: y".lsa/\!unl\o\'-

o
{/

UNIVERSITY OF CAPE TOWN

DEPARTMENT OF STATISTICAL SCIENCES
FACULTY OF SCIENCE
MASTERS MINOR THESIS

Triplet Entropy Loss: Improving

The Generalisation of Short
Speech Language Identification

Systems

Author: Supervisor:
Ruan Henry van der Merwe Dr Sebnem Er

December 2020

Acknowledgements

I will keep it brief as everyone in this list knows how much they contributed.

e To my wife, Madelein, you have been my rock during this entire process and
I could not have finished this without you.

e To Sebnem, my supervisor, thank you for all your feedback and zoom calls.
Even though we could not meet nearly enough in person as we would have
hoped for in this strange year, you still pushed me in the correct direction
after every meeting and inspire me to ask even more questions.

e To my family, friends and Church community, you kept me sane during this
time with all your distractions. Thank you!

e To both my managers which I worked under during the two years of study,
Guillaume and Etienne, thank you for understanding the struggles of part time
studying and allowing me the freedom to work on this project and providing
support in any way you can.

Abstract

Spoken language identification systems form an integral part in many speech recog-
nition tools today. Over the years many techniques have been used to identify the
language spoken, given just the audio input, but in recent years the trend has been
to use end to end deep learning systems. Most of these techniques involve converting
the audio signal into a spectrogram which can be fed into a Convolutional Neural
Network which can then predict the spoken language. This technique performs very
well when the data being fed to model originates from the same domain as the train-
ing examples, but as soon as the input comes from a different domain these systems
tend to perform poorly. Examples could be when these systems were trained on
WhatsApp recordings but are put into production in an environment where the
system receives recordings from a phone line.

The research presented investigates several methods to improve the generalisation of
language identification systems to new speakers and to new domains. These methods
involve Spectral augmentation, where spectrograms are masked in the frequency
or time bands during training and CNN architectures that are pre-trained on the
Imagenet dataset. The research also introduces the novel Triplet Entropy Loss
training method. This training method involves training a network simultaneously
using Cross Entropy and Triplet loss. Several tests were run with three different
CNN architectures to investigate what the effect all three of these methods have on
the generalisation of an LID system.

The tests were done in a South African context on six languages, namely Afrikaans,
English, Sepedi, Setswanna, Xhosa and Zulu. The two domains tested were data
from the NCHLT speech corpus, used as the training domain, with the Lwazi speech
corpus being the unseen domain.

It was found that all three methods improved the generalisation of the models,
though not significantly. Even though the models trained using Triplet Entropy Loss
showed a better understanding of the languages and higher accuracies, it appears as
though the models still memorise word patterns present in the spectrograms rather
than learning the finer nuances of a language. The research shows that Triplet
Entropy Loss has great potential and should be investigated further, but not only
in language identification tasks but any classification task.

i

Contents

1 Introduction
1.1 Background
1.2 Goal of This Research
1.3 Outline of Thesis

2 Literature Review
2.1 LID and South African Languages
2.2 LID with Deep Neural Networks
2.3 Applying Triplet Loss
2.4 Generalisation of LID Systems,

3 Language Domains
3.1 NCHLT Speech Corpus
3.1.1 DataCleaning
3.1.2 Transforming Data To the Image Domain
3.1.3 Splitting Data Into Train, Validation and Test sets
3.2 Lwazi Speech Corpus

4 Methodology
4.1 Convolutional Neural Networks explained
4.1.1 Well Known CNN Architectures
4.2 Triplet Entropy Loss
4.3 Additional Methods
4.3.1 Spectral Augmentationo
4.3.2 Pre-Trained CNN Architectures

5 NCHLT Results
5.1 Comparing the Different Training Methods
5.2 Inspecting the Generated Embeddings
5.3 Discussionon Results

il

6 Performance On the Lwazi Dataset

7 Conclusion

7.1 Recommendations for Future Research

A Project Code

B NCHLT and Lwazi Spoken Words

B.1 NCHLT vs NCHLT
B.2 NCHLT vs Lwazl s

C More Model Results

C.1 NCHLT Results o s
C.1.1 Training Graphs
C.1.2 Embeddings Projected Using UMAP

