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Introduction

Winker et al. (in press) developed a novel metlostdandardize multispecies catch-per-unit-
effort (CPUE) data. This ‘Direct Principal Compotianethod (DPC) uses continuous
principle component scores (PCs), derived fromiacRral Component Analysis of the catch
composition data, as nonlinear predictor variabdesdjust for the effect of temporal
variations in targeting tactics that allocate dffowards particular species or species-
complexes. The objective of this contribution igdst the performance of the DPC method

by way of simulations.

a) Basic dynamics

An operating model was developed to generate rpeltiss CPUE records per fishing trip
based on simulations of mixed-fisheries with tweels of complexity: (1) a simple mixed-
fishery scenario (Fig. 1), comprising four targe¢aes that are unevenly distributed across
two different habitats; and (2) a more complex rdifishery scenario (Fig. 2), comprising

ten target species that are unevenly distributeasadour different habitats. For illustrative



purposes, we simulated mixed-fishery scenariostitadly resemble the habitat associations

MARAM IWS/NOV12/LF/P3

of common target species in the South African Istedry.
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Fig.1lillustrates the mixed-fishery scenario for fougetrspecies that are unevenly

distributed across two different habitat-types tirat targeted by the fishery (H2.S4 scenario)
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Fig.2 illustrates the complex mixed-fishery scenariotéor target species that are unevenly
distributed across four different habitat-typed tiv@ targeted by the fishery (H4.S10

scenario)
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The ‘true’ biomass for specie yeary was generated over a period of 20 years as a

function of:

B, =B, y=1,2, ...,20. (D),

whereB; ; is the biomass of specieat start of the time-series ands the rate of increase (or

decrease) for species

The use of CPUE as an index of abundance assumtesatich is proportional to the product

of fishing effort and biomass:

C,=qEB (2),

whereC; is the catch of specie$rom tript, E; is the effort andj; is the catchability for
species representing the fraction of biomass caught byeegmg one standard unit of effort.
Here, we define one unit of effort as the effop@exded during fishing trip Re-arranging

this equation gives the relationship between CPERBiomass as:

CPUE, =C,/E =qB (3).

This relationship only holds d; is constant, which is almost certainly violated in mixed-
fisheries that employ a variety of targeting tactics. Given that eplart targeting tactic will
allocate effort towards a target species or species-complex, élgolinfluence the

catchability of other species.
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To simulate this effect, we assumed that the choii¢argeting tactic is reflected by the
choice of target habitatduring tript and that each habitat is associated with a species
specific catchabilityy;; based on the conceptual consideration outlin&tephens and
MacCall (2004) and Winker et al. (in press). Torpote a realistic generation of catch
profiles for the individual trip levdl the CPUE from triph for species was assumed to be
associated with a time-invariant capture probabif. The introduction of this parameter
permits the presence/absence of species to vargsafishing trips, in the way that, for
example, species that rarely frequent a partidudhitat will also be less likely encountered
in the catch that was taken from that habitat (&¢eg and MacCall, 2004)he

corresponding function used to generate CRJE given by:

CPUEIY _ {O if U (0,1) > le (4)’

q.,B, otherwise
whereU(0,1) denotes a random uniform number between Qlahibte that ifo;; = 1 for alll
species and habitats, equation (4) reduces tathdi&r form:

CPUE(,i,y =G ; Bi,y (5).

The reason for not using eq. 5 to generate data is because # reswiery species in a

habitat being represented in every catch record for that habitatwa@kideemed unrealistic

as mono-specific catch records were commonly encountered in the database.

Model nhomenclature

Simulation tests involving multi-species, multi-habitat opagamodels can quickly become

mired in a vast number of permutations of scenarios and model foromglalin an attempt to



MARAM IWS/NOV12/LF/P3

simplify the study and facilitate comparisons weédevised the following system of

nomenclature.

