
University of Cape Town

Department of Statistical Sciences
Faculty of Science

Masters Minor Thesis

Triplet Entropy Loss: Improving
The Generalisation of Short

Speech Language Identification
Systems

Author:
Ruan Henry van der Merwe

Supervisor:
Dr Şebnem Er

December 2020

Acknowledgements

I will keep it brief as everyone in this list knows how much they contributed.

• To my wife, Madelein, you have been my rock during this entire process and
I could not have finished this without you.

• To Şebnem, my supervisor, thank you for all your feedback and zoom calls.
Even though we could not meet nearly enough in person as we would have
hoped for in this strange year, you still pushed me in the correct direction
after every meeting and inspire me to ask even more questions.

• To my family, friends and Church community, you kept me sane during this
time with all your distractions. Thank you!

• To both my managers which I worked under during the two years of study,
Guillaume and Etienne, thank you for understanding the struggles of part time
studying and allowing me the freedom to work on this project and providing
support in any way you can.

i

Abstract

Spoken language identification systems form an integral part in many speech recog-
nition tools today. Over the years many techniques have been used to identify the
language spoken, given just the audio input, but in recent years the trend has been
to use end to end deep learning systems. Most of these techniques involve converting
the audio signal into a spectrogram which can be fed into a Convolutional Neural
Network which can then predict the spoken language. This technique performs very
well when the data being fed to model originates from the same domain as the train-
ing examples, but as soon as the input comes from a different domain these systems
tend to perform poorly. Examples could be when these systems were trained on
WhatsApp recordings but are put into production in an environment where the
system receives recordings from a phone line.

The research presented investigates several methods to improve the generalisation of
language identification systems to new speakers and to new domains. These methods
involve Spectral augmentation, where spectrograms are masked in the frequency
or time bands during training and CNN architectures that are pre-trained on the
Imagenet dataset. The research also introduces the novel Triplet Entropy Loss
training method. This training method involves training a network simultaneously
using Cross Entropy and Triplet loss. Several tests were run with three different
CNN architectures to investigate what the effect all three of these methods have on
the generalisation of an LID system.

The tests were done in a South African context on six languages, namely Afrikaans,
English, Sepedi, Setswanna, Xhosa and Zulu. The two domains tested were data
from the NCHLT speech corpus, used as the training domain, with the Lwazi speech
corpus being the unseen domain.

It was found that all three methods improved the generalisation of the models,
though not significantly. Even though the models trained using Triplet Entropy Loss
showed a better understanding of the languages and higher accuracies, it appears as
though the models still memorise word patterns present in the spectrograms rather
than learning the finer nuances of a language. The research shows that Triplet
Entropy Loss has great potential and should be investigated further, but not only
in language identification tasks but any classification task.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goal of This Research . 2
1.3 Outline of Thesis . 2

2 Literature Review 3
2.1 LID and South African Languages . 3
2.2 LID with Deep Neural Networks . 4
2.3 Applying Triplet Loss . 6
2.4 Generalisation of LID Systems . 7

3 Language Domains 10
3.1 NCHLT Speech Corpus . 11

3.1.1 Data Cleaning . 11
3.1.2 Transforming Data To the Image Domain 14
3.1.3 Splitting Data Into Train, Validation and Test sets 19

3.2 Lwazi Speech Corpus . 21

4 Methodology 23
4.1 Convolutional Neural Networks explained 23

4.1.1 Well Known CNN Architectures 28
4.2 Triplet Entropy Loss . 33
4.3 Additional Methods . 36

4.3.1 Spectral Augmentation . 37
4.3.2 Pre-Trained CNN Architectures 38

5 NCHLT Results 39
5.1 Comparing the Different Training Methods 40
5.2 Inspecting the Generated Embeddings 43
5.3 Discussion on Results . 47

iii

6 Performance On the Lwazi Dataset 49

7 Conclusion 53
7.1 Recommendations for Future Research 54

A Project Code 56

B NCHLT and Lwazi Spoken Words 57
B.1 NCHLT vs NCHLT . 57
B.2 NCHLT vs Lwazi . 59

C More Model Results 62
C.1 NCHLT Results . 62

C.1.1 Training Graphs . 63
C.1.2 Embeddings Projected Using UMAP 69

C.2 Lwazi domain . 79

D Even More Use Cases 80
D.1 Spoken Digits Classification . 80
D.2 GTZAN - Music Genre Classification 82

Bibliography 85

iv

List of Figures

3.1 Box plots for the duration of recordings after filtering out examples
based on the language of text prompts shown and PDP score. 13

3.2 Boxplots for the duration (seconds) of recordings for the final dataset 15
3.3 Long term average spectrum of all eleven languages showing the av-

erage power for all frequencies. 16
3.4 Distribution of the duration of all recordings. 17
3.5 Distribution of the estimated time taken to utter one word. 18
3.6 Example of a spectrogram created from an audio snippet 19

4.1 An example of a three channel matrix of shape being convolved with
a kernel of shape 3× 3× 3. 24

4.2 An example of ReLU being applied to a feature map. 25
4.3 An example of max pooling, with a window of size 2×2 being applied

to a matrix. 26
4.4 Architecture of Lenet-5 model developed in 1998. 28
4.5 Example of a filter bank within the Inception-V1 architecture. 30
4.6 Example of two different residual blocks used in the ResNet architecture. 31
4.7 Example of how a Densenet architecture will look. 32
4.8 Triplet Entropy Loss high level overview 34
4.9 Visual explanation of different triplet negative pairs that can be mined

for during the training process. For this research semi-hard negatives
is used. 36

4.10 Example of augmentation applied to spectrograms. In the top spec-
trogram no augmentation is applied, where in the middle one can see
a horizontal augmentation and then lastly in the bottom a mixture
of augmentations are applied. 37

5.1 Training graph showing the Triplet loss for the DenseNet121 model
trained using different methods. 41

5.2 Projection of the embeddings generated by the Densenet121 model
on the different NCHLT datasets. 44

v

5.3 Confusion matrix generated by combining the validation and test set
predictions for the pre-trained Densenet-121 model fine tuned using
the TEL method. 45

5.4 Confusion matrix generated by combining the validation and test set
predictions for the Resnet50 model trained using the TEL method. . 46

5.5 Projection of the embeddings generated by the Resnet50 model on
the different NCHLT datasets. 47

6.1 Confusion matrices for the Densenet-121 models trained using the
TEL method (top) and CEL (bottom). 50

6.2 Projection of the embeddings generated by the Densenet model on the
training NCHLT data (top) as well as the predicted Lwazi embeddings
(bottom). 51

6.3 Word clouds for both the NCHLT Zulu speech (left) and the Lwazi
Zulu speech (right). 52

6.4 Word clouds for both the NCHLT Afrikaans speech (left) and the
Lwazi Afrikaans speech (right). 52

B.1 Comparison between the spoken words of the NCHLT training and
validation Afrikaans subsets. 57

B.2 Comparison between the spoken words of the NCHLT training and
validation English subsets. 58

B.3 Comparison between the spoken words of the NCHLT training and
validation Sepedi subsets. 58

B.4 Comparison between the spoken words of the NCHLT training and
validation Setswana subsets. 58

B.5 Comparison between the spoken words of the NCHLT training and
validation Xhosa subsets. 59

B.6 Comparison between the spoken words of the NCHLT training and
validation Zulu subsets. 59

B.7 Comparison between the spoken words of the NCHLT and Lwazi
Afrikaans subsets. 59

B.8 Comparison between the spoken words of the NCHLT and Lwazi En-
glish subsets. 60

B.9 Comparison between the spoken words of the NCHLT and Lwazi Se-
pedi subsets. 60

B.10 Comparison between the spoken words of the NCHLT and Lwazi
Setswana subsets. 60

B.11 Comparison between the spoken words of the NCHLT and Lwazi
Xhosa subsets. 61

vi

B.12 Comparison between the spoken words of the NCHLT and Lwazi Zulu
subsets. 61

C.1 Training graph showing the Triplet loss for the CRNN model trained
using different methods. 63

C.2 Training graph showing the Triplet loss for the Densenet121 model
trained using different methods. 64

C.3 Training graph showing the Triplet loss for the pre-trained Densenet121
model trained using different methods. 64

C.4 Training graph showing the Triplet loss for the Resnet50 model trained
using different methods. 65

C.5 Training graph showing the Triplet loss for the pre-trained Resnet50
model trained using different methods. 65

C.6 Training graph showing the accuracy for the CRNN model trained
using different methods. 66

C.7 Training graph showing the accuracy for the Densenet121 model trained
using different methods. 67

C.8 Training graph showing the accuracy for the pre-trained Densenet121
model trained using different methods. 67

C.9 Training graph showing the accuracy for the Resnet50 model trained
using different methods. 68

C.10 Training graph showing the accuracy for the pre-trained Resnet50
model trained using different methods. 68

C.11 Embeddings generated by the baseline CRNN model on the NCHLT
dataset. 69

C.12 Embeddings generated by the CRNN model on the NCHLT dataset. . 70
C.13 Embeddings generated by the baseline Densenet121 model on the

NCHLT dataset. 71
C.14 Embeddings generated by the Densenet121 model on the NCHLT

dataset. 72
C.15 Embeddings generated by the baseline pre-trained Densenet121 model

on the NCHLT dataset. 73
C.16 Embeddings generated by the pre-trained Densenet121 model on the

NCHLT dataset. 74
C.17 Embeddings generated by the baseline Resnet50 model on the NCHLT

dataset. 75
C.18 Embeddings generated by the Resnet50 model on the NCHLT dataset. 76
C.19 Embeddings generated by the baseline pre-trained Resnet50 model on

the NCHLT dataset. 77
C.20 Embeddings generated by the pre-trained Resnet50 model on the

NCHLT dataset. 78

vii

C.21 Projection of the embeddings generated by the Resnet50 model on
the NCHLT and Lwazi datasets. 79

D.1 Training graph of pre-trained Densenet-121 model on the FSDD dataset
in terms of accuracy. 81

D.2 Training graph of pre-trained Densenet-121 model on the FSDD dataset
in terms of Triplet loss. 81

D.3 Projection of the embeddings generated on the FSDD dataset. 82
D.4 Training graph of pre-trained Densenet-121 model on the GTZAN

dataset in terms of accuracy. 83
D.5 Training graph of pre-trained Densenet-121 model on the GTZAN

dataset in terms of Triplet loss. 83

viii

List of Tables

2.1 CNN architecture used by [Bartz et al., 2017, pp. 5] to predict the
spoken language based on a spectrogram image of the input audio
signal. 5

2.2 Results obtained for both the CRNN model (using the architecture in
Table 2.1) and the Inception-V3 CRNN model. The values show the
accuracy (%) and F1-Score for the original dataset as well as three
other datasets where noise is applied. 5

3.1 Summary of NCHLT data before filtering unusable data. 11
3.2 Summary of NCHLT data after filtering out unclean data 14
3.3 Languages to be used to train LID models. SB refers to Southern

Bantu. 20
3.4 Summary of train, validation and test datasets. 20
3.5 Summary of the Lwazi Speech Corpus 21
3.6 Summary of the Lwazi Speech Corpus used to test the model trained

on the NCHLT speech corpus. 22

5.1 Summary of the experiment results regarding the models trained using
only Cross Entropy Loss (CEL) and Triplet Entropy Loss (TEL). The
results in the table show the accuracy (%) of the models on unseen
NCHLT speaker data. 41

5.2 Summary of the experiment results with regards to the models trained
using only Triplet loss and Triplet Entropy Loss (TEL). The results
in the table show the loss value for the models on unseen NCHLT
speaker data. 42

5.3 Accuracy (%) performance of the various models based on the gender
of the speaker. 42

6.1 Accuracy (%) performance of the Resnet50 and Densenet121 models
on the Lwazi dataset. 49

ix

Nomenclature

ASR Automatic Speech Recognition, page 1

AUC Area Under the Curve, page 7

AWS Amazon Web Service, page 39

CEL Cross Entropy Loss, page 6

CNN Convolutional Neural Network, page 2

CRNN Convolutional Recurrent Neural Network, page 4

DFT Discrete Fourier Transform, page 14

FSDD Free Spoken Digit Dataset, page 80

GRS GlobalPhone Read Speech, page 8

HMM Hidden Markov Model, page 3

LID Language Identification, page 1

LSTM Long-Short-Term Memory Network, page 4

PDP phone-based dynamic programming, page 11

PRLM Phoneme Recognition followed by Language Modelling, page 4

RBS Radio Broadcast Speech, page 8

ReLU Rectified Linear Unit, page 5

RNN Recurrent Neural Network, page 4

SGD Stochastic Gradient Descent, page 27

SVM Support Vector Machine, page 3

TEL Triplet Entropy Loss, page 2

x

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction,
page 43

xi

Chapter 1

Introduction

1.1 Background

Speech recognition tools have grown to form an integral part of many lives. For
example, if you are reading this thesis on an electronic device, the chances of it
containing one or other speech recognition tool are high, with Siri and Alexa being
widely known examples.

To build a speech tool, one must first have a back-end that can perform Automatic
Speech Recognition (ASR), which is a process to determine automatically what a
user said purely based on the input speech signal. One of the first steps in an
ASR system is to identify the spoken language using language identification (LID)
systems, as the ASR systems in most cases are optimised for one language only.
When the spoken language is one of the more common languages in the world, then
there are already a vast majority of resources and tools that could implement this
identification step.

But it is becoming more apparent that some of these tools do not generalise well to
new domains [Abdullah et al., 2020]. There also are cases where the performance
degrades when new speakers are introduced [Montavon, 2009]. This leads on to ask
if other LID systems are also only usable for data that comes from the same domain?
This can be acceptable in certain conditions, but for most applications the input
data will come from unique domains and it is not feasible to train a model for each
domain.

1

1.2 Goal of This Research

The aim of this thesis is to investigate methods that can improve the generalisation
of LID systems to new domains, specifically in the case of short speech recordings
(three seconds or less). The techniques will be tested on South African languages in
order to test the performance on low resource languages and to test if the techniques
work on languages that share the same characteristics, such as Zulu and Xhosa. The
new LID techniques could then improve the ASR systems in South Africa. The new
LID system could also be used as a stand-alone product. For example, if one can
detect the language of a customer calling a call centre, one can then assign an agent
that can speak in the customer’s mother tongue.