C.2 Lwazidomain

D Even More Use Cases
D.1 Spoken Digits Classification

Bibliography

v

D.2 GTZAN - Music Genre Classification

49

53
o4

56

57
o7
29

62
62
63
69
79

80
30
82

85

List of Figures

3.1

3.2
3.3

3.4
3.5
3.6

4.1

4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9

4.10

0.1

5.2

Box plots for the duration of recordings after filtering out examples
based on the language of text prompts shown and PDP score. 13
Boxplots for the duration (seconds) of recordings for the final dataset 15
Long term average spectrum of all eleven languages showing the av-

erage power for all frequencies. 16
Distribution of the duration of all recordings. 17
Distribution of the estimated time taken to utter one word. 18
Example of a spectrogram created from an audio snippet 19

An example of a three channel matrix of shape being convolved with

a kernel of shape 3 x 3 x3. 24
An example of ReLLU being applied to a feature map. 25
An example of max pooling, with a window of size 2 x 2 being applied

toamatrix. 26
Architecture of Lenet-5 model developed in 1998. 28
Example of a filter bank within the Inception-V1 architecture. 30
Example of two different residual blocks used in the ResNet architecture. 31
Example of how a Densenet architecture will look. 32
Triplet Entropy Loss high level overview 34

Visual explanation of different triplet negative pairs that can be mined
for during the training process. For this research semi-hard negatives

Example of augmentation applied to spectrograms. In the top spec-
trogram no augmentation is applied, where in the middle one can see
a horizontal augmentation and then lastly in the bottom a mixture
of augmentations are applied.o 37

Training graph showing the Triplet loss for the DenseNet121 model

trained using different methods.o L. 41
Projection of the embeddings generated by the Densenet121 model
on the different NCHLT datasets. 44

5.3 Confusion matrix generated by combining the validation and test set
predictions for the pre-trained Densenet-121 model fine tuned using
the TEL method.

5.4 Confusion matrix generated by combining the validation and test set
predictions for the Resnet50 model trained using the TEL method.

5.5 Projection of the embeddings generated by the Resnet50 model on
the different NCHLT datasets.

6.1 Confusion matrices for the Densenet-121 models trained using the
TEL method (top) and CEL (bottom).
6.2 Projection of the embeddings generated by the Densenet model on the
training NCHLT data (top) as well as the predicted Lwazi embeddings
(bottom).
6.3 Word clouds for both the NCHLT Zulu speech (left) and the Lwazi
Zulu speech (right).o Lo oo
6.4 Word clouds for both the NCHLT Afrikaans speech (left) and the
Lwazi Afrikaans speech (right).

B.1 Comparison between the spoken words of the NCHLT training and
validation Afrikaans subsets.
B.2 Comparison between the spoken words of the NCHLT training and
validation English subsets.
B.3 Comparison between the spoken words of the NCHLT training and
validation Sepedi subsets.
B.4 Comparison between the spoken words of the NCHLT training and
validation Setswana subsets.
B.5 Comparison between the spoken words of the NCHLT training and
validation Xhosa subsets. L.
B.6 Comparison between the spoken words of the NCHLT training and
validation Zulu subsets. oL
B.7 Comparison between the spoken words of the NCHLT and Lwazi
Afrikaans subsets.
B.8 Comparison between the spoken words of the NCHLT and Lwazi En-
glish subsets.
B.9 Comparison between the spoken words of the NCHLT and Lwazi Se-
pedi subsets.
B.10 Comparison between the spoken words of the NCHLT and Lwazi
Setswana subsets.
B.11 Comparison between the spoken words of the NCHLT and Lwazi
Xhosa subsets.

