Mocking Astrophysics

Daniel Cunnama

Core Team:

Alexander Knebe, Frazer Pearce, Chris Power, Peter Thomas, Andrew Benson, Scott Kay

> PHISCC February 3, 2016

Mocking Astrophysics Aims

- Started in 2010.
- The ultimate plan is to provide testing and validation of mock skies.
- The production of a large mock-sky suitable for modern surveys.
- · Understood and control the various steps required.
- Aim to complete a full end-to-end pipeline by the end of 2016.

Areas of Concern

- Cosmological initial conditions generators
- Production simulation codes
- Post processing
 - Halo & subhalo finding
 - Merger tree building
- Generating mock galaxy catalogues
 - Semi-analytic models
 - Halo occupation distribution models
 - Full physics hydrodynamical models
- Lightcone generation
- Mock observing

Areas of Concern

- Cosmological initial conditions generators
- Production simulation codes
- Post processing
 - Halo & subhalo finding \checkmark
 - Merger tree building √
- Generating mock galaxy catalogues
 - Semi-analytic models √
 - Halo occupation distribution models
 - Full physics hydrodynamical models
- Lightcone generation
- Mock observing

Past Workshops

- Haloes Going MAD (2010)
- SubHaloes Going Notts (2012)
- Sussing Merger Trees (2013)
- Halo Mass Recovery Comparison (2013)
- nIFTy Cosmology (2014)
 - nIFTy Clusters
 - nIFTy Galaxies
 - nIFTy Observations
- Perth Clusters (2015)
- Cosmic CARNage (2015)

Future Workshops

- Yonsei SAM (Seoul, July 2016)
- Comparison Cape Town (Cape Town, July 2016)
- nIFTy Lightcones (Madrid, August 2016)

nIFTy Cluster Comparison

 16 years on from the Santa Barbara Cluster Comparison (Frenk et al. 1999)

nIFTy Cluster Comparison

- 10 Different Hydrodynamical codes
 - including RAMSES, 2 incarnations of AREPO and 7 of GADGET
- 3 Runs:
 - Dark Matter Only
 - Non-Radiative
 - Full Physics

nIFTy Cluster Comparison

MUSIC Database

nIFTy Cluster

- $M_{200} \simeq 1.1 \times 10^{15} h^{-1} M_{\odot}$
- $R_{200} \simeq 1.69$ Mpc at z = 0
- Selected from the MUSIC-2 Sample (Sembolini et al. 2013)
- Zoomed simulation:
 - $m_{DM} = 9.01 \times 10^8 h^{-1} M_{\odot}$
 - $m_{gas} = 1.9 \times 10^8 h^{-1} M_{\odot}$

nIFTy Cluster

Various Projects:

- Dark Matter and Non-radiative comparison
- Baryonic Effects
- Substructure

Gas Density

G2-X

G3-PESPH

G3-MAGNETICUM

Sembolini et al. 2015

Gas Density

Sembolini et al. 2015

Radial Gas Density

Sembolini et al submitted

Baryonic Effects

Cui et al. submitted

Accumulative Density Profile

Cui et al. submitted

Halo Masses ($M_{2500}, M_{500}, M_{200}$)

Cui et al. submitted

Baryonic Effects

- Most disagreement in the total density profile in the cluster center
- The cluster environment differences seen between codes in the non-adiabatic runs are washed away in full physics runs, even between codes with very different feedback physics.
- see Cui et al. submitted.

Shocks around Clusters

nIFTy cluster comparison - properties of cluster outskirts robust prediction of codes, independent of (reasonable) physical prescriptions

Power et al. in prep

Shocks around Clusters

Evidence of accretion shocks and shocks associated with infalling subclumps - predictions for emission at radio continuum and higher energies...

Power et al. in prep

The Next Workshop: Cape Town Clusters (11 -15 July 2016)

www.uwcastro.org/compact Projects that have been initiated:

- Reconstructing the dynamical state and merging history of clusters from present-day observables.
- Synthetic observations of galaxy clusters at radio continuum, X-ray wavelengths.
- Tidal disruption of galaxies in clusters, the formation of intra-cluster light.
- The outskirts of clusters and the detection of missing baryons.
- The creation of lightcones and mock observables.

Galaxy Formation Modeling for the SKA and its Pathfinders

Chris Power

Core Team:

Lagos, Obreschkow, Power, Robotham (ICRAR/UWA), Cunnama (UWC), Elahi (U Sydney), Gonzalez-Perez & Norberg (ICC Durham)

WAVES Simulations I

Large N-body simulations coupled to GALFORM semi-analytical model.

- Mass resolution sufficient to resolve haloes of galaxies with stellar masses of $10^8 M_{\odot}.$
- Require at least 100 particles per halo.
- Haloes identified with Rockstar (Behroozi et al. 2013), merger trees constructed with consistent trees (Behroozi et al. 2013) from 200 outputs equally spaced in log(a).

Run	L _{box} [Mpc/h]	N_{side}	m _{part,dm} [Msol/h]	m _{halo,res} [Msol/h]
micro	40	512	4.07e7	4.07e9
mini	210	512	5.9e9	5.9e11
medium	210	1024	7.37e8	7.37e10
maxi	210	2048	9.22e7	9.22e9
ultra	210	4096	1.15e7	1.15e9

WAVES Simulations I

Large N-body simulations coupled to GALFORM semi-analytical model.

- Assumes Planck 2015 cosmological parameters.
- Simulations run at Pawsey Supercomputing Centre, models run at ICRAR.

Run	L _{box} [Mpc/h]	N_{side}	m _{part,dm} [Msol/h]	m _{halo,res} [Msol/h]
micro	40	512	4.07e7	4.07e9
mini	210	512	5.9e9	5.9e11
medium	210	1024	7.37e8	7.37e10
maxi	210	2048	9.22e7	9.22e9
ultra	210	4096	1.15e7	1.15e9

WAVES Simulations II

Gonzalez et al. 2015 GALFORM models, run at ICRAR on 512^3 resolution WAVES volume

Blue lines - intrinsic luminosity Red lines - after dust effects are included

Cold Gas Mass Function

Dominated by HI

- Based on Lagos et al. (2012)
- explicitly separates HI and H2
- galaxies form stars only from the H2 component.

HI Galaxies

- Busy building these catalogues
- Soon we will have HI absorption and radio continuum (from AGN and star formation).