The research will focus heavily on a novel training method being introduced, namely
the Triplet Entropy Loss (TEL). It is inspired by the combination of research from
[Bartz et al., 2017] and [Schroff et al., 2015]. [Bartz et al., 2017] converted the raw
input speech recordings to a spectrogram which is fed into a Convolutional Neural
Network (CNN) and [Schroff et al., 2015] introduced the Triplet loss function. The
TEL training method then consists of training CNNs by optimising a loss function
that combines the strength of Cross Entropy Loss (CEL) and Triplet loss.

The TEL method aims to improve upon the work done by [Abdullah et al., 2020]
in terms of domain generalisation. Their approach involves applying domain adap-
tion through adversarial training, which resulted in better generalisation for Slavic
languages. For their technique one still requires data from the different domain dur-
ing the training phase while TEL only requires one domain for training. The work
done by [Abdullah et al., 2020] is explained further in Section 2.4 with TEL further
discussed in Section 4.2. The other techniques that will be investigated are spectral
augmentations and using CNN architectures that are pre-trained on the Imagenet
dataset [Deng et al., 2009]. The training domain will be the NCHLT speech corpus
and the unseen domain will be the Lwazi speech corpus. Both these domains are
discussed in Chapter 3.

1.3 Outline of Thesis

The thesis comprises seven chapters, including the Introduction. The thesis will
walk the reader through the history of LID systems, Chapter 2, before explaining
the data that will be used during the research in Chapter 3. After this the methods
to be investigated will be discussed in Chapter 4 and then the experiment results
will be discussed in Chapter 5 and Chapter 6. Chapter 7 will then provide the
conclusions made during the research and any future work that is required.

2

Chapter 2

Literature Review

2.1 LID and South African Languages

The first attempt of creating a system to predict the spoken language for all eleven
official South African languages was by [Davel et al., 2012], where they implemented
a Parallel Phoneme Recognition followed by Language Modeling (PPR-LM) archi-
tecture. A phoneme is a unit of sound that can change the meaning of a word, with
these sounds being unique to every language. For example, in the English language
the words hat, cat and rat are all pronounced differently by just one sound, but
this sound changes the meaning of the words completely. In the English language
there are 44 such phonemes, with Afrikaans and Zulu having 37 and 45, respectively
[Henselmans et al., 2013].

For the PPR-LM system, the researchers built a phoneme extractor for all eleven
languages using Hidden Markov Models (HMM) [Rabiner and Juang, 1986]. This
is known as the front-end of the system. For every audio input signal, they sent
the signal through the front-end to extract the phonemes whereafter the biphone
frequencies are extracted from the identified phoneme strings. They then concate-
nate these frequencies into a single vector where it is then fed into a Support Vector
Machine (SVM) [Kecman, 2005], known as the back-end, to predict what the spoken
language is [Davel et al., 2012].

They trained this system on the Lwazi speech corpus and produced fairly good
results. With audio inputs ranging from 3 to 10 seconds they achieved an accu-
racy of 71.72% (with the worst performing languages being Zulu and Sesotho).
This drastically increased when they tried to predict the family language of the
audio input (Afrikaans, English, Nguni, Sotho-Tswana, Tswa-Ronga or Venda)
[Davel et al., 2012].

3

[Henselmans et al., 2013] attempted to predict the eleven languages using four meth-
ods, namely Phoneme Recognition followed by Language Modelling (PRLM), par-
allel PRLM (same as the above) and two analogous approaches based on word-level
recognition. The best system was parallel word recognition followed by a language
modeling approach with trigram language models. This system achieved a language
ID error rate (ELID) of 0.418. According to the researchers: “ELID is the average
language identification error rate compensated for evaluation priors”. The technique
performed the best in Germanic languages and was also built using the Lwazi speech
corpus.

[De Wet et al., 2017] tried to solve the problem for the shortage of Afrikaans speech
data by investigating if Flemish speech data can be added to the current Afrikaans
data and the results simply showed that this did not have any true benefits. The re-
searchers [Mbogho and Katz, 2010] investigated what the effect of South African ac-
cents are on English speech recognition systems and they found that models trained
with accented English performed better, which indicates that there is merit in com-
mitting resources to further research accented training. Both [De Wet et al., 2017]
and [Mbogho and Katz, 2010] used HMM models to conduct their research.

2.2 LID with Deep Neural Networks

From the research summarised previously, it is apparent that most of them required
complex systems combined with a firm knowledge of language fundamentals. In 2017
[Bartz et al., 2017] identified a way to use a hybrid model built out of a CNN and a
Recurrent Neural Network (RNN) [Lipton et al., 2015] which in this case is a Long-
Short-Term Memory Network (LSTM) [Malhotra et al., 2015]. This hybrid model is
known as Convolutional Recurrent Neural Network (CRNN) [Zuo et al., 2015]. For
an in depth review on CNN architectures used in the literature and in this research,
please refer to Section 4.1 or [Goodfellow et al., 2016].

What separated their work from previous work was that they built a CNN (based
on the Inception-v3 architecture found in [Szegedy et al., 2016]) which received the
image of a raw audio signal converted to a spectrogram as the input. The researchers
then fed the extracted features of the CNN into an LSTM to generate the predictions.
Thus the predictions are based purely on the deep learning models automatically
extracting information from the spectrogram. This means that the only processing
that has to be done on the input speech signal is simply to convert it to a spectrogram
of a certain length. With the use of spectrograms, the extra requirement for language
fundamentals are eliminated. They gathered and used data from Youtube and the
European Union speech dataset for English, Russian, Dutch, French, Spanish and
Mandarin resulting in close to 1508 hours of data [Bartz et al., 2017].

4

Table 2.1: CNN architecture used by [Bartz et al., 2017, pp. 5] to predict the
spoken language based on a spectrogram image of the input audio signal.

Layer Kernel Size Number of filters
1 7x7 16
2 5x5 32
3 3x3 64
4 3x3 128
5 3x3 256

The architecture used in [Bartz et al., 2017] consists of five convolutional layers,
with each layer having a Rectified Linear Unit (ReLU) activation function followed
by Batch Normalization and a 2x2 max pooling layer (with a stride of 2). The kernel
sizes and number of filters for each layer are shown in Table 2.1. As can be seen
there are 5 layers where the kernel size decreases in size for the first two layers but
stays constant at a size of 3x3 for the last three layers. The number of filters also
increases two fold for each layer starting at 16 for layer 1 and ending at 256 for layer
5. After the convolutional layers, the architecture comprises of two LSTMs with
256 output units each. The output of both LSTMs are then concatenated into one
vector of 512 dimensions and fed into a fully connected layer with 6 output neurons
to classify the audio [Bartz et al., 2017].

Table 2.2: Results obtained for both the CRNN model (using the architecture in
Table 2.1) and the Inception-V3 CRNN model. The values show the accuracy (%)
and F1-Score for the original dataset as well as three other datasets where noise is

applied.

Dataset CRNN Inception-V3 CRNN
Accuracy F1 Score Accuracy F1 Score

No noise 91 0.91 96 0.96
White Noise added 63 0.63 91 0.91

Crackling Noise added 82 0.83 93 0.93
Background Music added 70 0.70 89 0.89

Ref: [Bartz et al., 2017, pp. 8]

To keep the audio length consistent for training and prediction, all the audio data
is converted into 10 second recordings and then converted to spectrograms. The
spectrograms were discretized using a Hann Window [Blackman and Tukey, 1958],
using only frequencies up to 5kHz as most English language phonemes do not exceed
3kHz [Bartz et al., 2017]. Using the architecture described earlier and the 10 second

5

spectrograms, they achieved very promising results which are summed up in table
Table 2.2. As can be seen from the table, even by adding noise to the input data
they still achieved an accuracy of 82% (when the noise is crackling noise). One will
also see that when the Inception-v3 CNN architecture is used, the results stay very
constant over all the noise scenarios. However, using the Inception-v3 CNN requires
six times more parameters to be trained. The authors did not mention what the
performance was for out-of-domain data.

The researchers [Revay and Teschke, 2019] were inspired by [Bartz et al., 2017] and
set out to improve the results. They achieved similar results, but by only using 4 sec-
onds of audio data on a pre-trained ResNet [He et al., 2016] architecture. The data
obtained for their research came from the VoxForge speech dataset. The languages
used in the research were English, Spanish, French, German, Russian and Italian.
The method resulted in accuracies above 90% for all languages except Russian and
Spanish as the model seems to confuse the two with one another. The research team
believe this is due to Russian being the only Slavic language trained on and that
the model created a threshold to separate Russian and all other languages and that
Spanish happens to be near the threshold.

In 2019, another group of researchers, [Sarthak et al., 2019] also investigated the
performance between a one-dimensional (1D) and two-dimensional (2D) CNN archi-
tecture. The 2D designs consisted of a model containing an RNN structure with the
other design only containing convolutional layers with feed forward layers.. The 1D
model received as input the raw waveforms with the 2D model being fed spectro-
grams. For all the models developed, the researchers would follow the same design
principle, namely that a pooling and batch normalisation layer will follow all con-
volutional layers and that they will use the ReLu activation function throughout
the model. The two-dimensional CNN also implemented residual connections which
were popularized by the ResNet architecture. The data used consisted of the Vox-
Forge dataset. When comparing the results, the 2D CNN without an RNN structure
performed the best with an accuracy of 95.4%. The next best model was then the
2D CNN with an RNN structure at 95.0% and lastly the 1D CNN with an accuracy
of 93.7%, [Sarthak et al., 2019]. Again, the authors did not mention out-of-domain
performance.

2.3 Applying Triplet Loss

The work in the previous section consisted of end to end deep learning systems where
the model parameters are trained using Cross Entropy Loss (CEL) as the loss func-
tion. The researchers in [Margolis et al., 2018], [Bredin, 2017] and [Mingote et al., 2019]
looked at using Triplet loss instead of CEL on various speech tasks such as LID and

6

user identification. Triplet loss is a loss function that optimises the embeddings
generated by the network such that samples from the same class are close to each
other in the embedding space while also being far away from other classes.

The loss works by choosing an anchor example (xai) and an example from the same
class as the anchor (x+

i) and one from a different class (x−i). The loss to be optimised
is found in Equation (2.1), [Schroff et al., 2015] , where f() is the embedding function
and α is a hyperparemeter for the loss function. The higher α is, the greater the

separation between classes. When
∥∥f(xai)− f(x+

i)
∥∥2

2
<
∥∥f(xai)− f(x−i)

∥∥2

2
+ α, the

loss is zero.

L =
N∑
i=1

[∥∥f(xai)− f(x+
i)
∥∥2

2
−
∥∥f(xai)− f(x−i)

∥∥2

2
+ α

]
+

(2.1)

[Mingote et al., 2019] specifically looked at implementing an LID system based on
triplet networks. Their method alters Equation (2.1) to optimise the Area Under the
Curve (AUC). The researchers believe this is a more appropriate and intuitive metric
than traditional metrics, since this metric is a measure of the system performance.
The researchers have also previously implemented this same technique for text-
dependent speaker verification systems [Mingote et al., 2020].

The expression Θ∗ the researchers implement is shown in Equation (2.2), where σ(s)
is the sigmoid function, sΘ

(
p+
i

)
is the similarity metric of each pair of anchor-positive

embeddings where p+
i =

(
e, e+

i

)
with i ∈ {1, . . . ,m+} and m+ is the total number

of positive examples, sΘ

(
p−j
)

indicates the metric of each pair of anchor-negative

embeddings where p−j =
(
e, e−j

)
with i ∈ {1, . . . ,m−} and m− is the total number

of negative examples, and α is an adjustable parameter, [Mingote et al., 2019].

Θ∗ = argmax
Θ

1

m+m−

m+∑
i

m−∑
i

σ
(
α
(
sΘ

(
p+
i

)
− sΘ

(
p−j
)))

(2.2)

By implementing this loss the researchers managed to outperform traditional meth-
ods, such as Weighted Gaussian Back-end and SVM’s, in the context of a closed-set
evaluation of the LRE 2009 dataset (more details about this dataset can be found
in [Martin and Greenberg, 2010]), [Mingote et al., 2019].

2.4 Generalisation of LID Systems

A recent study from [Abdullah et al., 2020] has found that end to end deep learning
LID systems perform severely worse when tested on out-of-domain samples. The

7

researchers define out-of-domain samples as data coming from datasets the model
was not trained on. This research will from now on use the same definition for
out-of-domain data.

The researchers found that spectral features generalise better to new domains than
cepstral features, showing that networks using spectrogams as input will generalise
better. To improve the generalisation from domain to domain, the researchers aimed
to force the model to learn features that are domain invariant. They do this by using
a technique called domain adaption through backpropagation that was introduced
by [Ganin and Lempitsky, 2014] and also mentioned in [Meng et al., 2017].

The technique entails creating two fully connected network blocks, where each block
has its own task, that are connected to the output of a feature extraction block. The
block By aims to predict the language of a sample while the block Bd tries to predict
from which domain a sample is sampled. Both these blocks get fed by Bf , which is
the feature extractor. Each training sample in the source domain gets augmented
with a label d = 0 and the samples from the other domain receive a label d = 1.
The parameters θd, which are the parameters of the block predicting the domain,
are then optimised to only minimise the loss of the domain classifier and likewise θy
is optimised to predict the language label.

To ensure that the parameters of the feature extractor block become uninformative
of the domain, the researchers seek to optimise θf such that the loss of the domain
classifier gets maximised. This is known as adversarial training, where there is a
competition between blocks in the network to optimise different losses. The loss
function for this method can be found in Equation (2.3) where DS is the source
domain, DT is the target domain and λ is a parameter that controls the contribution
of the domain classifier’s loss [Abdullah et al., 2020].