vi

20

B.12 Comparison between the spoken words of the NCHLT and Lwazi Zulu
subsets. 61

C.1 Training graph showing the Triplet loss for the CRNN model trained

using different methods. 63
C.2 Training graph showing the Triplet loss for the Densenet121 model
trained using different methods.o 000 64
C.3 Training graph showing the Triplet loss for the pre-trained Densenet121
model trained using different methods. 64
C.4 Training graph showing the Triplet loss for the Resnet50 model trained
using different methods.o oL 65
C.5 Training graph showing the Triplet loss for the pre-trained Resnet50
model trained using different methods. 65
C.6 Training graph showing the accuracy for the CRNN model trained
using different methods. 66
C.7 Training graph showing the accuracy for the Densenet121 model trained
using different methods.o 67
C.8 Training graph showing the accuracy for the pre-trained Densenet121
model trained using different methods. 67
C.9 Training graph showing the accuracy for the Resnet50 model trained
using different methods. 68
C.10 Training graph showing the accuracy for the pre-trained Resnet50
model trained using different methods. 68
C.11 Embeddings generated by the baseline CRNN model on the NCHLT
dataset. 69

C.12 Embeddings generated by the CRNN model on the NCHLT dataset. . 70
C.13 Embeddings generated by the baseline Densenet121 model on the

NCHLT dataset. 71
C.14 Embeddings generated by the Densenet121 model on the NCHLT

dataset. 72
C.15 Embeddings generated by the baseline pre-trained Densenet121 model

on the NCHLT dataset. 73
C.16 Embeddings generated by the pre-trained Densenet121 model on the

NCHLT dataset. 74
C.17 Embeddings generated by the baseline Resnet50 model on the NCHLT

dataset. 75

C.18 Embeddings generated by the Resnet50 model on the NCHLT dataset. 76
C.19 Embeddings generated by the baseline pre-trained Resnet50 model on

the NCHLT dataset. 7
C.20 Embeddings generated by the pre-trained Resnet50 model on the
NCHLT dataset. 78

vii

C.21 Projection of the embeddings generated by the Resnet50 model on

D.1

D.2

D.3
D4

D.5

the NCHLT and Lwazi datasets. 79
Training graph of pre-trained Densenet-121 model on the FSDD dataset

in terms of accuracy. Lo L 81
Training graph of pre-trained Densenet-121 model on the FSDD dataset

in terms of Triplet loss. 81
Projection of the embeddings generated on the FSDD dataset. 82
Training graph of pre-trained Densenet-121 model on the GTZAN
dataset in terms of accuracy. 83
Training graph of pre-trained Densenet-121 model on the GTZAN
dataset in terms of Triplet loss. 83

viil

List of Tables

2.1

2.2

3.1
3.2
3.3

3.4
3.5
3.6

0.1

5.2

2.3

6.1

CNN architecture used by [Bartz et al., 2017, pp. 5] to predict the
spoken language based on a spectrogram image of the input audio
signal.
Results obtained for both the CRNN model (using the architecture in
Table 2.1) and the Inception-V3 CRNN model. The values show the
accuracy (%) and F1-Score for the original dataset as well as three
other datasets where noise is applied.

Summary of NCHLT data before filtering unusable data.
Summary of NCHLT data after filtering out unclean data
Languages to be used to train LID models. SB refers to Southern

Summary of train, validation and test datasets.
Summary of the Lwazi Speech Corpus
Summary of the Lwazi Speech Corpus used to test the model trained

on the NCHLT speech corpus.

Summary of the experiment results regarding the models trained using
only Cross Entropy Loss (CEL) and Triplet Entropy Loss (TEL). The
results in the table show the accuracy (%) of the models on unseen
NCHLT speaker data.
Summary of the experiment results with regards to the models trained
using only Triplet loss and Triplet Entropy Loss (TEL). The results
in the table show the loss value for the models on unseen NCHLT
speaker data.o
Accuracy (%) performance of the various models based on the gender
of thespeaker.

Accuracy (%) performance of the Resnet50 and Densenet121 models
on the Lwazi dataset.

