

ICRAR is a partnership between The University of Western Australia and Curtin University of Technology

Visualising Neutral Hydrogen: A simulation perspective

Cape Town May 2010

Alan Duffy ICRAR, University of Western Australia alan.duffy@icrar.org

Joop Schaye, Richard Battye, Scott Kay, Craig Booth, Claudio Dalla Vecchia, Daniel Beard, Paul Bourke

Overview

OWLS

Creating HI in simulations

Visualising a Dwarf Galaxy

Cosmological Volumes

The Cosmic Web

Curtin 🖤

Simulations

OverWhelmingly Large Simulations

• Based in Sterrewacht, University of Leiden:

Joop Schaye (PI), Craig Booth, Claudio Dalla Vecchia, Marcel Haas, Andreas Pawlik,
Debora Sijacki, Tom Theuns, Luca Tornatore, Freeke van de Voort, Rob Wiersma and Rob Crain

- LOFAR IBM Bluegene/L
- SPH-based code, Gadget 3
- 2 x 512³ particles
- 25 Mpc/h (run to z=2):
 - $-m_{gas}$ = 1x10⁶ M_{sol}/h
 - softening = 2 kpc/h comoving (< 0.5 kpc/h proper)</p>
- 100 Mpc/h (run to z=0):
 - m_{gas} = 9x10⁷ M_{sol}/h
 - softening = 8 kpc/h comoving (< 2.0 kpc/h proper)</p>
- WMAP3 cosmology
- Repeat for different physics- star formation, IMF, SNe, AGN etc

Creating HI

Creating HI

Neutral Hydrogen

Molecular Hydrogen

Creating HI

Neutral Hydrogen

More Hydrogen balances lower neutral fraction

Curtin 🖤

Creating HI

Neutral Hydrogen

Most Hydrogen comes from gas near self-shielding limit

Creating HI

Neutral Hydrogen

Neutral hydrogen is converted into molecular at higher densities

Curtin

Creating HI

Optically Thin

Assume Haardt-Madau (2001) UV/X-ray background for optically thin material

Creating HI

Self-shielding

Onset of self-shielding given as a critical pressure, fit to the HIPASS mass function (only free parameter!)

Creating HI

Molecular Hydrogen

Ratio of neutral to molecular hydrogen given by pressure based empircal law from THINGS (Lerory et al 2008) Shown in Gerhardt's talk

Visualising HI

Dwarf galaxy with GIMIC/OWLS code

log (Gas density) in [Msun/h / (Mpc/h) ^ 3]

z = 29.888

HI density of dwarf galaxy

Visualisation effort with Paul Bourke (WASP) and Daniel Beard (UWA)

HI mass function

z = 0

Local Universe is well matched - evolution to z=2 appears confined to faint end slope. Overall slight decrease in HI density

SPH points

Cosmological Volumes

'Smoothed' SPH points

Visualisation effort with Paul Bourke (WASP) and Daniel Beard (UWA)

Cosmic Web

H Surface Density

Cosmic Web

HI Surface Density

Cosmic Web

H₂ Surface Density

Detecting the Cosmic Web

Red points are 'detections' with a DINGO-like survey Erwin's MHONGOOSE? Richard Dodson (ICRAR)

Hydro-simulations allow one to predict effects of AGN, SNe, differing IMF, etc

Can predict evolution in HI & H_2 mass functions as well as the column density distribution function

Crucial theoretical support for Cosmic Web surveys

Get a realistic distribution of galaxies for cosmological parameter constraints (Florian's talk)

Great for outreach - a signature theme at ICRAR

Baryonic Tully-Fisher relation

International Centre for Radio Astronomy Research

SNe

SNe+AGN

Benne and Sarah should be watching...

Curtin 🖤

Baryonic Tully-Fisher relation

SNe

SNe+AGN

Above 200 km/s, for a given baryonic mass the velocity is to high without AGN!

Curtin P

Baryonic Tully-Fisher relation

Centre for Radio Astronomy Research

SNe

SNe+AGN

At z=2 the BTF agreement is spot on below 200 km/s

Baryonic Tully-Fisher relation

International Centre for Radio Astronomy Research

SNe

SNe+AGN

At z=2 the BTF agreement is spot on below 200 km/s However, the disagreement at high velocities isn't resolved- the slope is now closer to 3 not 4! Evolution?

Viewing the Universe