J (θf ,θy,θd) =
∑

(Xi,yi)∈DS Ly (By (Bf (Xi;θf) ;θy) , yi)

−λ
∑

(Xt,di)∈(DS∪DT) Ld (Bd (Bf (Xi;θf) ;θd) , di)
(2.3)

The researchers ran tests with the Slavic portion of the GlobalPhone Read Speech
(GRS) dataset as the source domain and the Radio Broadcast Speech (RBS) dataset
as the other domain. The RBS dataset is a large collection of Slavic radio broadcasts.
The researchers also used CNNs as base models. When not applying the domain
adaption technique described above, the models performed very well in domain but
performed poorly for out-of-domain samples, but after applying the cross domain
adaption technique, the researchers could achieve improvements of up to 77.7%.

This thesis will attempt to test the possibility of generalising LID systems to new
domains, without the need to have data from the other domain, as is required in

8

the work above. This is because there will be situations where one can not predict
the domain from where new samples will come from. This thesis should also be a
timely reminder that machine learning systems should be tested rigorously before
deploying or publishing them. False claims of performance could lead to dangerous
situations as the model could be placed in production affecting people because it
was reported that it could work.

The next chapter will explore more of the NCHLT speech corpus, which will serve
as the training domain, as well as the Lwazi speech corpus which will serve as the
test domain.

9

Chapter 3

Language Domains

To create effective speech technology, it is important to have a dataset containing
various examples to learn from. From a South African context, there were very few
resources to get such data. Luckily, between 2006 and 2009, the Lwazi project ran
to demonstrate the use of speech technology in South Africa. One output of this
project was the Lwazi ASR corpus, which consisted of annotated speech data for all
eleven languages. The data consisted approximately of 200 speakers with five to ten
hours of data for each of the eleven languages, [Van Heerden et al., 2009].

It was realized after the release of the Lwazi Corpus that larger datasets are required
for efficient tools to be developed. The Lwazi Corpus is also a telephone-based
corpus, which means the audio is a recording over a telephone call. The South Africa
Department of Arts and Culture recommended that higher quality recordings are
required. These two requirements led to the development of the NCHLT (National
Centre for Human Language Technology) speech corpus, which consists of nearly 50
hours of clean data for all the languages. Also, the dictionary of words is extended
from 5 000 words to 15 000 [Barnard et al., 2014].

In order to test how the methods perform on out-of-domain data, the NCHLT and
Lwazi corpora will be viewed as two different domains as they align with the defi-
nition of [Abdullah et al., 2020] for out-of-domain data, namely that out-of-domain
data is data from a completely different dataset. The first section in this chapter
will discuss the training domain, the NCHLT corpus, as well as how the audio will
be converted to spectrograms in order to be used by the CNN models. After this
the Lwazi corpus will be discussed.

10

3.1 NCHLT Speech Corpus

For this project, the first release and a subset of the auxiliary speech corpus is used.
The reason for including the auxiliary recordings is to introduce noise and robustness
to the system. It is assumed that if the model sees good examples mixed with bad
examples that it will be able to generalise better to new domains, specifically where
a lot of background noise is present or where the speakers are not speaking clearly.

The data can be obtained from the Sadilar website. The next sections summarise
the data and explains how the data is cleaned, filtered and configured to be used by
the methods explained in Chapter 4.

3.1.1 Data Cleaning

All of the languages in the Speech corpus contain an XML file describing the meta-
data related to each recording. The metadata consists of information on the age,
gender, location, duration and the phone-based dynamic programming (PDP) score
for each recording. PDP refers to a confidence scoring technique named phone-based
dynamic programming. PDP matches a phone string from the prompt against a
phone string extracted from the audio using dynamic programming. The scores are
between -1 and 1. A +1 score is an indication that the sample is very likely to be a
correct pronunciation of the target prompt and a score -1 indicates it is very unlikely.
A score of +1 though does not necessarily mean it is a perfect match. Further detail
can be found in [Davel et al., 2012].

Table 3.1: Summary of NCHLT data before filtering unusable data.

Language Unique speakers Gender split [M:F] Duration [H]
Afrikaans 210 103:107 97

English 210 110:100 84
Ndebele 148 70:78 94
Sepedi 210 110:100 119

Sesotho 210 97:113 128
Siswati 197 101:96 132

Setswana 210 101:109 124
Tsonga 198 103:95 137

Tshivenda 208 125:83 147
Xhosa 209 103:106 157
Zulu 210 112:98 150

In Table 3.1 one can see a summary of each language’s metadata before any filtering

11

or cleaning takes place. As can be seen the Germanic languages (Afrikaans and
English) as well as Ndbele have significantly fewer hours than the other languages.
Also, the gender distribution is evenly spread in all languages with the biggest
difference found in Sesotho and Zulu. Ndbele though has substantially less speakers
than the other languages.

Because of the researchers deciding to prompt non-English speakers with roughly
20% of English prompts, some of the recordings for the speakers are not in the
language which is expected. Also, due to the methods used to gather text examples
during the NCHLT project, some text gathered was not linked to the language
it was gathered for. Some shortcomings of the methods for example are that the
community generated the text and thus there was very little control. Even the text
gathered from Wikipedia for English could contain other languages as Wikipedia
articles do not always contain only one language. For example, in one instance a
Setswana speaker was prompted to say “air traffic control” and on another occasion
an English speaker received the prompt “Dien Bien Phu”. The last example is a
very good example of how an English participant does not specifically receive an
incorrect prompt as Dien Bien Phu is a city in Vietnam which could pop up in
normal conversation, but for the sake of this project pure language examples are
required.

To find these sorts of recordings, each recordings’ text (found in the XML meta-
data files) was inspected with a language detection algorithm created by Google,
[Shuyo, 2010]. The algorithm simply returns the predicted language of the given
text. Even though the algorithm has support for over 50 languages, the only lan-
guages supported from South Africa are Afrikaans, English and Sesotho. In order
then to still use the algorithm to find discrepancies, it was decided to only flag
recordings that are predicted to be English if the speakers language was not En-
glish.

It is assumed that the algorithm will incorrectly predict certain examples, but the
decision was made that losing examples outweighs the risk of training the model
on incorrect data. To reduce the risk of false negative predictions made by the
algorithm, the predicted language will have to have a confidence of over 90% to
be accepted. This value is assumed to be high enough to filter out any unwanted
predictions. After applying this logic it was found that 65, 094 recordings (64 hours)
of the total 1, 251, 009 (1369 hours) recordings were flagged.

To ensure that the speech in the recordings are closely linked to the prompted text,
only recordings with a high PDP are considered. Because the speech corpus that was
released first is ensured to have a high PDP score all of these recordings are kept.
The recordings from the auxiliary corpus are only kept if they have a PDP score

12

greater than 0.2. In order to further clean the data, the duration of the recordings
were also limited. First, it was found that there are many recordings with long a
duration, such as 20 seconds and higher. Seeing as the longest prompt would only be
5 tokens, these seemed very long and after further inspection it was found that these
recordings tended to just be background noise, most likely because of the speaker not
realising a recording is taking place. To get a better understanding for the spread
of duration for each of the languages, the box plot in Figure 3.1 was analysed.

Figure 3.1: Box plots for the duration of recordings after filtering out examples
based on the language of text prompts shown and PDP score.

The only recordings considered for the figure were those with a duration of less than
20 seconds. As can be seen in Figure 3.1 all the languages’ largest whisker, which
is a common cut-off point for outlier detection, are ten seconds or less. There are
also recordings with very low durations and it was found that this was due to some
prompts being “j j j” for example. Because this research will only focus on short
recordings, where the shortest recordings in previous works were found to be three
to four seconds in length [Abdullah et al., 2020, Revay and Teschke, 2019], it was
decided that only recordings that are between three and five seconds will be kept.
This is to reduce the chance of having silent examples when creating the short audio
snippets that will be used to train the model.

After all the filtering techniques were applied to the dataset, the final total recording
duration for every language can be found in Table 3.2. As seen the non-Germanic

13

languages lost a high number of hours after the filtering process. The main con-
tribution to this is the high amount of long recordings that were present in these
languages, but in the case of English the main contribution was the amount of short
recordings. Even though these results show a huge number of hours lost, it should
be noted that biggest contributions to loss are from the auxiliary set.

Table 3.2: Summary of NCHLT data after filtering out unclean data

Language New Duration (in hrs) Difference (in hrs)
Afrikaans 54 −42

English 31 −53
Ndebele 48 −46
Sepedi 62 −55

Sesotho 54 −73
Siswati 65 −66

Setswana 68 −55
Tsonga 77 −59

Tshivenda 80 −66
Xhosa 79 −77
Zulu 77 −74

Looking at Figure 3.2 one can see that the Germanic languages have shorter dura-
tions than the other languages with English having very low durations. This will
affect the choice of duration for the spectrograms being generated as every language’s
training sample will have to be the same duration. This is required to ensure that
the values in different spectrograms refer to the same amount of time being passed
and in doing so will ensure the models look at the same content. In Section 3.1.2
the process of solving this problem will be discussed as well as the methods used to
convert the audio data into a format that can be used to train the models.

3.1.2 Transforming Data To the Image Domain

In order for a CNN model to be used, the recording data must be converted from
a mono audio input into a spectrogram image, as both [Revay and Teschke, 2019]
and [Bartz et al., 2017] did. A spectrogram is a visual representation of the power
present at various frequencies over time. It is most commonly displayed as a figure
where the y-axis represents frequency, the x-axis represents time and a colour scale
represents the magnitude. A spectrogram is calculated by splitting the signal into
overlapping segments called frames and applying the Discrete Fourier Transform
(DFT) to the frames in order to transform it from the time domain to the frequency
domain.

14

Figure 3.2: Boxplots for the duration (seconds) of recordings for the final dataset

The formula for the DFT is Xk =
∑N−1

n=0 xne
−i2π
N

kn, with the inverse being xn =
1
N

∑N−1
n=0 Xke

i2π
N
kn. For these equations, Xk is the Fourier coefficient at point k,

xn is the signal at point n and N is the number of samples. If one then obtains
the complex vector X, the magnitude of the vector components shows the amount
of power at each point k. To convert between frequency (ω) and k, one can use
ω = 2πk

N
fs, where fs is the sampling frequency xn. For the NCHLT dataset, all

audio files have a sampling frequency of fs = 16kHz. By then computing the DFT
of each frame and concatenating the results, the spectrogram can be constructed to
show how the magnitude at each frequency changes over time. To divide a signal
into frames, the signal must be multiplied by a window function to cut off the start
and end points.

There are various options of windows, but for this project the window will be the
default window used in the Librosa software package, namely the Hann window
which is a good choice for most signal processing projects [McFee et al., 2015]. The
frame length is also chosen to be 512 samples, which is the recommended value for
speech processing [McFee et al., 2015]. This corresponds to 32 milliseconds of data
per frame.

Because the data being used is speech data, it is common practice to convert the fre-
quencies from a linear scale to the mel-scale as is done in [Revay and Teschke, 2019]
and [Sarthak et al., 2019]. The mel-scale is a non-linear scale that is mimicking the

15

Figure 3.3: Long term average spectrum of all eleven languages showing the
average power for all frequencies.

non-linear pitch perception present in the human ear. In other words the mel-scale
is defined so that frequencies that sound the same also have the same mel-frequency.
The mel-scale is shown in Equation (3.1), with f being frequency. A spectrogram
can then be converted to a mel-spectrogram by passing it through Equation (3.1).

m = 2595log10

(
1 +

f

700

)
(3.1)

In practice, the frequencies are binned into m mel-frequency bins within the fre-
quency range of the signal. With the recording sampling rate being only 16kHz
and from the Nyquist Sampling Theorem, which states that a signal can be re-
constructed only if the sampling rate is at least twice as high as the maximum
frequency present in the signal, we know the NCHLT can only consist of frequen-
cies in the range 0Hz − 8kHz, as shown in Figure 3.3. In Figure 3.3 the aver-
age power over all frequencies of a language are shown, where one can already
see the different behaviours of all languages over the frequency bands. For this
project, the number of mel-frequency bins will be 128. This was found to be a typ-
ical value used in various projects, namely [Han and Lee, 2016, Nam et al., 2012,
Nam et al., 2013, Kinnunen et al., 2006], with [Bartz et al., 2017] using 129 bins.
These previous projects consisted of deep learning techniques as well as other tech-

16

niques and this further indicates that 128 bins is a good value to use. Other typical
values include 40 bins, but because the languages share certain traits and some share
the same language family, it was decided that finer detail will be required.

Figure 3.4: Distribution of the duration of all recordings.

In order for the spectrograms to be compared all the recordings must be sub sampled
and cut to be the same length to ensure they share the same underlying structure. As
previously mentioned the duration of the recordings are all of different length with
Afrikaans and English having the lowest average duration. In Figure 3.4 one can see
the duration distribution of all languages combined. It can be seen from the figure
that the distribution is skewed to right, with the vast majority of recordings being
between 2.5 and 4 seconds. Seeing as all the previous researchers chose one length
and developed their models around it [Bartz et al., 2017, Revay and Teschke, 2019,
Sarthak et al., 2019], it was decided that for this project only one length will also
be used.

17

Figure 3.5: Distribution of the estimated time taken to utter one word.

Because the minimum length of the durations after cleaning the data is three seconds,
it is decided that all the spectrograms will be limited to the first three seconds of the
audio. This choice can be justified by looking at the table contained in Figure 3.5
which shows the average time it takes for a speaker from each language to say one
word. One can see that the longest average time is 1.44 seconds, which means that
on average the spectrograms will contain at least two words spoken.

If one also thinks about the practical implications for choosing the length of data
required, choosing the smallest required time makes the most sense. For example,
if a length of six seconds is chosen, the customer facing system that uses this model
would require substantially long recordings from the customer to predict the spoken
language accurately. This could cause the system having to ask the customer to
say something longer instead of just allowing an ordinary sentence to be said. For
these reasons, three seconds was chosen as lenght. An example mel-spectrogram,
which from now onwards will just be referred to as a spectrogram, can be seen in
Figure 3.6. As can be seen the spectrogram length is only 3 seconds and the pixilated
visualisation shows the 128 bins of frequency.