1X

Nomenclature

ASR Automatic Speech Recognition, page 1

AUC Area Under the Curve, page 7

AWS Amazon Web Service, page 39

CEL Cross Entropy Loss, page 6

CNN Convolutional Neural Network, page 2

CRNN Convolutional Recurrent Neural Network, page 4
DFT Discrete Fourier Transform, page 14

FSDD Free Spoken Digit Dataset, page 80

GRS GlobalPhone Read Speech, page 8

HMM Hidden Markov Model, page 3

LID Language Identification, page 1

LSTM Long-Short-Term Memory Network, page 4

PDP phone-based dynamic programming, page 11
PRLM Phoneme Recognition followed by Language Modelling, page 4
RBS Radio Broadcast Speech, page 8

ReLLU Rectified Linear Unit, page 5

RNN Recurrent Neural Network, page 4

SGD Stochastic Gradient Descent, page 27

SVM Support Vector Machine, page 3

TEL Triplet Entropy Loss, page 2

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction,
page 43

X1

Chapter 1

Introduction

1.1 Background

Speech recognition tools have grown to form an integral part of many lives. For
example, if you are reading this thesis on an electronic device, the chances of it
containing one or other speech recognition tool are high, with Siri and Alexa being
widely known examples.

To build a speech tool, one must first have a back-end that can perform Automatic
Speech Recognition (ASR), which is a process to determine automatically what a
user said purely based on the input speech signal. One of the first steps in an
ASR system is to identify the spoken language using language identification (LID)
systems, as the ASR systems in most cases are optimised for one language only.
When the spoken language is one of the more common languages in the world, then
there are already a vast majority of resources and tools that could implement this
identification step.

But it is becoming more apparent that some of these tools do not generalise well to
new domains [Abdullah et al., 2020]. There also are cases where the performance
degrades when new speakers are introduced [Montavon, 2009]. This leads on to ask
if other LID systems are also only usable for data that comes from the same domain?
This can be acceptable in certain conditions, but for most applications the input
data will come from unique domains and it is not feasible to train a model for each
domain.

1.2 Goal of This Research

The aim of this thesis is to investigate methods that can improve the generalisation
of LID systems to new domains, specifically in the case of short speech recordings
(three seconds or less). The techniques will be tested on South African languages in
order to test the performance on low resource languages and to test if the techniques
work on languages that share the same characteristics, such as Zulu and Xhosa. The
new LID techniques could then improve the ASR systems in South Africa. The new
LID system could also be used as a stand-alone product. For example, if one can
detect the language of a customer calling a call centre, one can then assign an agent
that can speak in the customer’s mother tongue.

The research will focus heavily on a novel training method being introduced, namely
the Triplet Entropy Loss (TEL). It is inspired by the combination of research from
[Bartz et al., 2017] and [Schroff et al., 2015]. [Bartz et al., 2017] converted the raw
input speech recordings to a spectrogram which is fed into a Convolutional Neural
Network (CNN) and [Schroff et al., 2015] introduced the Triplet loss function. The
TEL training method then consists of training CNNs by optimising a loss function
that combines the strength of Cross Entropy Loss (CEL) and Triplet loss.

The TEL method aims to improve upon the work done by [Abdullah et al., 2020]
in terms of domain generalisation. Their approach involves applying domain adap-
tion through adversarial training, which resulted in better generalisation for Slavic
languages. For their technique one still requires data from the different domain dur-
ing the training phase while TEL only requires one domain for training. The work
done by [Abdullah et al., 2020] is explained further in Section 2.4 with TEL further
discussed in Section 4.2. The other techniques that will be investigated are spectral
augmentations and using CNN architectures that are pre-trained on the Imagenet
dataset [Deng et al., 2009]. The training domain will be the NCHLT speech corpus
and the unseen domain will be the Lwazi speech corpus. Both these domains are
discussed in Chapter 3.

1.3 Outline of Thesis

The thesis comprises seven chapters, including the Introduction. The thesis will
walk the reader through the history of LID systems, Chapter 2, before explaining
the data that will be used during the research in Chapter 3. After this the methods
to be investigated will be discussed in Chapter 4 and then the experiment results
will be discussed in Chapter 5 and Chapter 6. Chapter 7 will then provide the
conclusions made during the research and any future work that is required.

