Cosmology with Large Radio Continuum Surveys

Mário Santos UWC, SKA SA

SPARCS, Kruger, July 2015

Continuum?

- Advantage: Strong signal large number of galaxies; high-z tail
- Disadvantage: no redshift information
- Example: The VLA FIRST Survey (1994 …)
 - 10,000 deg²; 0.15 mJy; 9x10⁵ galaxies
 - 128x2 MHz channels averaged over 256 MHz

SKA1 – MID after "re-baselining"

- Construction by ~ 2020
- Total ~ 197 dishes
 - 133 new 15 m diameter
 - 64 from MeerKAT 13.5 m
- Single pixel feeds (might replace MeerKAT feeds)
- 0.35 14 GHz...
- Note: also possible to do a continuum survey with SKA1-LOW...

Large volumes with the SKA

 SKA1 should detect ~ 5x10⁸ galaxies over ~ 25,000 deg² (10,000 hours - 5 µJy flux cut)

SKA1 science cases for Cosmology with continuum surveys

- Probe the initial conditions and the global features of the Universe through non-Gaussianity and the dipole in the matter distribution using high precision measurements of the angular correlation functions.
 - Continuum survey of 30,000 square degrees at few microJy sensitivity and few arcsecond resolution.
 - SKA1 will give the first answer to the key question does the matter dipole agree with the CMB dipole? with precision ~100x better than NVSS.
 - Precision on non-Gaussianity ~3x better than Planck and independent of HI IM approach.
- Map the dark Universe with a completely new kind of weak lensing survey in the radio.
 - Measuring galaxy shapes in a Continuum survey of 5000 deg²; achieving 0.5 arcsec resolution or better, and 5 galaxies per square arcmin or more.
 - Competitive with DES but probing higher redshifts and SKA/DES cross-correlation could be a game changer in overcoming the systematic floor that either survey reaches on its own.

SKA1 top science cases for cosmology

y Science tive			SKA1 Component	Band	Mode	Frequency			Sensitivity		
High Priorit Objec	SWG	Science Objective				Range Low - High	Resolution Initial:Cal:Fin al	Spectral Dynamic Range (I_max/ I_min)	RMS Noise Min:Max @ Beam @ Bandwidth	Brightness Dynamic Range (I_max/ I_min)	Polarisation Dynamic Range (I_max/ P_min)
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super- horizon scales.	SKA1-MID	SPF1	Auto- correlations	350 - 1050 MHz	10:300 kHz	45 dB	3.3 mJy/Beam @ 1.7 deg Line	40 dB	40 dB
3	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole.	SKA1-MID	SPF2	Imaging	1000 - 1700 MHz	10:1000 kHz	30 dB	Jy/Beam @ 2 arcsec Cont	45 dB	30 dB

y Science tive		Observing Area					Integration							
High Priorit Objec	SWG	Total Area	Area of Single Pointing/ Beam	Angular Resolution Min:Max	Targets/ Beams	Tracking	Total	Per Pointing	Dump Rate / Temporal Resolution	Epochs	Cadence Min:Max	# Sessions per Interval	Time per Session	
32	Cosmology	30000 deg2	1.4 deg2	1.7 deg	21500 Pointings	Drift	10000 hr	2.2 hr @ 190 Dishes	0.15 s			1250	8 hr	
33	Cosmology	31000 deg2	0.38 deg2	2 arcsec	81600 Pointings	Sidereal	10000 hr	7.4 mn	0.15 s		Λ	1250	8 hr	
	Continuum	1000 deg2	0.38 deg2	0.5:1 arcsec	2600 Pointings	Sidereal	10000 hr	3.8 hr	0.15 s			1250	8 hr	
		7.8 deg2	0.38 deg2	0.5:1 arcsec	21 Pointings	Sidereal	2000 hr	95 hr	0.15 s			250	8 hr	
37 + 38		0.38 deg2	0.38 deg2	0.5:1 arcsec	1 Pointings	Sidereal	2000 hr	2000 hr	0.15 s			250	8 hr	
		0.5 deg2	30 arcmin2	0.05:1 arcsec	61 Pointings	Sidereal	1000 hr	16.4 hr	0.15 s			125	8 hr	
		30 arcmin2	30 arcmin2	0.05:1 arcsec	1 Pointing	Sidereal	1000 hr	1000 hr	0.15 s			125	8 hr	

Note: need sub-arcsec resolution to separate galaxy populations

SKA1-MID large continuum survey?