18

Figure 3.6: Example of a spectrogram created from an audio snippet

3.1.3 Splitting Data Into Train, Validation and Test sets

To test whether the model is overfiting during training, the data will be divided into
a train, validation and test set. No cross-validation is performed in this project due
to computational limitations. It is assumed here that because the dataset being used
is a relatively big and diverse dataset, that the model will be able to generalise to this
domain and this will be verified by looking at the results on the validation and test
datasets. To further ensure the model does not overfit, regularisation techniques will
be applied to the model and these techniques will be further discussed in Chapter 4
and Chapter 5.

To ensure the model does not simply learn what language each individual user
speaks, the dataset is divided such that the same speakers are not found in dif-
ferent datasets, as was done by [Mateju et al., 2018, Revay and Teschke, 2019] and
[Montavon, 2009]. The splits are also done in such as a way as to ensure that the
ratio of men to women stay constant throughout, as well as the distribution of lan-
guages. This is to ensure that there is no data bias within the data to ensure that
all languages and genders are treated fairly. This results in a training set containing
roughly 80% of the data with the validation and test set both consisting of roughly
10% each.

19

Table 3.3: Languages to be used to train LID models. SB refers to Southern Bantu.

Language Total speakers (Million) Percentage Language Family
Zulu 11.6 23.38 SB:Nguni

Xhosa 8.2 16.53 SB:Nguni
Afrikaans 6.9 13.91 Germanic

English 4.9 9.87 Germanic
Sepedi 4.6 9.27 SB:Sotho-Tswana

Setswana 4.0 8.06 SB:Sotho-Tswana
Total 40.2 81.02

Ref: [Barnard et al., 2014, pp. 195]

Because the South African corpus of languages contain languages that share the same
family language, there is a big overlap between languages and what is spoken. To
ensure that this does not interfere with the research aim of this thesis, namely finding
a method that generalises better to new domains for language identification, only a
subsample of the languages will be investigated. The languages that are chosen is
shown in Table 3.3, with the respective number of speakers each of these languages
have in South Africa, based on data gathered in 2014 [Barnard et al., 2014, pp 195].
As can be seen from the table, these six languages represent close to 82% of the
speakers in South Africa. There are two language families not represented by the
chosen languages, namely Tswa-Ronga and Venda. These two families represent
4.63% and 2.41% of speakers in South Africa, [Barnard et al., 2014, pp 195].

Table 3.4 shows the summary of how the data was split. As can be seen the data is
fairly evenly split across both genders for all languages in the training set. One can
also see that for the validation and test sets, there is a pattern of having more samples
for males. This will not impact the conclusions, as the results will be interpreted
together as well as per gender to ensure the model is able to perform equally for all
genders and languages.

Table 3.4: Summary of train, validation and test datasets.

Language Unique speakers Gender split [Female:Male]
Train set Validation Set Test Set Train set Validation Set Test Set

Afrikaans 168 21 21 83:85 12:9 12:9
English 168 21 21 84:84 9:12 7:14
Sepedi 168 21 21 81:87 14:7 5:16

Setswana 168 21 21 86:82 11:10 12:9
Xhosa 167 21 21 92:75 7:14 7:14
Zulu 168 21 21 83:85 5:16 10:11

20

3.2 Lwazi Speech Corpus

As was mentioned in the previous section, the Lwazi speech corpus was created before
the NCHLT speech corpus and it was the first corpus to include all the South African
Languages. It is substantially smaller than the NCHLT corpus, as it only contains
between four to ten hours per language. Whereas the NCHLT corpus was gathered
with the Woezella application, the Lwazi dataset was captured by recording either
a landline or cellphone call. The NCHLT dataset recordings were also sampled at
16kHz [Barnard et al., 2014] while the Lwazi recordings are only sampled at 8kHz
[Van Heerden et al., 2009].

According to the Nyquist Sampling Theorem, the highest voice frequency present in
the Lwazi recordings are only 4kHz, compared to the 8kHz in the NCHLT dataset.
To get the spectrograms generated from the Lwazi dataset into the same range as
the spectrograms generated from the NCHLT dataset, the audio will be resampled
at 16kHz when read in for processing. This will ensure the same frequency bins
and time steps are present in the spectrograms, but the data present in these bins
will not be 100% accurate. For more information on the artefacts that could occur
from upsampling, please refer to [Pons et al., 2020]. This will have to be taken into
consideration when the results on the Lwazi dataset are investigated in Chapter 6.
Future work, as mentioned in Section 7.1 also, will need to investigate the possibility
of finding two South African domains with the same sampling rate.

In Table 3.5 one can find a summary of the dataset, [van Heerden et al., 2016]. As
can be seen, the amount of unique speakers are close to the same amount as the
NCHLT dataset with the gender split nearly down the middle for all of the languages.

Table 3.5: Summary of the Lwazi Speech Corpus

Language Unique speakers Gender split [M:F]
afr 200 101:99
eng 196 92:104
nbl 200 99:101
nso 190 92:98
sot 202 90:112
tsn 203 96:107
tso 214 103:111
ssw 196 103:111
ven 198 98:100
xho 210 101:109
zul 199 98:101

21

Whereas the NCHLT corpus was filtered and cleaned in order to provide good ex-
amples for the model to learn from, the Lwazi corpus will be used as is when testing
the model. This is to simulate a real world environment where the data is not always
perfect. The only filtering technique applied is to only consider recordings that are
between three and eight seconds in length, so that no recordings are fed into the
system that do not contain speech. The assumption is that the labels associated
with the recordings are correct. In Table 3.6, one can find the final numbers corre-
sponding to the Lwazi data that will be used. As mentioned in Section 3.1.3, only
six languages will be used in this project. The dataset can again be obtained from
the Sadilar website. One will find various versions of the dataset on the website,
but for this project the Lwazi project was used and not the Lwazi II or Lwazi III
corpora.

Table 3.6: Summary of the Lwazi Speech Corpus used to test the model trained on
the NCHLT speech corpus.

Language Unique Speakers Duration [H] Number of Samples
afr 200 2.00 1931
eng 195 2.58 2380
nso 185 1.00 898
tsn 200 1.61 1456
xho 210 1.62 1470
zul 197 1.20 1089

The next chapter will explain the various methods that will be introduced in to
create an LID system that can be trained on only one domain but still generalise to
new domains.

22

Chapter 4

Methodology

This chapter will discuss the methodology behind the methods used to generalise an
LID system to new domains. The chapter will consist of three sections, where the
first section gives an overview of how CNN architectures are able to extract features
from an image. This will be followed by an overview of the novel Triplet Entropy
Loss (TEL) training method where the last section discusses the additional methods
introduced to improve the generalisation of LID systems.

4.1 Convolutional Neural Networks explained

This section will explain the architecture and methods used to extract features from
spectrograms, but the work is based on prior knowledge of neural network architec-
tures and techniques. If the reader wishes to learn more about other architectures
and techniques (such as regularisation and overfitting), more information can be
found in [Goodfellow et al., 2016].

Firstly, it is important to realise that an image is a matrix of numbers, where the
numbers show the intensity of a pixel. Typically, these values range between 0 and
255. When the image is gray scale, the matrix is one-dimensional, but when the
image has colour, the matrix is three dimensional. These three dimensions represent
the intensity of each pixel within in the red, green and blue colour channels. These
dimensions are also known as the channels of the image.

Whereas in feed forward neural networks [Rumelhart et al., 1985] the data goes
through various matrix multiplications until it reaches the end, the CNN rather per-
forms convolution operations on the data as it moves through the network. Along
with these convolution operations, the fundamental building blocks of a CNN model
are convolution layers, non linearities, pooling layers and fully connected layers (the

23

prediction layer). These layers are differentiable, which allow the CNN architecture
to be trained using backpropagation.

The most important layers in a CNN, and from where it gets its name, are the
convolution layers. It is in this layer where the CNN is extracting features from an
image. This is done by sliding a kernel (or filter) over the input matrix. For every
position of the sliding process, the element wise multiplication is calculated for the
overlapping regions between the matrix and the kernel and then these multiplication
results are added together. After the kernel has moved through the entire input,
the resultant matrix is known as a feature map. If more than one kernel is applied
to the input, the resulting feature maps are concatenated depth wise. Thus, if a 3
channel image is convolved by p kernels, the feature map will have p channels.

Figure 4.1: An example of a three channel matrix of shape being convolved with a
kernel of shape 3× 3× 3.

The kernel will always have the same number of channels as the input matrix, but
will be substantially smaller than the input, with typical sizes being 3× 3 up until
7 × 7. For every convolution layer, the model designer will have to decide what
the size of the kernel is and how many kernels are to be used. One of the other
hyperparameters in this layer is the number of elements that a kernel should move,
for instance one can go move one column/row at a time (stride=1) or any other
number. The kernel will also move from left to right, and then move down and

24

continue from left to right again. The kernel weights, which are the values of the
kernel matrix, are learned by the model and these weights extract features from the
image.

In Figure 4.1 one can see an example of a three channel matrix of shape 4× 5 being
convolved with a kernel of shape 3 × 3 × 3. The matrices are broken up into their
separate channels to make it more clear what elements are multiplied with what
elements. The figure shows in the bottom how one of the new features in the feature
map is calculated and the final feature map is shown to the right. In this example,
not all the weights in the kernel will be seen by some of the input elements as the
size of the input prohibits that movement. A technique to avoid this is to apply
padding to the input to increase the size of the input. In most cases the padding
values will be zero.

This convolution layer makes CNNs a good fit for spatial data. The fact that a
kernel moves over the entire image with the same parameters means a CNN is
spatial invariant. For instance, if the kernel is structured in a way to pick up cat
ears, it will not matter if the image contains ears in the middle of the image or in the
corners as the kernel will still pick them up. Also, seeing as the kernel uses the same
parameters over the entire input, it can be said that CNN uses parameter sharing.
This reduces the amount of training required substantially.

Source: [Fergus, 2015]
Figure 4.2: An example of ReLU being applied to a feature map.

The next step in the CNN pipeline is to add non-linearity to the system. Because
the real world is non-linear and convolution layers are a linear action, non-linearity
must be introduced to the system. This can be achieved by applying any non-
linear function to the feature maps created by the kernels. Typical functions include

25

Rectified Linear Unit (ReLU) [Nair and Hinton, 2010], Tanh and Sigmoid. But in
practice it has been found that ReLU tends to give better results. The ReLU makes
all negative values zero and keeps positive values the same. An example of ReLU
being applied to a feature map can be found in Figure 4.2.

As the network grows bigger, more and more computations will be required which
can make the model slow and take up a lot of memory. This impact can be reduced
by pooling the feature maps. This involves specifying a window (usually a square
shape) and sliding this over each feature map channel separately and reducing the
elements in the window to just one element. Typically, the maximum value or the
average of the window is taken. Pooling also ensures that minor changes in an image
will not affect the predictions, acting as a regularizer. For deep In figure Figure 4.3
one can see an example of max pooling, with a window of size 2×2 being applied to a
matrix with a stride of two. The matrix is coloured to show the locations where the
window will be applied, with the resulting pooled value shown in the same colour.

Figure 4.3: An example of max pooling, with a window of size 2× 2 being applied
to a matrix.

The previous three steps are usually repeated and grouped together for a few layers.
At the end of all these layers, the final feature map is flattened into one column
vector and passed through a feed forward neural network where these newly created
features will be used to make a prediction.

A CNN is trained using the same backpropagation algorithm that is used in fully
connected neural networks. This algorithm consists of repeating a forward and back-
ward phase repeatedly until convergence or another criteria is met. In the forward
phase the loss of the model is calculated for a given input and in the backward phase
the weights, biases and kernel values are updated using gradient descent.

To train the model one will first initialise all parameters by assigning random values
drawn from a distribution, with most cases using the Gaussian distribution. After

26

this, the model is fed an input image that propagates through the network and
produces a result, ŷ. The loss for a given input is calculated using the loss function
in Equation (4.1). In this case, the loss function is the cross-entropy function where
yi will be 1 for the true class and 0 for other classes, with ŷi being the predicted
probability of the class i. In some literature the cost function is used to refer to the
average loss for all inputs, but for the sake of clarity in this explanation the cost and
loss function will mean the same thing, i.e. the error of the model.

L = −
C∑
i=1

yi log ŷi (4.1)

The derivative of the loss function L is calculated with regards to the model pa-
rameters during the backward phase. For the CNN, these parameters are the kernel
weights K, the biases added to kernels bk, the weights of the fully connected layers
W and the bias terms introduced in these layers bk. These parameters will be rep-
resented by the symbol θ, thus the loss function in terms of the parameters can be
written as L(θ). The derivative of the loss function is used to update the parameters
and this process is called gradient descent.

Gradient descent is an optimisation algorithm that is used to minimise a function
iteratively. The algorithm seeks to move in the direction of steepest descent of a
function to find a local minimum. This means it is not guaranteed that the algorithm
will find the best solution. The direction of steepest descent is in the direction of
the negative of the gradient. In this case, the gradient is calculated as ∂L

∂θ
. There

are various ways in which the weights can be updated with the derivative, but for
now only mini-batch gradient descent will be explained.

In mini-batch gradient descent, the model parameters are updated for every mini-
batch of data containing n examples. The algorithm finds how the parameters
should change for each of the n examples and then averages the result of each
parameter and updates the parameters with these values. If the model had to update
the parameters based on the entire batch of data, then there will be redundant
computations as it will calculate gradients for similar examples before updating the
parameters, [Ruder, 2016]. Mini-batch solves this problem by updating much more
frequently with a higher variance than batch gradient descent. By also using mini-
batches instead of just one example, the computations are more stable. In many
software packages Mini-batch descent and Stochastic gradient descent (SGD) are
interchangeable, [Ruder, 2016].