Chapter 2

Literature Review

2.1 LID and South African Languages

The first attempt of creating a system to predict the spoken language for all eleven
official South African languages was by [Davel et al., 2012], where they implemented
a Parallel Phoneme Recognition followed by Language Modeling (PPR-LM) archi-
tecture. A phoneme is a unit of sound that can change the meaning of a word, with
these sounds being unique to every language. For example, in the English language
the words hat, cat and rat are all pronounced differently by just one sound, but
this sound changes the meaning of the words completely. In the English language
there are 44 such phonemes, with Afrikaans and Zulu having 37 and 45, respectively
[Henselmans et al., 2013].

For the PPR-LM system, the researchers built a phoneme extractor for all eleven
languages using Hidden Markov Models (HMM) [Rabiner and Juang, 1986]. This
is known as the front-end of the system. For every audio input signal, they sent
the signal through the front-end to extract the phonemes whereafter the biphone
frequencies are extracted from the identified phoneme strings. They then concate-
nate these frequencies into a single vector where it is then fed into a Support Vector
Machine (SVM) [Kecman, 2005], known as the back-end, to predict what the spoken
language is [Davel et al., 2012].

They trained this system on the Lwazi speech corpus and produced fairly good
results. With audio inputs ranging from 3 to 10 seconds they achieved an accu-
racy of 71.72% (with the worst performing languages being Zulu and Sesotho).
This drastically increased when they tried to predict the family language of the
audio input (Afrikaans, English, Nguni, Sotho-Tswana, Tswa-Ronga or Venda)
[Davel et al., 2012].

[Henselmans et al., 2013] attempted to predict the eleven languages using four meth-
ods, namely Phoneme Recognition followed by Language Modelling (PRLM), par-
allel PRLM (same as the above) and two analogous approaches based on word-level
recognition. The best system was parallel word recognition followed by a language
modeling approach with trigram language models. This system achieved a language
ID error rate (ELID) of 0.418. According to the researchers: “ELID is the average
language identification error rate compensated for evaluation priors”. The technique
performed the best in Germanic languages and was also built using the Lwazi speech
corpus.

[De Wet et al., 2017] tried to solve the problem for the shortage of Afrikaans speech
data by investigating if Flemish speech data can be added to the current Afrikaans
data and the results simply showed that this did not have any true benefits. The re-
searchers [Mbogho and Katz, 2010] investigated what the effect of South African ac-
cents are on English speech recognition systems and they found that models trained
with accented English performed better, which indicates that there is merit in com-
mitting resources to further research accented training. Both [De Wet et al., 2017]

and [Mbogho and Katz, 2010] used HMM models to conduct their research.

2.2 LID with Deep Neural Networks

From the research summarised previously, it is apparent that most of them required
complex systems combined with a firm knowledge of language fundamentals. In 2017
[Bartz et al., 2017] identified a way to use a hybrid model built out of a CNN and a
Recurrent Neural Network (RNN) [Lipton et al., 2015] which in this case is a Long-
Short-Term Memory Network (LSTM) [Malhotra et al., 2015]. This hybrid model is
known as Convolutional Recurrent Neural Network (CRNN) [Zuo et al., 2015]. For
an in depth review on CNN architectures used in the literature and in this research,
please refer to Section 4.1 or [Goodfellow et al., 2016].

What separated their work from previous work was that they built a CNN (based
on the Inception-v3 architecture found in [Szegedy et al., 2016]) which received the
image of a raw audio signal converted to a spectrogram as the input. The researchers
then fed the extracted features of the CNN into an LSTM to generate the predictions.
Thus the predictions are based purely on the deep learning models automatically
extracting information from the spectrogram. This means that the only processing
that has to be done on the input speech signal is simply to convert it to a spectrogram
of a certain length. With the use of spectrograms, the extra requirement for language
fundamentals are eliminated. They gathered and used data from Youtube and the
European Union speech dataset for English, Russian, Dutch, French, Spanish and
Mandarin resulting in close to 1508 hours of data [Bartz et al., 2017].