The successive terms in the following example gtrefer to (in order): Number of habitats
(Hn), *.” the number of species §§ ‘.’ the type of data transformation used in Bf@A - two
commonly used are'2and 4" root (abbreviated R2 and R4 respectively)tHe number of
PC axes used in the GAM (RC A PCO value would imply no standardisation fangeting.
Effort distribution, referring to one of the casisstrated in effort models (Ewhere n refers

to the habitat scenario specified below):
Example: the simplest model is H2.S4.R2.PG1.E

We do not aim to restrict the scope of model peatnts, but rather propose a system to
organise alternative runs. Workshop participantg prapose alternative and additional

simulations tests, but hopefully these could beannodated in the existing framework

Four-species-two-habitats (H2.$4) scenarios

First, a simple mixed fishery is simulated, whiahgets four species in two different habitats
(H2.S4). This scenario includes the species skebr(KOB), geelbeek (GLBK), hake
(HAKE) and panga (PANG) that are distributed acsisdlow- and deep water sediment
habitats (Fig. 1). Silver kob and geelbek are dannhin shallow sediment habitats but are
less common in deeper waters, whereas hake and papigesent the dominant target species
in deepwater sediment habitats. The species-speltdiributions across the two habitats are
determined by 4 specieg & 2 habitatj) matrixes ofg;jandp;; values, summarized in Table

1.



MARAM IWS/NOV12/LF/P3

Table 1 summarizes choices of species- and habitat-specifendp;; for the two-habitat-
four-species scenarios (H2.Sp¥. 1: shallow water sediment 2: deep water sediment.

Habitat)
Species Pi Pi2 Qi 0.2
Silver kob 0.9 0.3 0.7 0.3
Geelbek 0.7 0.1 1.0 0.2
Hake 0.2 0.9 0.2 1.0
Panga 0.3 0.6 0.3 1.0

Two alternative effort scenarios were consideresinlate the distribution of fishing effort

across habitats. This distribution was determirgetha probability that habitgis targeted in

yeary, g, such thatz e;, =1. The first effort scenario @ simulates time-invariant
j

probabilitiesg y and acts as a ‘control’ (Fig. 3a), while the secefidrt (E) scenario

simulates a linear increasesgy for one habitat and a linear decrease for ther dthleitat

(Fig. 3b).

a)

Proportion of Targeting
00 02 04 06 08 1.0

o o o I e o o o o o o o

O 000OO0O0OO0O0OO0OO0OO0OO0OO0OO0OO0OO0OOO0OOoODOo

10 15

Year

20

Proportion of Targeting
00 02 04 06 08 1.0

o a
OOQEID
I:IE| oo
m] 00
[e]
[o]
c>O
I:Il:l o
T T T
10 15 20
Year

Fig. 3 Two effort allocation scenarios; Bnd E for H2.S4 models. Each symbol represents a
particular habitat and the y-axes denote the pilglibaht this habitat is targeted for any given

year.
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Ten-species-four-habitats (H4.S10) scenarios

In this scenario, the mixed-fishery was extendeignotarget species, which are distributed
across four different habitats (H4.S10): shallond deep water sediment and shallow- and
deep water reef habitats (Fig .2). The speciesralsages of shallow- and deep water
sediment habitats correspond to the first mixekefig scenario H4.510 (Figs.1 and 2). The
shallow water reef assemblage is dominated by raiR@MN), dageraad (DRGD), red
stumpnose (RSTM) and santer (SNTR), while carpd@BPN) represents the dominant
target species over deep water reefs (Fig. 2).€lisesome distributional overlap among reef
associated species. In addition, we introducedjtbep ‘sharks’ (SHRK), for which small
catches are occasionally made in all four habifts. species-specific distributions across
habitats are determined by 10 specigs @ habitatj) matrixes ofg;; andp;; values,

summarized in Table 2.