The equation for Mini-batch descent is shown in Equation (4.2). One can see that
the new parameters, θnew, are calculated by updating the old parameters, θnew, by

27

subtracting the gradient calculated on a batch of size n. This is indicated by the loss
function being based on the input values xi:i+n and the outputs yi:i+n. One will also
see the parameters are updated based on a weighted version of the gradients, as they
are multiplied by the learning rate α. The learning rate is another hyperparameter
the model designer will have to choose. Other versions of gradients descent will
also change α over time. By updating the parameters over several epochs, where an
epoch is one full loop over the dataset, the model parameters will converge so that
a local minimum is found for L(θ)

θnew = θold − α∇θL(θ;xi:i+n, yi:i+n) (4.2)

4.1.1 Well Known CNN Architectures

In Figure 4.4 one can see the earliest CNN architecture, namely Lenet-5. This archi-
tecture was made in 1998 by [LeCun et al., 1998] and this structure is the blueprint
for many future architectures. The input is a gray-scale image, with a shape of
32× 32× 1. The input image then goes through six kernels of size 5× 5, resulting
in a feature map of size 28 × 28 × 6. Layer 2 is then a pooling layer where the
dimensions are reduced to 14× 14. Then again, a convolution layer is applied with
16 kernels of size 5 × 5. The output is then pooled again before being fed into a
convolution layer of 120 kernels with size 5× 5.

Source: [LeCun et al., 1998, pp. 7]
Figure 4.4: Architecture of Lenet-5 model developed in 1998.

This is shown as a fully connected layer in the image because the kernel is the same
size as the input features, thus they are fully connected, but if the dimensions of
the input change it will not be fully connected. This is why it is still referred to
as convolution layer. The resulting features map is then flattened and fed into a
fully connected network with one layer and an output layer with sizes 84 and 10.

28

All activation functions are tanh expect for the final layer which has a Softmax
activation. The Softmax function is given in Equation (4.3), where z is the output
vector of the layer. The function transforms and normalises the vector values such
that the output vector consists of values between 0 and 1 and that that the vector
values sums to 1. The output of the Softmax function could then be interpreted as
the probability of the input belonging to a class.

σ(z)i =
ezi∑n
j=1 e

zj
(4.3)

Since the Lenet-5 architecture there has been many model architectures proposed
and designed. Two of the most famous architectures are the Inception-V3 and
Resnet architectures. There is an Inception-V4 designed as well, but as of the time
of writing the TensorFlow package does not support V4 yet, thus the focus will be
on V3.

Inception-V3 is an improvement on the Inception-V1 architecture that came out in
2014. Before Inception, models tended to be improved by adding more layers. This
bring issues such as the huge number of parameters that have to be trained. Another
issue is the location of information in figures can be drastically different in different
images. For example, a dog in one image can take up almost the entire image but
in another example the dog can only be seen in the corner of the image. This means
the number of pixels taken up by the desired information is varying. The choice of
kernel size is then a hard choice to make as bigger kernels tend to perform better
on information that is found in large amounts of pixels [Szegedy et al., 2014].

In order to solve these issues, [Szegedy et al., 2014] thought of making a sparsely
connected CNN architecture. They achieved this by making the architecture wider
rather than deeper. By making the architecture more wide (sparse), each layer
can consist of different size kernels that manage to pick up different information in
the image [Szegedy et al., 2014]. An example of an Inception-V1 layer is shown in
Figure 4.5. One will see that there are various kernels of different sizes spread out
horizontally rather than vertically. The bigger kernel sizes (3 × 3 and 5 × 5) are
preceded by 1 × 1 kernels. This is in order to reduce the number of dimensions
before feeding them into the bigger kernels to allow less parameters to be trained.
The generated feature maps of the various kernels are then concatenated depth
wise, where the feature maps are padded to have the same shape. The concatenated
version then gets send forward in the network.

29

Source: Altered from [Szegedy et al., 2014].
Figure 4.5: Example of a filter bank within the Inception-V1 architecture.

In order to improve upon this original version, [Szegedy et al., 2016] introduced a
few new concepts and altered the architecture slightly. The first thing the researchers
altered was to reduce the extent to which the dimensions change between convolu-
tion operations as they found by doing this that the model performed better. The
researchers also aimed to reduce the computation time of the model.

To make the model less computationally expensive, the researchers introduced a
method of factorising the 5 × 5 kernels into two cascading 3 × 3 kernels. This is
done because they found that 5× 5 kernels are 2.78 times more computationally ex-
pensive than two 3× 3 kernels, [Szegedy et al., 2016]. They also introduced another
factorising method where they represented a n×n kernel as two kernels of size 1×n
and n× 1 kernels. This method was only applied to the kernels of size 7× 7 in the
architecture. The researchers also expanded some filter banks (groups of kernels) by
making them wider.

These three techniques are then used in different filter banks throughout the ar-
chitecture. The model was also trained using the RMSProp optimiser with batch
normalization used as regulation technique, [Szegedy et al., 2016]. The final model
consisted of 24 million parameters and was 48 layers deep. The model achieved
state-of-the-art performance on the Image-net dataset obtaining an 3.58% error rate
for the top-5 predictions.

When [He et al., 2016] tried to test the theory that better results can be achieved

30

by simply making networks deeper, they kept running into the vanishing gradient
problem. This is a problem where the gradients that are fed backwards in the net-
work become very small with the more layers they pass through. This results in the
parameters not being updated and thus the network not learning. The researchers
aimed to solve this problem by introducing a deep residual learning framework. This
means that certain layers will provide skip connections to following layers, meaning
the input gets added to output at certain layers. Instead of those layers learn-
ing the mapping f(x), these layers will now learn the mapping f(x) + x = h(x)
[He et al., 2016]. This allows the gradients that are fed back to have “shortcuts” to
previous layers and thus help with the vanishing gradient problem. It also means
the model in theory only has to learn what to add to x instead of complex map-
pings, which is the concept that [He et al., 2016] used as an argument for adding
the residual block.

Source: Altered from [He et al., 2016].
Figure 4.6: Example of two different residual blocks used in the ResNet

architecture.

In the ResNet architecture, the shortcut connection mostly connects the input and
output of two convolutional layers. These convolutional layers all have kernels of
size 3 × 3. The architecture also only uses pooling in the input layer to reduce
dimensions, but uses a stride of two instead of one in deeper layers to achieve the
same affect. When the dimensions of the input and the output are different in a
residual block, a 1 × 1 convolutional layer is applied to x to make the dimensions
of f(x) and x the same. The two versions of the residual blocks can be seen in
Figure 4.6. The block on the left shows the normal residual block where the input
gets added to output of two 3× 3 kernels. The block on the right is an example of
how the input’s depth dimension gets altered by an 1 × 1 kernel in order to allow
the summation to take place when f(x) alters the dimensions of x. After all these
residual layers, the ResNet architecture only appends one fully connected layer at

31

the end, with the size depending on the number of classes that are predicted.

There are various versions of a ResNet model that were tested, most notably ResNet-
32, ResNet-50, ResNet-101 and Resnet-152. The numbers in the name indicate the
amount of layers that are present in the network. The ResNet architecture also makes
use of batch normalisation to regulate the model. The optimiser used in training is
SGD plus momentum (0.9) and weight decay (0.0001). The learning rate starts at
0.1 and gets divided by ten after the validation accuracy plateaus. The batch size
used was 256 and the image input dimensions are 224× 224, [He et al., 2016].

In 2018 [Huang et al., 2018] released a new architecture, Densenet, again building
on previous innovations made. The researchers build upon the work that showed
that CNNs can go much deeper by adding in residual connections [He et al., 2016].
Whereas Resnet connected one layer to the next layer, Densenet connects a layer to
all of its following layers. The researchers also show that by doing this they reduce
the vanishing gradient problem, they increase the amount of information that gets
propagated through the network and they reduce the number of parameters in the
network substantially [Huang et al., 2018]. In Figure 4.7 one can see an example of
the Densenet architecture. [Huang et al., 2018] trained their models with SGD and
batch size of 64, applying a decaying learning rate that starts at 0.1.

Source: [Huang et al., 2018, pp. 1]
Figure 4.7: Example of how a Densenet architecture will look.

32

The Resnet and Densenet architectures explained above as well as the CRNN ar-
chitecture developed by [Bartz et al., 2017] will be used as feature extractors in the
LID systems discussed further in the thesis. In Section 4.2, one can find how these
architectures are utilised as feature extractors in the Triplet Entropy Loss training
method.

4.2 Triplet Entropy Loss

In multi-class classification networks, the most commonly used technique to train a
network is to generate one-hot encoded vectors from the class labels and use Cross
Entropy Loss (CEL) to calculate the respective loss value. A one-hot encoded vector
is a binary vector representation of the label representing the input data. The vector
is created by assigning each unique label an integer and then for the corresponding
one-hot vector, the value is 0 everywhere except at the assigned integer index, where
it is 1. The formula for CEL is shown in Equation (4.4) where yci is the probability
that the ith observation belongs to class c (either 1 or 0), with ŷci being the predicted
probability of the ith observation belonging to class c. By optimising the network
using Equation (4.4), the weights are optimised in such a way as to improve the
estimated probability distribution of the network, such that the correct class has
the highest probability output given the input features X.

CEL = −
N∑
i=1

C∑
c=1

yci log ŷci (4.4)

The downside with this loss function is that it only penalises the output of the class
under consideration as yci is zero for all cases where yci is not the target class. Even if
training a model using mini-batch gradient descent, where the weights are optimised
based on the average loss of the batch which contains multiple classes, the individual
losses used to calculate the average still only considers the correct class prediction
and not the overall class interaction for that pass through. Even if the Softmax
function is used as a predecessor to the CEL, where the output is calculated by
looking at all the class outputs, the final value used in CEL is still just the Softmax
output for the given class which is not a reflection of the interactions between the
classes for that specific prediction.

For tasks such as language identification where the input data that is present in
various classes, such as someone speaking a mix of words from different languages,
it will be more optimal to have a loss function that interprets interactions between
classes. The loss must optimise the network by learning these interactions between

33

classes to generalise better to the instances where there is a tiny threshold between
the classes.

A loss that loosely fits the above description is the Triplet loss function used in
[Bredin, 2017], [Margolis et al., 2018] and [Mingote et al., 2019] for language identi-
fication tasks, discussed in Section 2.3. By using the Triplet loss function, the weights
are being optimised by comparing different class embeddings with one another and
optimising the distance between the embeddings such that different classes are far
from one another. The model can then learn characteristics for all the classes and
in doing so could be able to better learn the fine connections between the languages
English and Zulu for example. But Triplet loss does not optimise for prediction
capabilities directly.

We present the novel training method Triplet Entropy Loss (TEL) that leverages
both the strengths of CEL and Triplet loss. [Khosla et al., 2020] implemented some-
thing very similar for image classification, as they pre-trained a network using super-
vised Contrastive loss, whereafter they fine tune the model for classification tasks.
The TEL method does not contain a pre-training step, but trains simultaneously
with both CEL and Triplet loss, as shown in Figure 4.8. As seen, the final embedding
layer feeds into two separate layers where each of these output layers are connected
to two different losses.

Figure 4.8: Triplet Entropy Loss high level overview

TEL can be represented by Equation (4.5), with σ being the Softmax function and
g() the final classification layer. N is the number of examples in the batch being
passed through the network. The embeddings generated for the anchor, positive and
negative triplets are given by f(xai), f(x+

i) and f(x−i).

34

TEL =
N∑
i=1

CELi + TLi

=
N∑
i=1

−yai log ŷai +
[∥∥f(xai)− f(x+

i)
∥∥2

2
−
∥∥f(xai)− f(x−i)

∥∥2

2
+ α

]
+

=
N∑
i=1

−yai log σ(g(f(xai)) +
[∥∥f(xai)− f(x+

i)
∥∥2

2
−
∥∥f(xai)− f(x−i)

∥∥2

2
+ α

]
+

(4.5)

Looking at Equation (4.5), it can be seen that the model is being optimised to gen-
erate embeddings for f(xai) that are strong at predicting the correct class while still
ensuring that the interactions between other classes are not ignored. For example,
if the weights for the given batch produce high probabilities for the correct class,
but do not separate the classes well in the embedding space, the model will still be
penalised to further separate classes. In doing so the model will learn what are the
features that truly distinguish the classes. This will make the model more effective
in new domains because by increasing the distance between classes, it is assumed
that less precise predictions made on new domain data will still have room for error
and still produce well separated embeddings.

During training of the network, it is very important that triplets are chosen in such
a manner that they are “hard” for the network. In other words, if the only triplets
being chosen are instances where

∥∥f(xai)− f(x+
i)
∥∥+α <

∥∥f(xai)− f(x−i)
∥∥, then the

network will learn nothing as the contribution to the loss (from the triplets) will be
0. To ensure this does not happen, the triplets generated and fed into the loss will be
mined in each batch such that

∥∥f(xai)− f(x−i)
∥∥ < ∥∥f(xai)− f(x+

i)
∥∥. This is known

as semi-hard negative online mining and was found to lead to better local minima
discovery and help in reducing the chance that the model collapses and predicts
all embeddings to be f(x) = 0 [Schroff et al., 2015]. In Figure 4.9 one can see the
different types of negatives that can be mined for, but as mentioned this research
will use semi-hard negative triplets.

35

Source: https://omoindrot.github.io/triplet-loss
Figure 4.9: Visual explanation of different triplet negative pairs that can be mined

for during the training process. For this research semi-hard negatives is used.

It is also assumed that by using TEL the embedding layer is optimised in such a
way that the generated embeddings will give an accurate description of the language
spoken, especially in cases where it is not someone’s first language. For example,
speakers that mix their languages frequently, such as Afrikaans speakers using a
lot of English words, should appear closer to one another than speakers that that
only use Afrikaans words. Another example could be that a famous Afrikaans news
host’s embeddings should not be close to a speaker learning how to speak Afrikaans,
but both should still form part of the cluster of Afrikaans speaker.

Using TEL, predictions can be made with a model trained on the generated embed-
dings or by using the same technique such as [Schroff et al., 2015] where the distance
between embeddings can be used with a voting system implemented. Future work
could look into pre-training a network using TEL and then fine tuning the model for
classification tasks. To see the performance of the novel TEL method, please refer
to Chapter 5 and Chapter 6.

4.3 Additional Methods

To further improve the generalisation of the LID system, that is improving the
performance on new speakers or new datasets, spectral augmentation is investigated
as well as the effect pre-training a CNN architecture on Imagenet will have.

36

4.3.1 Spectral Augmentation

Spectral augmentation comprises masking the spectrogram image horizontally or
vertically and sometimes in both directions [Park et al., 2019]. Spectral augmenta-
tion is applied directly to the spectrograms during the training phase, as was done
by [Park et al., 2019].