Table 2.1: CNN architecture used by [Bartz et al., 2017, pp. 5] to predict the
spoken language based on a spectrogram image of the input audio signal.

Layer Kernel Size Number of filters

1 <7 16
2 dXH 32
3 3x3 64
4 3x3 128
) 3x3 256

The architecture used in [Bartz et al., 2017] consists of five convolutional layers,
with each layer having a Rectified Linear Unit (ReLU) activation function followed
by Batch Normalization and a 2x2 max pooling layer (with a stride of 2). The kernel
sizes and number of filters for each layer are shown in Table 2.1. As can be seen
there are 5 layers where the kernel size decreases in size for the first two layers but
stays constant at a size of 3x3 for the last three layers. The number of filters also
increases two fold for each layer starting at 16 for layer 1 and ending at 256 for layer
5. After the convolutional layers, the architecture comprises of two LSTMs with
256 output units each. The output of both LSTMs are then concatenated into one
vector of 512 dimensions and fed into a fully connected layer with 6 output neurons
to classify the audio [Bartz et al., 2017].

Table 2.2: Results obtained for both the CRNN model (using the architecture in
Table 2.1) and the Inception-V3 CRNN model. The values show the accuracy (%)
and F1-Score for the original dataset as well as three other datasets where noise is

applied.
Dataset CRNN Inception-V3 CRNN
Accuracy F1 Score Accuracy F1 Score
No noise 91 0.91 96 0.96
White Noise added 63 0.63 91 0.91
Crackling Noise added 82 0.83 93 0.93
Background Music added 70 0.70 89 0.89

Ref: [Bartz et al., 2017, pp. §]

To keep the audio length consistent for training and prediction, all the audio data
is converted into 10 second recordings and then converted to spectrograms. The
spectrograms were discretized using a Hann Window [Blackman and Tukey, 1958],
using only frequencies up to 5k H z as most English language phonemes do not exceed
3kH z [Bartz et al., 2017]. Using the architecture described earlier and the 10 second

spectrograms, they achieved very promising results which are summed up in table
Table 2.2. As can be seen from the table, even by adding noise to the input data
they still achieved an accuracy of 82% (when the noise is crackling noise). One will
also see that when the Inception-v3 CNN architecture is used, the results stay very
constant over all the noise scenarios. However, using the Inception-v3 CNN requires
six times more parameters to be trained. The authors did not mention what the
performance was for out-of-domain data.

The researchers [Revay and Teschke, 2019] were inspired by [Bartz et al., 2017] and
set out to improve the results. They achieved similar results, but by only using 4 sec-
onds of audio data on a pre-trained ResNet [He et al., 2016] architecture. The data
obtained for their research came from the VoxForge speech dataset. The languages
used in the research were English, Spanish, French, German, Russian and Italian.
The method resulted in accuracies above 90% for all languages except Russian and
Spanish as the model seems to confuse the two with one another. The research team
believe this is due to Russian being the only Slavic language trained on and that
the model created a threshold to separate Russian and all other languages and that
Spanish happens to be near the threshold.

In 2019, another group of researchers, [Sarthak et al., 2019] also investigated the
performance between a one-dimensional (1D) and two-dimensional (2D) CNN archi-
tecture. The 2D designs consisted of a model containing an RNN structure with the
other design only containing convolutional layers with feed forward layers.. The 1D
model received as input the raw waveforms with the 2D model being fed spectro-
grams. For all the models developed, the researchers would follow the same design
principle, namely that a pooling and batch normalisation layer will follow all con-
volutional layers and that they will use the ReLu activation function throughout
the model. The two-dimensional CNN also implemented residual connections which
were popularized by the ResNet architecture. The data used consisted of the Vox-
Forge dataset. When comparing the results, the 2D CNN without an RNN structure
performed the best with an accuracy of 95.4%. The next best model was then the
2D CNN with an RNN structure at 95.0% and lastly the 1D CNN with an accuracy
of 93.7%, [Sarthak et al., 2019]. Again, the authors did not mention out-of-domain
performance.

