlike sign pairs the same at large $\Delta \eta$

See also Lindenbaum and Longacre, arXiv:0809.3601, 0809.2286

Soft Ridge = Glasma flux tubes + Radial flow

Pairs correlated by transverse Hubble flow in final state - experience same boost

$$\int d\Phi \frac{\Delta\rho}{\sqrt{\rho_{\rm ref}}} (\Phi, \Delta\phi, y_p, y_q) = \frac{K_N}{\alpha_S(Q_S)} \frac{2\pi \cosh\zeta_B}{\cosh^2\zeta_B - \sinh^2\zeta_B \cos^2\Delta\frac{\phi}{2}}$$

Can be computed non-perturbatively from numerical lattice simulations Srednyak,Lappi,RV

 $\gamma_B = \cosh \zeta_B$ from blast wave fits to spectra

Q_s from centrality dependence of inclusive spectra

2 particle correlations in the Glasma (II)

RG evolution:

Gelis, Lappi, RV, arXiv: 0807.1306

Keeping leading logs to all orders (NLO+NNLO+...) 2-particle spectrum (for $\Delta y < 1/\alpha_s$) can be written as

$$\langle \frac{dN_2}{d^3p \, d^3q} \rangle_{\text{LLogs}} = \int [d\rho_1] [d\rho_2] W_{Y_1}[\rho_1] W_{Y_2}[\rho_2] \frac{dN}{d^3p} |_{\text{LO}} \frac{dN}{d^3q} |_{\text{LO}}$$

= LO graph with evolved sources
Glasma flux tubes

2 particle correlations in the Glasma (III)

Correlations are induced by color fluctuations that vary event to event - these are local transversely and have color screening radius 1/Q_s

Simple "Geometrical" result: strength of correlation = area of flux tube / transverse area of nucleus