- ~25,000 deg²
- Band?
 - Band 1 baseline design: 350 1050 MHz
 - Band 2 baseline design: 950 1760 MHz
 - Band 1 option: 450 825 MHz ("octave" receivers)
 - Band 2 option: 795-1470 MHz ("octave" receivers)
- Resolution? Need ~ 0.5 arcsec resolution for morphological classification of sources and weak lensing
- ~ flux sensitivity ~ 1 uJy rms (~ 5x10⁸ galaxies)
- Observing mode? ("point and observe" or take data while scanning?)

Basic probe: galaxy number density

- Count the number of galaxies in each pixel
- Look at the fluctuations in the number take the 2-point correlation function – should trace the dark matter

Galaxy bias?

- Crucial to have accurate (<10%) measurements of n(z)*b(z) for cosmology (up to a constant amplitude at least)
- Need deep radio continuum surveys matched to other data for redshifts

New and quick method to get dn/dz and bias...

- For most purposes, we only need galaxy number density distributions and bias.
- See Alonso et al., arXiv: 1505.07596: <u>http://intensitymapping.physics.ox.ac.uk/Codes/ULS/continuum</u>

- Can easily change cosmology, luminosity function parameters, etc
- Runs in Python!
- Calculates GR bias corrections for ultra-large scales

Other probes: ISW

 Correlation between galaxies and the CMB – Integrated Sachs–Wolfe (ISW)

As the CMB goes through overdensities and under-densities it gets hotter or colder because of density evolution due to dark energy

Other probes: Cosmic Magnification

- Dark matter will act as a lens of background galaxies:
 - Increase flux
 - Increase solid angle
- Foreground galaxies trace dark matter
- Expected correlation between background and foreground galaxies

Combining probes: Constraints on dark energy using continuum surveys

 Can cross correlate with low z (< 0.8) photometric survey to split radio galaxies into low-z and high-z bins

SKA1 should detect ~ 20 times more galaxies than pathfinders...

VERY Large scales?: testing the Cosmological Principle using galaxy counts

- Tests of isotropy (CMB anomalies?)
- Test if the cosmological dipole (with radio-galaxies) is the same as the CMB one
- Reach a few degrees precision with SKA1

D. J. Schwarz, et al., PoS(AASKA15), SKA chapters, 2015

Pushing the limits on primordial non-Gaussianity with multiple populations

- Look at clustering of galaxies
- Separate radio galaxies into different populations (masses...)
- Need ~ 0.5 arcsec resolution to identify the FR galaxies use SKA1-Mid
- No need for redshift information!

- Blue: everything combined
- Light blue: FRI, FRII, RQQ and (SFG+SB)

fNL ~ 2.9! (SKA1) L. Ferramacho, M. Santos et al., MNRAS 2014, arXiv:1402.2290

Weak Gravitational Lensing

Intervening matter (mostly dark) bends light from distant sources and causes the source shapes to appear distorted.

Convergence

Shear

 γ_1, γ_2 Measure lots of shapes very accurately!

Precision weak lensing to probe accelerated expansion is key science driver for Euclid, LSST, SKA etc.

- Require exquisite control of systematics.
- Major systematics for weak lensing:
 - * Instrumental systematics (e.g. PSF anisotropies).
 - * Photometric redshift errors.
 - * Colour-gradient systematics.
 - * Intrinsic galaxy alignments.

Credit: Michael Brown

Radio survey offers unique solutions to most of these problems: stable beam, use polarization or HI rotation velocities to trace the galaxy intrinsic orientation

Radio surveys will probe higher redshifts.

Survey duration: 2 years

SKA1-Mid + Band 2 provides the most powerful survey speed at the high angular resolution required for lensing.

Conclusions...

- Continuum should be the most easily accessible survey for cosmology
- SKA1-MID continuum will provide game changing measurements in cosmology (sensitivity+resolution)
- Observables:
 - 2-point correlation functions
 - Correlations with multi-wavelength data: optical/NIR/CMB (redshifts, magnification, ISW,...)
 - Shape measurements (population type, WL)
- Questions:
 - Observing mode? (commensality with other surveys...)
 - Optimal frequency?
 - Source extraction algorithms?
 - Optimal statistics for stacking and confusion noise limited maps?