2.3 Applying Triplet Loss

The work in the previous section consisted of end to end deep learning systems where
the model parameters are trained using Cross Entropy Loss (CEL) as the loss func-
tion. The researchers in [Margolis et al., 2018], [Bredin, 2017] and [Mingote et al., 2019]
looked at using Triplet loss instead of CEL on various speech tasks such as LID and

user identification. Triplet loss is a loss function that optimises the embeddings
generated by the network such that samples from the same class are close to each
other in the embedding space while also being far away from other classes.

The loss works by choosing an anchor example (z¢) and an example from the same

class as the anchor (z;") and one from a different class (z;). The loss to be optimised
is found in Equation (2.1), [Schroff et al., 2015] , where f () is the embedding function
and « is a hyperparemeter for the loss function. The higher « is, the greater the

separation between classes. When || f(z¢) — f(a:f)”i < || f(=2) - _)H; + «, the
loss is zero.
N) 2
L= [I#ad) = sl - £ = s+ 2.)
i=1

[Mingote et al., 2019] specifically looked at implementing an LID system based on
triplet networks. Their method alters Equation (2.1) to optimise the Area Under the
Curve (AUC). The researchers believe this is a more appropriate and intuitive metric
than traditional metrics, since this metric is a measure of the system performance.
The researchers have also previously implemented this same technique for text-
dependent speaker verification systems [Mingote et al., 2020].

The expression ©* the researchers implement is shown in Equation (2.2), where o(s)
is the sigmoid function, sg (p) is the similarity metric of each pair of anchor-positive
embeddings where p; (€) with 2 € {1,...,m%} and m™ is the total number
of positive examples, sg (pj_) indicates the metric of each pair of anchor-negative
embeddings where p; = (e, ej_) with 2 € {1,...,m~} and m~ is the total number
of negative examples, and « is an adjustable parameter, [Mingote et al., 2019].

o —argmaxm — ZZ (se (pi") — se (pj_))) (2.2)

By implementing this loss the researchers managed to outperform traditional meth-
ods, such as Weighted Gaussian Back-end and SVM’s, in the context of a closed-set
evaluation of the LRE 2009 dataset (more details about this dataset can be found
in [Martin and Greenberg, 2010]), [Mingote et al., 2019].

2.4 Generalisation of LID Systems

A recent study from [Abdullah et al., 2020] has found that end to end deep learning
LID systems perform severely worse when tested on out-of-domain samples. The

researchers define out-of-domain samples as data coming from datasets the model
was not trained on. This research will from now on use the same definition for
out-of-domain data.

The researchers found that spectral features generalise better to new domains than
cepstral features, showing that networks using spectrogams as input will generalise
better. To improve the generalisation from domain to domain, the researchers aimed
to force the model to learn features that are domain invariant. They do this by using
a technique called domain adaption through backpropagation that was introduced
by [Ganin and Lempitsky, 2014] and also mentioned in [Meng et al., 2017].

The technique entails creating two fully connected network blocks, where each block
has its own task, that are connected to the output of a feature extraction block. The
block B, aims to predict the language of a sample while the block B, tries to predict
from which domain a sample is sampled. Both these blocks get fed by By, which is
the feature extractor. Each training sample in the source domain gets augmented
with a label d = 0 and the samples from the other domain receive a label d = 1.
The parameters 6,;, which are the parameters of the block predicting the domain,
are then optimised to only minimise the loss of the domain classifier and likewise 6,
is optimised to predict the language label.

To ensure that the parameters of the feature extractor block become uninformative
of the domain, the researchers seek to optimise 6 such that the loss of the domain
classifier gets maximised. This is known as adversarial training, where there is a
competition between blocks in the network to optimise different losses. The loss
function for this method can be found in Equation (2.3) where Dg is the source
domain, Dy is the target domain and A is a parameter that controls the contribution
of the domain classifier’s loss [Abdullah et al., 2020].