Source: [Park et al., 2019, pp. 2]
Figure 4.10: Example of augmentation applied to spectrograms. In the top
spectrogram no augmentation is applied, where in the middle one can see a

horizontal augmentation and then lastly in the bottom a mixture of augmentations
are applied.

An example of this can be found in Figure 4.10. In the top spectrogram no aug-
mentation is applied, where in the middle one can see a horizontal augmentation
and then lastly in the bottom a mixture of augmentations are applied. The re-
searchers obtained state-of-the-art performance on the ASR dataset LibriSpeech
[Panayotov et al., 2015], using this technique [Park et al., 2019]. The researchers
[Korkut et al., 2020, Han et al., 2020] both implemented Spectral Augmentation,
with [Korkut et al., 2020] indicating that the accuracy of language identification
systems increase when using it.

37

4.3.2 Pre-Trained CNN Architectures

[Palanisamy et al., 2020] showed that CNN architectures pre-trained on the Ima-
genet dataset serve as a good baseline for training audio classification models. Im-
ageNet is a database containing images representing all of the nouns in the Word-
Net database [Deng et al., 2009]. It is one the largest image datasets and contains
roughly 3.2 million images and over 1000 classes. In order to test how well this
translates to the prediction of South African languages, the experiments performed
will also feature the results for when the models are pre-trained. Even though
[Palanisamy et al., 2020] experimented with which layers to freeze during the train-
ing process, this work will allow all layers in the model to be trainable during the
training process. This is done to reduce the amount of experiment runs that need
to happen. It is then assumed that this will not affect the results greatly, but is left
as future work to investigate further.

To test the TEL method, three different models will be trained with three different
methods to compare the results. The three models are the CRNN model used in
[Bartz et al., 2017], a Resnet-50 model and a Densenet-121 model. The Resnet-50
and Densenet-121 models will be tested twice, once where there is no pre-trained
weights and a second time where the weights are pre-trained on Imagenet. The three
different training methods will be using Triplet loss, CEL and then using the TEL
method of training. The results of these tests can be found in Chapter 5.

38

Chapter 5

NCHLT Results

In order to test if the TEL method truly results in better performance, three models
will be trained in three different ways. The three models are the CRNN model used
in [Bartz et al., 2017], a Resnet-50 model and a Densenet-121 model. All three of
the models will be trained using the TEL method as well as CEL and Triplet loss
separately. Because of the constraints in compute resources and time, there will be
no cross validation performed, but validation of the results are obtained using a hold
out set.

The models trained with no spectral augmentation, discussed in Section 4.3, will
serve as a baseline for that respective architecture and training method. The success
of these experiments will be measured with the accuracy metric and by observing
the performance for each language separately by inspecting the confusion matrix.
A confusion matrix is a matrix where each column represents the instances in a
predicted class the rows represent the instances for the true class. Thus the diagonal
of the matrix represents the amount of correct predictions for the class represented by
the row and the off diagonal values represent the number of incorrect predictions and
what the incorrect prediction was. With the confusion matrix, the confusion that
appears between languages can also be observed. Along with this, the embeddings
produced will be inspected visually. The performance of the model will be measured
with all samples combined and how the model performs for each gender separately.
This is to ensure the model is not biased towards any gender. The gender associated
with each recording is taken directly from the metadata provided in the NCHLT
dataset.

The various models will be trained on a single g4dn.xlarge Amazon Web Service
(AWS) EC2 instance. This is not an ideal training environment as the amount of
vRAM (16Gb) limits the batch size that can be used. One can also only run a single

39

experiment at a time and this limits the amount of results that can be gathered
as there had to be a trade-off between volume of results and overall cost for the
research. The Tensorflow version used is 2.3.0 and the tensorflow-addons package
version, used to calculate the Triplet loss, is 0.11.2.

The following section explores how the training methods compare to one another.
After that, a thorough analysis into the embeddings generated by the different train-
ing methods takes place in order to further understand what the models learn during
the training process.

5.1 Comparing the Different Training Methods

To ensure the optimiser does not have a big impact on the results, the models will
be trained using the Adam optimiser [Kingma and Ba, 2014] with a learning rate of
0.0001. Due to the computational limits, the optimiser can not be fine tuned as the
costs will be too high. It is left as future work to investigate the optimiser choice
further. Adam was chosen as optimiser as it requires less hyperparameter tuning
than SGD with momentum for example. To reduce overfit within the models, the
feed forward layers for all the models and the convolutional layers for the CRNN
model contain a regularisation penalty on the kernel weights. This adds an additional
penalty to the weights of the model during training, ensuring that the weights of
the model do not grow to big. This improves the generalisation of the model as it
would not become to reliant on certain weights.

This ensures the weights have smaller values and penalises weights with bigger val-
ues, like one would penalise high parameter values in a linear regression model. The
L2 penalty is 0.001 for all models. This is the same value as what was used in
[Bartz et al., 2017]. All models also use a batch size of 32, as this is the maximum
size the available VRAM can handle on the EC2 instances. The largest batch size
possible was used as the batch sizes used in the FaceNet paper with Triplet loss was
substantially large. The embedding layer produces a 512 dimensional vector in all
models. This was the dimensions used in [Lopez et al., 2018] as well.

During training, it was noticed that all methods tended to overfit drastically on the
training set. This can be seen on the training graph for Densenet121 architecture in
Figure 5.1, where the Triplet loss is shown for the TEL and Triplet trained models.
During training, a stopping criteria was implemented where if the validation loss did
not decrease for at least five epochs. The Triplet loss is shown so that the models
trained using only Triplet loss can be compared to the TEL method models. For
more training graphs, please refer to Appendix C.

40

Figure 5.1: Training graph showing the Triplet loss for the DenseNet121 model
trained using different methods.

Even though the models do overfit, one can still investigate the accuracy on unseen
data to interpret how well the different methods compare to one another. In Ta-
ble 5.1 one can find the various accuracies produced by the TEL and CEL trained
models. The highlighted values show the highest accuracy for that specific model
architecture. All the models’ best results come from the TEL training methods,
except for the Resnet50 model pre-trained on ImageNet data.

Table 5.1: Summary of the experiment results regarding the models trained using
only Cross Entropy Loss (CEL) and Triplet Entropy Loss (TEL). The results in
the table show the accuracy (%) of the models on unseen NCHLT speaker data.

Model CEL Baseline CEL TEL Baseline TEL
CRNN 71 70 75 74

Densenet121 (Imagenet) 78 78 79 81
Densenet121 75 74 75 77

Resnet50 (Imagenet) 76 78 77 78
Resnet50 74 72 76 78

41

Table 5.2: Summary of the experiment results with regards to the models trained
using only Triplet loss and Triplet Entropy Loss (TEL). The results in the table

show the loss value for the models on unseen NCHLT speaker data.

Model Triplet Baseline Triplet TEL Baseline TEL
CRNN 0.220 0.150 0.095 0.096

Densenet121 (Imagenet) 0.068 0.077 0.076 0.070
Densenet121 0.074 0.075 0.088 0.080

Resnet50 (Imagenet) 0.078 0.075 0.078 0.076
Resnet50 0.083 0.082 0.083 0.076

When looking at Table 5.2, which shows the Triplet loss values, one can see that
on average the languages are better separated when the model is trained using only
Triplet loss. If one takes the embeddings generated by these models and predict the
language in the same way as the FaceNet researchers, namely assigning the embed-
ding the same language as its closest neighbour, then the top accuracy achieved is
78%. This is still lower than the accuracies produced using the TEL method.

Further, the bias of the models are inspected to see how well the models perform
on speech data based on the gender of the speaker. These results can be seen in
Table 5.3. All of the models perform roughly the same over both genders, with the
Resnet50 models seeming to perform a bit better on males compared to females.

Table 5.3: Accuracy (%) performance of the various models based on the gender of
the speaker.

Model Female Male
CRNN 76 76

Densenet121 (Imagenet) 80 81
Densenet121 75 76

Resnet50 (Imagenet) 76 80
Resnet50 76 79

The following section takes a deeper look into embeddings generated by the models
to determine where these models overfit and what they learn. The only models
discussed further in this thesis will be the Densenet121 (pre-trained on Imagenet)
and Resnet50 (not pre-trained) models. This is because they are the two best
performing models. To see more information regarding the other models, and more
info about these two models, please refer to Appendix C.

42

5.2 Inspecting the Generated Embeddings

To further understand what the models learn during the different training meth-
ods, the embeddings generated are inspected visually. This is performed by train-
ing a Uniform Manifold Approximation and Projection for Dimension Reduction
(UMAP) model [McInnes et al., 2020] to project the embeddings down to two di-
mensions. Other techniques do exist to project the embeddings to fewer dimensions,
i.e. dimensionality reduction, in order to inspect them visually, such as T-SNE
[Van der Maaten and Hinton, 2008]. UMAP was chosen as the dimensionality re-
duction algorithm as it preserves more of the global structure [McInnes et al., 2020].
This implies that one can interpret the intra-cluster as well as the inter-cluster rela-
tionships in the visualisation. Thus cluster that are close together are more similar
than other clusters.

UMAP works by constructing a graph representation of the data points in the high
dimensional space and then projecting these points down to the lower dimensions
while still trying to maintain the same topological structure. In order to generate
the high dimensional graph structure, which is ensured to not have any broken
connections, UMAP assigns each data point a variable radius. They base this radius
on the distance to the kth nearest neighbour, where k is a hyperparameter in the
algorithm. A higher k preserves more of the global structure and a lower k preserves
the local structure more. There is no recipe or guidance for choosing k and this can
only be found with trail and error. They connect the data points whose radius then
overlap with a weighted connection, where this weight is calculated based on the
distance between the points. These weights are interpreted to be the probability of
the connection existing, thus the weights are scaled to also be in the correct range
to be a valid probability value. This constructed graph is then a fuzzy topological
structure for the high-dimensional data.

The low dimensional representations are then constructed by minimising the loss
between the weights of a connection in the high dimensional space and the weights
of those same connections in the low dimensional space, where these low dimensional
weights are obtained using the same method as above. Because weights between
the connections represent the probability that the connection either exists or does
not exist, the loss function will compare vectors of probabilities with one another
and thus cross-entropy can be used to minimise the distance. The loss function
can be found in Equation (5.1) [McInnes et al., 2020], with C being the set of all
connections, wh(c) being the weight of connection c in the high dimensional space
and wl(c) being the weight in the low dimensional space. In the loss function, the
first term provides the attraction force and the second term the repulsive force, much
in the same way as how the TEL loss will pull and push representations.

43

L =
∑
c∈C

wh(c) log
wh(c)

wl(c)
+ (1− wh(c)) log

1− wh(c)
1− wl(c)

(5.1)

The optimal k was found to be 15, with a minimum separation distance set at 0.001,
using the Cosine distance. The other hyperparameters are the default values set by
the software package [McInnes et al., 2018]. The values were chosen in an iterative
way until the clusters formed were interpretable visually. The UMAP model is
trained using the NHCLT train set embeddings.

Figure 5.2: Projection of the embeddings generated by the Densenet121 model on
the different NCHLT datasets.

44

In Figure 5.2 one can see the embeddings generated by Densenet121 model, pre-
trained on Imagenet, for all of the training methods. One can see that embeddings
created using the TEL method are better at separating the languages. This is clear
if one looks at the training examples specifically, as the TEL embeddings create
a cluster for all languages, but on the Triplet loss side English and Zulu is being
confused with other languages. Looking at the embeddings of the validation and
test set embeddings, one can see that both models start confusing the languages,
but that overall there are still clear language clusters in the TEL embeddings. The
CEL trained model though has no clear clusters forming.

The more interesting result come when one inspects the language families. Looking
at the TEL embeddings, one can see that the Germanic languages (Afrikaans and
English) form their own overlapping cluster to the right with the African languages
forming their own clusters to the left. Looking at the validation and test embeddings,
it can be seen that the confusion occurs more often between the families than with
other languages. This confusion appears less in the TEL model than the Triplet loss
model, and this leads to the assumption that the TEL learning method is better at
understanding the nuances of the languages.

Figure 5.3: Confusion matrix generated by combining the validation and test set
predictions for the pre-trained Densenet-121 model fine tuned using the TEL

method.

In the confusion matrix for the TEL Densenet121 model found in Figure 5.3, the

45

confusion can clearly be seen. The Germanic languages are not really confused with
other languages but Xhosa and Zulu have the most confusion between them. Besides
Zulu, Sepedi also gets confused with the other African languages. The confusion
could be related to the words present in the prompts given to speakers that share
the same words between languages. To visually see the words present in all the
NCHLT sets, please refer to Appendix B.

In Figure 5.5, one can see the embeddings generated by the Resnet50 model, which
was not pre-trained on Imagenet. In both the TEL and Triplet loss training in-
stances, the embeddings seem to overlap more than in the Densenet121 cases. The
TEL embeddings though are stronger grouped together per language than the Triplet
loss method as there are more connections between the clusters in the Triplet loss
case. The embeddings generated by the CEL method though show no potential for
separation. One can also see the same trend in terms of confusion between languages
present in the Densenet121 models when looking at the validation and test datasets.
The confusion matrix can be found in Figure 5.4. We can see that the Germanic
languages are more confused in these results than in Figure 5.3, but the same trends
apply to the African languages.

Figure 5.4: Confusion matrix generated by combining the validation and test set
predictions for the Resnet50 model trained using the TEL method.

46

Figure 5.5: Projection of the embeddings generated by the Resnet50 model on the
different NCHLT datasets.

5.3 Discussion on Results

Looking at the results in the previous section, one can see that the TEL method
does overall perform better on unseen data than the more traditional Triplet loss
and CEL methods. This is more apparent when looking at the embeddings in
Section 5.2, where the clusters formed by the TEL trained models are more clustered
together than the Triplet loss trained models. The TEL trained models also seem
to understand the nuances of the languages better.

47

The results also show that the techniques introduced in [Park et al., 2019] and
[Palanisamy et al., 2020] can apply to South African LID systems to improve the
overall accuracy. Spectral augmentation though has to be investigated for each use
case and each architecture. The reason for this is that the increase in accuracy
could perhaps not be worth the extra complexity added to the system. If one looks
at the projections for all models in Appendix C.1.2 though, one will see that the
models trained with augmentation do tend to create embeddings that separate the
languages better than the respective baseline models.