Table 2 summarizes choices of species- and habitat-specifendp;; for the four-habitat-
ten-species scenarios (H4.S1&)1: shallow water sedimerjt2: deep water sediment 3:
Shallow water reef; ang=4: Deepwater Reef

Habitat)
Species Pi1 Pi2 Pi3 Pi4 i1 Q.2 0.3 i
Silver kob 0.9 0.3 0.0 0.0 0.7 0.3 0.0 0.0
Geelbek 0.7 0.1 0.0 0.1 1.0 0.2 0.0 0.1
Hake 0.2 0.9 0.0 0.0 0.2 1.0 0.0 0.0
Panga 0.3 0.6 0.0 0.0 0.3 1.0 0.0 0.0
Carpenter 0.0 0.0 0.8 0.2 0.0 0.0 1.0 0.2
Santer 0.0 0.0 0.1 0.8 0.0 0.0 0.1 0.7
Roman 0.0 0.0 0.2 0.7 0.0 0.0 0.2 0.8
Dageraad 0.0 0.0 0.2 0.4 0.0 0.0 0.1 0.6
Red stumpnose 0.0 0.0 0.3 0.5 0.0 0.0 0.1 0.5
Sharks 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1
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As in scenario H2.54, we considered two alternagii@t scenarios for the distribution of
g, With the first (&) effort acting as a ‘control’ by simulating timeviariant probabilities; y
(Fig 4a). The second effort scenarig)(Bimulates linear increases and decreaseg for

two habitats as well as a sudden swaglfor between the other two habitats (Fig. 4Db).
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Fig. 4 Two effort allocation scenarios,Bnd E, for H4.S10 models. Each symbol represents
a particular habitat and the y-axes denote thegirgtihat this habitat is targeted for any
given year.

b) Data generation

A total of 100 simulation datasets were randomiyegated for each of the four scenarios: (1)

H2.S4.g, (2) H2.S4.E, (3) H4.S10.Eand (4) H4.S10.E Each simulation dataset consisted

of 500 trips per year and correspondingly a to®@glQD trip records over the 20 years period.

The following randomization procedures were appiredrder to generate the simulation
datasets:
(1) Random biomass time series for each specks (eq. 1), were generated by drawing
random variants af from uniform distribution with bounds at -0.1 an@.1,U( -0.1,

0.1). Random biomass values at the start of the seniesB; 1, were generated from a

lognormal distribution aB | = 2000@’ ands~N(0, 0.5) for the abundant species
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silver kob, geelbek, hake, panga and carpenteraaB:q =500@&"“ ande~ N(0, 0.5)

for the less abundant species santer, roman, dajeed stumpnose and sharks.

(2) The vectors y that determine the probably for each habitaing targeted in year
were randomly resampled without replacement, ty tteg effort trends among
habitats. Note that there were only two possiblataaXx g, vector combination for
the two-habitat scenarios but 24 possible habitat,»ector combinations for the

four-habitat scenarios.

(3) Random CPUE, deviates were drawn from a lognormal distributssociated with

a CV ~ 20%, such that:

and £~N(0, 0.%) (6).

tiy

0 ifU (01) > p,,
CPUE = o
q,B,e”  otherwise

C) Standardization models

The simulated CPUE; data are standardised by applying the ‘Directdivad Component
method (DPC; Winker et al., in press). This methas developed on the premises that
continuous principal component scores (PCs), dériran a Principal Component Analysis
of the catch composition data, can be used asinearlpredictor variables for targeted effort
within a Generalized Additive Model (GAM) framewof®/inker et al., in press). The
performance of this method is tested by compariagdardized CPUE indices with

corresponding nominal CPUE indices.
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The first step of the DPC method entails applyif®CA to a multidimensional CPUE&

matrix. For this purpose, a data matrix only cosipg CPUE;, records was extracted from

the simulation dataset. The CPErecords were standardized into relative propostioy
weight to eliminate the influence of catch volunmel dhen square-root (R2) or fourth-root

(R4) transformed to allow less dominant target gseto contribute to the similarity among
catch compositions and to shift the source of miion away from raw abundance.

Example results of PCAs are illustrated for scenki2.S4.R4.E(Fig. 5a) and scenario
H4.S10.R4.E(Fig .5b). In the final step of the dataset prapan, the first four PC-axes

were directly aligned with the records in the argjidatasets for subsequent use as covariates

in the GAM analysis.

Given thatp;; was assumed to be time-invariant for the purpdghi® simulation study, we
excluded records with zero CPUJ values for any species under assessment before
applying the species-specific CPUE standardizatimodels. Note that this approach is
equivalent to setting;; = 1 in delta-X (or hurdle) model formulation and doed introduce

bias in the CPUE index in cases whgt@s time-invariant.

Nominal CPUE indices were derived by applying apergeneral linear model of the form:

IN(CPUE,. )=a+Y+& (7),

iy

wherea is the interceptY denotes the categorical variable year arigithe error term with
£~N(0, &°. A bias-corrected estimate of expected mean CPUE for spexuidsyeay is

then given by:

~2

CPUE,; =exp(Z, +%) y=1,2,...,20 8),

10
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where 1, the expected mean In(CPUE) for ygaand g2 is the estimated model standard

deviation (residual standard error)
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Fig. 5. Biplots illustrate examples of simulated results from the prad@pmponents
analysis (PCA) of fourth-root transformed catch composition matrixes) fime first two
principal component (PC) axes for scenario H2.510.RanH for (b) the first two PC-axes
and c) PC-axes three and four for scenario H4.SR4.E

11



MARAM IWS/NOV12/LF/P3

Conceptually, the number of Principal Componentesoequired to correctly separate the
species assemblages that are associated withaget habitat is given by the total number
habitats minus one (see Fig 6). The GAMs for ati-tvabitat scenarios (H2.S4.R2.E
H2.S54.R2.k, H2.S4.R4.Eand H2.S4.R4.E therefore included only the first principal
component score (PC1) as non-linear predictor baia

In(CPUE,. )=a+Y +sPCQCl) +¢ 9),

ti,y

wheres() denotes a thin plate regression spline smoother function, fohe maximum

number of knots was limited ta<5 in order to reduce the risk of ‘over-fitting’.

The inclusion of first three PC scores (PC1-PC3) should theoretpraltiuice the least biased
CPUE indices for the four-habitat scenarios (H4.S10.RHE.S10.R2.E H4.510.R4.Eand
H4.510.R4.E). However, to examine the sensitivity of the results to uralesver-
representation of non-linear PC predictors, we additionally formulatexhative GAMs that

either only included PC1 and PC2 or that included the first fGQusd¢eres (PC1-PC4) , such

that:

IN(CPUE,, ) =a +Y +s(PCl +sPC2) +& (10)
IN(CPUE,, ) =a +Y +s(PCl) +sPC2) +sPC3) +& (11)
IN(CPUE,, ,) =a +Y +s(PCl +sPC2) +sPC3) +sPCh) + & (12).

A bias-corrected estimate of expected standardized CPUE for spanyeay is given by:

A2

CPUEi,y(YTB):expwy+%) y=1,2,.. 20 (13),

12
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where X denotes means of the PC score vecﬁisihe vectors of estimated coefficients and

{1, the expected standardized In(CPUE) for year

D) Performance measures

The performance of the DPC standardization models was evaluated snofettme ability to

accurately estimate in comparison to the nominal CPUE indices. Estimategere

obtained from a simple linear regression of the form:
IN(CPUE,y) =a +fy y=1,2,..,20 (14).

The scenarios H2.S4.land H4.S10.Eact as control, for whiclj estimated from the
nominal CPUE indices is expected to be unbiased. Measures of Hiey&E&lrror (RE) and
the Absolute Relative Error (ARE) were used to summarize the estim@iformance of;
relative to the ‘true’ values that governg;y (Ono et al., 2012). The Relative Error is a

measure for the presence of systematic error and determines the overallyéadenc

overestimate or underestimate the true valug:of

r,—r
RE, =" (15),

whereRE;  is the Relative Error from tHa” simulation andf, , is the estimate af h"

simulation. A positive value for the MRE indicates that tlaaadardization model tends to

overestimate the true valuemfand a negative value means the opposite.

13
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The Absolute quantifies the average model preciarmhtherefore provides a relative

estimate for the goodness-of-the-fit:

(16).

Smaller values of the AREmean that, , was estimated closely ta

Relative Errors and Absolute Relative Errors from 100 simulatios ave presented in the
form of boxplots for each scenariont®n.Rn.E, by species. Absolute Relative Errors are

summarized over all species as Median Absolute Relative Error (MAREREh scenario

] (17).

as:

lin ~lin
i n

MARE = mediarE
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