All the models should still be optimised more to reduce the amount of overfit-
ing present. Various optimisations regarding the batch size, image size and opti-
miser/learning rate could be investigated with larger computational resources.

Even though the results do show that the TEL method has promise, there is still
more work to further demonstrate improved generalisation of LID systems. The
following section will investigate how the Densenet121 and Resnet50 models perform
on out-of-domain data, specifically the Lwazi dataset.

48

Chapter 6

Performance On the Lwazi Dataset

In this chapter the Densenet121 and Resnet50 models that were trained on the
NCHLT speech corpus, discussed in Section 5.1, are tested on out-of-domain samples
to test how well the TEL training method generalises to a new domain. As was
mentioned in Section 3.2, the recordings for the Lwazi dataset were sampled at 8kHz
versus the NCHLT dataset which was sampled at 16kHz. This will undoubtedly
influence the results, as will the difference in words spoken between the two datasets.

Table 6.1: Accuracy (%) performance of the Resnet50 and Densenet121 models on
the Lwazi dataset.

Model TEL Accuracy CEL Accuracy
Densenet121 (Imagenet) 45 25.8

Resnet50 28 23

In Table 6.1 one can find the performance of models on the new domain. As can
clearly be seen, none of the models perform nearly as well as they did in the NCHLT
domain. The only model that showed any promise is the Densenet121 model trained
using the TEL method as it achieved close to 45% accuracy. In both model cases,
one can see that the TEL method does outperform the CEL method, but in the
Resnet case it is by an ignorable margin. What the results do show though is
that by combining the TEL method with the techniques in [Park et al., 2019] and
[Palanisamy et al., 2020] produces a model that is more robust to new domains.
This can be further seen in the confusion matrix for the Densenet121 models, found
in Figure 6.1. For further results produced by the Resnet50 models, please refer to
Appendix C.2.

49

Figure 6.1: Confusion matrices for the Densenet-121 models trained using the TEL
method (top) and CEL (bottom).

Looking at Figure 6.1 one will see the CEL trained Densenet model tends to think
that most languages are either Sepedi or Setswana, with very few samples being
predicted to belong either to Xhosa or Zulu. The TEL trained model shows a

50

better understanding for the Germanic languages as both Afrikaans and English
have better results. Xhosa and Zulu are also performing much better, showing a
better separation in the African languages.

To investigate further, the embeddings generated are again projected onto a two
dimensional plane to inspect it visually, using UMAP. The projected embeddings
can be found in Figure 6.2. The models have not generalised well, but the TEL
embeddings do have a small subsets which belong to mostly one language or family.
This is compared to the Triplet embeddings which have only one cluster dominated
by a family.

Figure 6.2: Projection of the embeddings generated by the Densenet model on the
training NCHLT data (top) as well as the predicted Lwazi embeddings (bottom).

What these results show is that the Densenet121 model (and the other models)
might not learn the characteristics of a language, but simply memorise the patterns
in the spectrograms representing words. A reason then for the Lwazi results to
perform so poorly is due to the fact the words present in the Lwazi corpus are not
present in the training data obtained from the NCHLT dataset. This can be seen by
looking at the wordclouds formed for the Zulu and Afrikaans datasets in Figure 6.3
and Figure 6.4. In these figures the size of the word is directly proportional to the

51

frequency of use in the dataset. One can clearly see the difference in words uttered.
For different languages’ word clouds, please refer to Appendix B.

Figure 6.3: Word clouds for both the NCHLT Zulu speech (left) and the Lwazi
Zulu speech (right).

Figure 6.4: Word clouds for both the NCHLT Afrikaans speech (left) and the
Lwazi Afrikaans speech (right).

All the results above show that there is still more work required to train models to
perform better on out-of-domain samples and to force models to learn characteristics
rather than words. The results show though that the TEL method combined with
spectral augmentation and pre-trained models can be a good stepping stone to work
from.

52

Chapter 7

Conclusion

The research presented investigated several methods to improve the generalisation of
LID systems to new speakers and to new domains. These methods involve Spectral
augmentation and using CNN architectures that are pre-trained on the Imagenet
dataset. The primary method investigated was the TEL training method which
involves training a network simultaneously using Cross Entropy and Triplet loss.
Several tests were run with three different CNN architectures to investigate what the
effect all three methods have on generalisation of an LID system. The tests involved
training models on six languages from the NCHLT speech corpus and measuring
the performance of the models on new speakers from the same domain, and new
speakers from a different domain.

It was found that all three of the methods do contribute to improve the accuracy
of the models to the new speakers and to new domains. The best two models
were found to be a pre-trained Densenet121 model and a Resnet50 model trained
from scratch, with both models being trained using the TEL method and Spectral
augmentation. Even though both models could achieve 81% and 78% accuracies
on new speakers in the NCHLT domain, both models still overfited on the training
data, as they achieved close to 100% accuracy on the training speakers. When the
models are tested on the Lwazi domain, the Resnet50 model performed poorly and
only achieved an accuracy of 28%, whereas the Densenet121 model could achieve an
accuracy 45%.

If one looks at the embeddings generated by both of the models for all training
methods, the results do indicate that the TEL method has a better understand-
ing of the languages. This is because of the stronger clusters formed in the TEL
embeddings and the fact that the confusion happens more often between language
families, whereas in the CEL/Triplet case the confusion occurs more often between

53

all languages.

The results do also show that all the models might still only be memorising words
rather than learning language characteristics. This will require more research, as
is also recommended in Section 7.1. The TEL training method also significantly
reduces the training time required for a model to converge, specifically on the use
cases shown in Appendix D, which were done to show the robustness of TEL to
different tasks.

7.1 Recommendations for Future Research

The work presented only investigates six of the eleven South African languages. Lan-
guages from the Tswa-Ronga and Venda families were also not used in the research.
Further work should be done to investigate how well these methods will work in
systems where all eleven languages are present.

The methods should also be applied to data from previous papers, specifically the
data in [Bartz et al., 2017] and [Revay and Teschke, 2019] as these papers investi-
gate more common languages. The methods mentioned in Section 2.2 should also
be thoroughly inspected for out-of-domain performance.

The model architectures and hyperparamaters presented in this thesis are also not
optimised yet. Future work, if there are better computation resources and a higher
budget available, should further investigate all the parameters and hyperparameters
used in this work. Specifically, the following hyperparameters should be investigated,
with the use of cross validation, as it is estimated that they will have the biggest
impact on results:

• optimiser and learning rate (currently Adam with a learning rate of 0.0001).

• Batch size (currently 32)

• Embedding dimension (currently 512)

• Triplet Loss margin (currently 0.2)

Only the application of the TEL method is presented in this work, showing that
the effort required to dive deep into the mathematical foundations of the training
method should be undertaken. Future work should look into this.

The code for a very rudimentary chatbot called Spectobot can be found on the
GitHub page for this project, found in Appendix A. Spectobot can, at the moment,
prompt a user to send a voice note and then use any LID model provided and predict
the language spoken in the voice note where the user can then give feedback. The

54

results, with the voice note, are then saved. Future work should look at finishing
Spectobot to further test the out-of-domain performance of TEL trained models and
use it to create a South African speech set where the speech does not comprise
speakers reading a prompt but rather where they give a more natural response.

Lastly, with the TEL method showing promise for audio classification tasks, it should
also be investigated in other areas as well. Areas that will be a good fit for the
TEL method are self-supervised tasks. Here Triplet loss could be substituted with
Contrastive loss, forming Contrastive Entropy Loss. This is because there are various
self-supervised techniques out there already using Contrastive loss instead of Triplet
loss and showing good results. The biggest challenges in these tasks will then be to
generate labels to be used by CEL.

55

Appendix A

Project Code

Please refer to https://github.com/ruanvdmerwe/triplet-entropy-loss to find
all of the code associated with the project.

56

https://github.com/ruanvdmerwe/triplet-entropy-loss

Appendix B

NCHLT and Lwazi Spoken Words

This section will look at the word clouds produced by transcripts associated with
both the NCHLT and Lwazi dataset. A word cloud is a visual representation of the
frequency a word appears in a corpus. The bigger the word in the image, the more
it occurs within the corpus. The first section will compare the NCHLT training data
corpus with the validation and test corpus (combined). The second section will then
compare the NCHLT training data corpus with the Lwazi corpus.

B.1 NCHLT vs NCHLT

Figure B.1: Comparison between the spoken words of the NCHLT training and
validation Afrikaans subsets.

57

Figure B.2: Comparison between the spoken words of the NCHLT training and
validation English subsets.

Figure B.3: Comparison between the spoken words of the NCHLT training and
validation Sepedi subsets.

Figure B.4: Comparison between the spoken words of the NCHLT training and
validation Setswana subsets.

58

Figure B.5: Comparison between the spoken words of the NCHLT training and
validation Xhosa subsets.

Figure B.6: Comparison between the spoken words of the NCHLT training and
validation Zulu subsets.

B.2 NCHLT vs Lwazi

Figure B.7: Comparison between the spoken words of the NCHLT and Lwazi
Afrikaans subsets.

59

Figure B.8: Comparison between the spoken words of the NCHLT and Lwazi
English subsets.

Figure B.9: Comparison between the spoken words of the NCHLT and Lwazi
Sepedi subsets.

Figure B.10: Comparison between the spoken words of the NCHLT and Lwazi
Setswana subsets.

60

Figure B.11: Comparison between the spoken words of the NCHLT and Lwazi
Xhosa subsets.

Figure B.12: Comparison between the spoken words of the NCHLT and Lwazi
Zulu subsets.

61

Appendix C

More Model Results

This appendix contains additional material relating to the training process of the
NCHLT models and the embeddings generated by the embedding layer for all models.
The appendix will start out with the training graphs in terms of Triplet loss value,
which will then be followed by the graphs in terms of the accuracy. The next section
will then showcase the various embeddings generated by the model architectures,
where the embeddings generated by the TEL method can be compared to the Triplet
loss method.

The final section of the appendix showcases the Resnet performance on the Lwazi
domain as the body in thesis focused more closely on the pre-trained Densenet
model.

C.1 NCHLT Results

As mentioned above this section will show additional results linked for the training
process on the NCHLT dataset. The graphs for the training process are shown in
terms of the Triplet loss and the accuracy separately. The accuracy graphs compare
the TEL trained models with the CEL trained models and the Triplet loss graphs
then compare the TEL trained models with the Triplet loss trained models.

It should be noted that all models had a early stopping criteria where if the validation
loss did not decrease for at least five epochs the training will stop.

62

C.1.1 Training Graphs

Triplet Loss

In Figure C.1 one can find the training graphs for the CRNN model. Looking at the
graph, it is obvious to see that the TEL trained methods perform much better than
the Triplet trained models. All four models though are overfiting on the training
data. In both training methods one can also see that models trained with Spectral
augmentation tend to perform worse than the counterpart with no augmentation in
the validation results.

In Figure C.2 and Figure C.3 and one can see the performances for the Densenet
models. One can see that all the models perform relatively the same, but that the
TEL models reach a lower value quicker than the Triplet trained models. There
is a trend where augmentation performs slightly better than the models with no
augmentation.

The Resnet model training graphs in Figure C.4 and Figure C.5 show the same
stories as was present in the Densenet model. Namely all the methods do overfit
and perform roughly the same, but that the TEL trained models do tend to train
faster than the Triplet models.

Figure C.1: Training graph showing the Triplet loss for the CRNN model trained
using different methods.

63

Figure C.2: Training graph showing the Triplet loss for the Densenet121 model
trained using different methods.

Figure C.3: Training graph showing the Triplet loss for the pre-trained
Densenet121 model trained using different methods.

64

Figure C.4: Training graph showing the Triplet loss for the Resnet50 model
trained using different methods.

Figure C.5: Training graph showing the Triplet loss for the pre-trained Resnet50
model trained using different methods.

65

Accuracy

In Figure C.6 one can find the training graphs for the CRNN model. Again the
baseline models perform better than the models that contain augmentation. There
is also very little difference between the TEL and CEL trained models in terms of
performance.

In Figure C.7 and Figure C.7 and one can see the performances for the Densenet
models. One can see that all the models perform relatively the same, but that the
best model is the TEL trained model with augmentation.

The Resnet model training graphs in Figure C.9 and Figure C.10 show the same
stories as was present in the Densenet model. Namely all the methods do overfit
and perform roughly the same, but that the TEL trained models do perform better.

Figure C.6: Training graph showing the accuracy for the CRNN model trained
using different methods.

66

Figure C.7: Training graph showing the accuracy for the Densenet121 model
trained using different methods.

Figure C.8: Training graph showing the accuracy for the pre-trained Densenet121
model trained using different methods.

67

Figure C.9: Training graph showing the accuracy for the Resnet50 model trained
using different methods.

Figure C.10: Training graph showing the accuracy for the pre-trained Resnet50
model trained using different methods.

68

C.1.2 Embeddings Projected Using UMAP

Figure C.11: Embeddings generated by the baseline CRNN model on the NCHLT
dataset.

69

Figure C.12: Embeddings generated by the CRNN model on the NCHLT dataset.

70

Figure C.13: Embeddings generated by the baseline Densenet121 model on the
NCHLT dataset.

71

Figure C.14: Embeddings generated by the Densenet121 model on the NCHLT
dataset.

72

Figure C.15: Embeddings generated by the baseline pre-trained Densenet121
model on the NCHLT dataset.

73

Figure C.16: Embeddings generated by the pre-trained Densenet121 model on the
NCHLT dataset.

74

Figure C.17: Embeddings generated by the baseline Resnet50 model on the
NCHLT dataset.

75

Figure C.18: Embeddings generated by the Resnet50 model on the NCHLT
dataset.

76

Figure C.19: Embeddings generated by the baseline pre-trained Resnet50 model on
the NCHLT dataset.

77

Figure C.20: Embeddings generated by the pre-trained Resnet50 model on the
NCHLT dataset.

78

C.2 Lwazi domain

Figure C.21: Projection of the embeddings generated by the Resnet50 model on
the NCHLT and Lwazi datasets.

79

Appendix D

Even More Use Cases

To further test the TEL training method, the Densenet-121 and Resnet50 models
will be trained on two different sound classification tasks. The first task is to predict
the spoken digit in a recording, using the Free Spoken Digit Dataset (FSDD). The
second task will be to predict which category of music a 30 second recording belongs
to using the GTZAN dataset.

For both these tasks, the idea is to show how an out of the box model trained using
the different methods (TEL, CEL and Triplet loss) performs on common datasets.
The purpose of this is to further cement the hypothesis that TEL trained models do
generate better embeddings than previous methods, even if the task is not language
identification.

D.1 Spoken Digits Classification

The data used in this experiment is open source and can be found at https://

github.com/Jakobovski/free-spoken-digit-dataset/. The dataset consists of
six speakers, where each speaker utters a digit between zero and nine, fifty times
each in English only. This results in 3000 recordings. This can be imagined as a
spoken MNIST dataset.

The data is split into a train and validation set, with the validation set consisting
of fifteen utterances for each speaker on each digit, totaling 2700 training samples
and 300 validation samples. The models were again all trained using Adam with a
learning rate of 0.0001 and a batch size of 64. Each model also had an early stopping
criteria where if the validation loss did not improve for two epochs the training stops.
In Figure D.1 one can see the training graph in terms of accuracy for the pre-trained
Densenet-121 models. As can be seen, both achieve a very high accuracy, but TEL

80

https://github.com/Jakobovski/free-spoken-digit-dataset/
https://github.com/Jakobovski/free-spoken-digit-dataset/

has a higher accuracy and there is is smaller gap between the train and validation
loss.

Figure D.1: Training graph of pre-trained Densenet-121 model on the FSDD
dataset in terms of accuracy.

Figure D.2: Training graph of pre-trained Densenet-121 model on the FSDD
dataset in terms of Triplet loss.

In Figure D.2 one can see the training graph in terms of the Triplet loss. Here one
can see that both models again perform roughly the same, but the speed at which
the TEL method reaches its minimum is much faster than the pure Triplet loss

81

training method. This is the biggest differentiator between the two methods when
applied to this dataset.

When looking at the embeddings generated (using UMAP again) in the Figure D.3,
one will see there is not much difference here but it is important to note that the
TEL method achieved these clusters after just the second epoch.

Figure D.3: Projection of the embeddings generated on the FSDD dataset.

D.2 GTZAN - Music Genre Classification

The GTZAN dataset contains 100 recordings for each of the ten distinct classes,
namely blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock.
Each of the recordings are 30 seconds long. The version of the dataset used in
this project can be found on Kaggle here, where the audio is already converted to
spectrograms for ease of use.

The data is split into a train and validation set, with the validation set consisting of
21 recordings for each class. The exact model architecture and training process was
followed as was done in the previous section with the FSDD dataset. In Figure D.4
one can see the training graph in terms of accuracy for the pre-trained Densenet-121
models. As can be seen, the validation accuracy for the model trained using CEL

82

https://www.kaggle.com/andradaolteanu/gtzan-dataset-music-genre-classification

never increases while the validation accuracy for the TEL model reaches close to
60% accuracy.

Figure D.4: Training graph of pre-trained Densenet-121 model on the GTZAN
dataset in terms of accuracy.

Figure D.5: Training graph of pre-trained Densenet-121 model on the GTZAN
dataset in terms of Triplet loss.

In Figure D.5 one can see the training graph in terms of the Triplet loss. One again
sees the same trend as in the previous section where the models, trained using TEL
and Triplet loss, reach roughly the same performance but with the model trained

83

using TEL reaching it much quicker. The TEL trained model though is able to
seperate the classes based on the Triplet loss value better than the other model.

84

Bibliography

[Abdullah et al., 2020] Abdullah, B. M., Avgustinova, T., Möbius, B., and Klakow,
D. (2020). Cross-domain adaptation of spoken language identification for related
languages: The curious case of slavic languages.

[Barnard et al., 2014] Barnard, E., Davel, M. H., van Heerden, C., De Wet, F., and
Badenhorst, J. (2014). The nchlt speech corpus of the south african languages.
Workshop Spoken Language Technologies for Under-resourced Languages (SLTU).

[Bartz et al., 2017] Bartz, C., Herold, T., Yang, H., and Meinel, C. (2017). Language
identification using deep convolutional recurrent neural networks. In International
Conference on Neural Information Processing, pages 880–889. Springer.

[Blackman and Tukey, 1958] Blackman, R. B. and Tukey, J. W. (1958). The mea-
surement of power spectra from the point of view of communications engineer-
ing—part i. Bell System Technical Journal, 37(1):185–282.

[Bredin, 2017] Bredin, H. (2017). Tristounet: triplet loss for speaker turn embed-
ding. In 2017 IEEE international conference on acoustics, speech and signal pro-
cessing (ICASSP), pages 5430–5434. IEEE.

[Davel et al., 2012] Davel, M. H., Heerden, C. J. v., and Barnard, E. (2012). Val-
idating smartphone-collected speech corpora. In Spoken Language Technologies
for Under-Resourced Languages.

[De Wet et al., 2017] De Wet, F., Kleynhans, N., Van Compernolle, D., and
Sahraeian, R. (2017). Speech recognition for under-resourced languages: Data
sharing in hidden markov model systems. South African Journal of Science,
113(1-2):1–9.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255. Ieee.

85

[Fergus, 2015] Fergus, R. (2015). Neural networks by rob fergus, machine learn-
ing summer school 2015. Technical report. Also available as http://mlss.

tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf.

[Ganin and Lempitsky, 2014] Ganin, Y. and Lempitsky, V. (2014). Unsupervised
domain adaptation by backpropagation.

[Goodfellow et al., 2016] Goodfellow, I. J., Bengio, Y., and Courville, A.
(2016). Deep Learning. MIT Press, Cambridge, MA, USA. http://www.

deeplearningbook.org.

[Han et al., 2020] Han, W., Zhang, Z., Zhang, Y., Yu, J., Chiu, C.-C., Qin, J., Gu-
lati, A., Pang, R., and Wu, Y. (2020). Contextnet: Improving convolutional neu-
ral networks for automatic speech recognition with global context. arXiv preprint
arXiv:2005.03191.

[Han and Lee, 2016] Han, Y. and Lee, K. (2016). Convolutional neural network
with multiple-width frequency-delta data augmentation for acoustic scene classi-
fication. IEEE AASP challenge on detection and classification of acoustic scenes
and events.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778.

[Henselmans et al., 2013] Henselmans, D., Niesler, T., and van Leeuwen, D. (2013).
Phoneme-and word-based language identification of south african languages using
lwazi.

[Huang et al., 2018] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q.
(2018). Densely connected convolutional networks.

[Kecman, 2005] Kecman, V. (2005). Support vector machines–an introduction. In
Support vector machines: theory and applications, pages 1–47. Springer.

[Khosla et al., 2020] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. (2020). Supervised contrastive
learning.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kinnunen et al., 2006] Kinnunen, T., Hautamäki, V., and Fränti, P. (2006). On
the use of long-term average spectrum in automatic speaker recognition. In 5th
Internat. Symposium on Chinese Spoken Language Processing (ISCSLP’06), Sin-
gapore, pages 559–567.

86

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[Korkut et al., 2020] Korkut, C., Haznedaroglu, A., and Arslan, L. (2020). Compar-
ison of deep learning methods for spoken language identification. In International
Conference on Speech and Computer, pages 223–231. Springer.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

[Lipton et al., 2015] Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A crit-
ical review of recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019.

[Lopez et al., 2018] Lopez, J., Brummer, N., and Dehak, N. (2018). End-to-end
versus embedding neural networks for language recognition in mismatched condi-
tions. pages 112–119.

[Malhotra et al., 2015] Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. (2015).
Long short term memory networks for anomaly detection in time series. In Pro-
ceedings, volume 89, pages 89–94. Presses universitaires de Louvain.

[Margolis et al., 2018] Margolis, B., Ghei, M., and Pardo, B. (2018). Applying
triplet loss to siamese-style networks for audio similarity ranking.

[Martin and Greenberg, 2010] Martin, A. F. and Greenberg, C. S. (2010). The 2009
nist language recognition evaluation. In Odyssey, volume 30.

[Mateju et al., 2018] Mateju, L., Cerva, P., Zdánskỳ, J., and Safarik, R. (2018).
Using deep neural networks for identification of slavic languages from acoustic
signal. In INTERSPEECH, pages 1803–1807.

[Mbogho and Katz, 2010] Mbogho, A. and Katz, M. (2010). The impact of accents
on automatic recognition of south african english speech: a preliminary investiga-
tion. In Proceedings of the 2010 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists, pages 187–192.

[McFee et al., 2015] McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M.,
Battenberg, E., and Nieto, O. (2015). librosa: Audio and music signal analysis in
python. In Proceedings of the 14th python in science conference, volume 8.

[McInnes et al., 2020] McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uni-
form manifold approximation and projection for dimension reduction.

[McInnes et al., 2018] McInnes, L., Healy, J., Saul, N., and Grossberger, L. (2018).
Umap: Uniform manifold approximation and projection. The Journal of Open
Source Software, 3(29):861.

87

[Meng et al., 2017] Meng, Z., Chen, Z., Mazalov, V., Li, J., and Gong, Y. (2017).
Unsupervised adaptation with domain separation networks for robust speech
recognition. In 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pages 214–221. IEEE.

[Mingote et al., 2019] Mingote, V., Castan, D., McLaren, M., Nandwana, M. K.,
Giménez, A. O., Lleida, E., and Miguel, A. (2019). Language recognition using
triplet neural networks. In INTERSPEECH, pages 4025–4029.

[Mingote et al., 2020] Mingote, V., Miguel, A., Ortega, A., and Lleida, E. (2020).
Optimization of the area under the roc curve using neural network supervectors
for text-dependent speaker verification. Computer Speech & Language, 63:101078.

[Montavon, 2009] Montavon, G. (2009). Deep learning for spoken language identi-
fication. In NIPS Workshop on deep learning for speech recognition and related
applications, pages 1–4. Citeseer.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units
improve restricted boltzmann machines. In Icml.

[Nam et al., 2012] Nam, J., Herrera, J., Slaney, M., and Smith III, J. O. (2012).
Learning sparse feature representations for music annotation and retrieval. In
ISMIR, pages 565–570.

[Nam et al., 2013] Nam, J., Hyung, Z., and Lee, K. (2013). Acoustic scene classifi-
cation using sparse feature learning and selective max-pooling by event detection.
IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and
Events.

[Palanisamy et al., 2020] Palanisamy, K., Singhania, D., and Yao, A. (2020). Re-
thinking cnn models for audio classification. arXiv preprint arXiv:2007.11154.

[Panayotov et al., 2015] Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
(2015). Librispeech: An asr corpus based on public domain audio books. pages
5206–5210.

[Park et al., 2019] Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk,
E. D., and Le, Q. V. (2019). Specaugment: A simple data augmentation method
for automatic speech recognition. arXiv preprint arXiv:1904.08779.

[Pons et al., 2020] Pons, J., Pascual, S., Cengarle, G., and Serrà, J. (2020). Upsam-
pling artifacts in neural audio synthesis. arXiv preprint arXiv:2010.14356.

[Rabiner and Juang, 1986] Rabiner, L. and Juang, B. (1986). An introduction to
hidden markov models. IEEE ASSP Magazine, 3(1):4–16.

88

[Revay and Teschke, 2019] Revay, S. and Teschke, M. (2019). Multiclass language
identification using deep learning on spectral images of audio signals.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algo-
rithms.

[Rumelhart et al., 1985] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1985). Learning internal representations by error propagation. Technical report,
California Univ San Diego La Jolla Inst for Cognitive Science.

[Sarthak et al., 2019] Sarthak, Shukla, S., and Mittal, G. (2019). Spoken language
identification using convnets.

[Schroff et al., 2015] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet:
A unified embedding for face recognition and clustering. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 815–823.

[Shuyo, 2010] Shuyo, N. (2010). Language detection library for java.

[Szegedy et al., 2014] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going
deeper with convolutions.

[Szegedy et al., 2016] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826.

[Van der Maaten and Hinton, 2008] Van der Maaten, L. and Hinton, G. (2008). Vi-
sualizing data using t-sne. Journal of machine learning research, 9(11).

[Van Heerden et al., 2009] Van Heerden, C., Barnard, E., and Davel, M. (2009).
Basic speech recognition for spoken dialogues.

[van Heerden et al., 2016] van Heerden, C., Kleynhans, N., and Davel, M. H. (2016).
Improving the lwazi asr baseline.

[Zuo et al., 2015] Zuo, Z., Shuai, B., Wang, G., Liu, X., Wang, X., Wang, B., and
Chen, Y. (2015). Convolutional recurrent neural networks: Learning spatial de-
pendencies for image representation. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages 18–26.

89

	Introduction
	Background
	Goal of This Research
	Outline of Thesis

	Literature Review
	LID and South African Languages
	LID with Deep Neural Networks
	Applying Triplet Loss
	Generalisation of LID Systems

	Language Domains
	NCHLT Speech Corpus
	Data Cleaning
	Transforming Data To the Image Domain
	Splitting Data Into Train, Validation and Test sets

	Lwazi Speech Corpus

	Methodology
	Convolutional Neural Networks explained
	Well Known CNN Architectures

	Triplet Entropy Loss
	Additional Methods
	Spectral Augmentation
	Pre-Trained CNN Architectures

	NCHLT Results
	Comparing the Different Training Methods
	Inspecting the Generated Embeddings
	Discussion on Results

	Performance On the Lwazi Dataset
	Conclusion
	Recommendations for Future Research

	Project Code
	NCHLT and Lwazi Spoken Words
	NCHLT vs NCHLT
	NCHLT vs Lwazi

	More Model Results
	NCHLT Results
	Training Graphs
	Embeddings Projected Using UMAP

	Lwazi domain

	Even More Use Cases
	Spoken Digits Classification
	GTZAN - Music Genre Classification

	Bibliography