J(07,6,,0q) = Z(Xi,yi)eDS L, (By (Bf (Xi;0r);60y), i)

2.3
—A Y X desupy) La (Ba (By (Xi;65) ;64) , d;) (2:3)

The researchers ran tests with the Slavic portion of the GlobalPhone Read Speech
(GRS) dataset as the source domain and the Radio Broadcast Speech (RBS) dataset
as the other domain. The RBS dataset is a large collection of Slavic radio broadcasts.
The researchers also used CNNs as base models. When not applying the domain
adaption technique described above, the models performed very well in domain but
performed poorly for out-of-domain samples, but after applying the cross domain
adaption technique, the researchers could achieve improvements of up to 77.7%.

This thesis will attempt to test the possibility of generalising LID systems to new
domains, without the need to have data from the other domain, as is required in

the work above. This is because there will be situations where one can not predict
the domain from where new samples will come from. This thesis should also be a
timely reminder that machine learning systems should be tested rigorously before
deploying or publishing them. False claims of performance could lead to dangerous
situations as the model could be placed in production affecting people because it
was reported that it could work.

The next chapter will explore more of the NCHLT speech corpus, which will serve
as the training domain, as well as the Lwazi speech corpus which will serve as the
test domain.

Chapter 3

Language Domains

To create effective speech technology, it is important to have a dataset containing
various examples to learn from. From a South African context, there were very few
resources to get such data. Luckily, between 2006 and 2009, the Lwazi project ran
to demonstrate the use of speech technology in South Africa. One output of this
project was the Lwazi ASR corpus, which consisted of annotated speech data for all
eleven languages. The data consisted approximately of 200 speakers with five to ten
hours of data for each of the eleven languages, [Van Heerden et al., 2009).

It was realized after the release of the Lwazi Corpus that larger datasets are required
for efficient tools to be developed. The Lwazi Corpus is also a telephone-based
corpus, which means the audio is a recording over a telephone call. The South Africa
Department of Arts and Culture recommended that higher quality recordings are
required. These two requirements led to the development of the NCHLT (National
Centre for Human Language Technology) speech corpus, which consists of nearly 50
hours of clean data for all the languages. Also, the dictionary of words is extended
from 5 000 words to 15 000 [Barnard et al., 2014].

In order to test how the methods perform on out-of-domain data, the NCHLT and
Lwazi corpora will be viewed as two different domains as they align with the defi-
nition of [Abdullah et al., 2020] for out-of-domain data, namely that out-of-domain
data is data from a completely different dataset. The first section in this chapter
will discuss the training domain, the NCHLT corpus, as well as how the audio will
be converted to spectrograms in order to be used by the CNN models. After this
the Lwazi corpus will be discussed.

10

3.1 NCHLT Speech Corpus

For this project, the first release and a subset of the auxiliary speech corpus is used.
The reason for including the auxiliary recordings is to introduce noise and robustness
to the system. It is assumed that if the model sees good examples mixed with bad
examples that it will be able to generalise better to new domains, specifically where
a lot of background noise is present or where the speakers are not speaking clearly.

The data can be obtained from the Sadilar website. The next sections summarise
the data and explains how the data is cleaned, filtered and configured to be used by
the methods explained in Chapter 4.

3.1.1 Data Cleaning

All of the languages in the Speech corpus contain an XML file describing the meta-
data related to each recording. The metadata consists of information on the age,
gender, location, duration and the phone-based dynamic programming (PDP) score
for each recording. PDP refers to a confidence scoring technique named phone-based
dynamic programming. PDP matches a phone string from the prompt against a
phone string extracted from the audio using dynamic programming. The scores are
between -1 and 1. A +1 score is an indication that the sample is very likely to be a
correct pronunciation of the target prompt and a score -1 indicates it is very unlikely.
A score of +1 though does not necessarily mean it is a perfect match. Further detail
can be found in [Davel et al., 2012].

Table 3.1: Summary of NCHLT data before filtering unusable data.

Language Unique speakers Gender split [M:F] Duration [H]

Afrikaans 210 103:107 97
English 210 110:100 84
Ndebele 148 70:78 94

Sepedi 210 110:100 119
Sesotho 210 97:113 128
Siswati 197 101:96 132

Setswana 210 101:109 124
Tsonga 198 103:95 137

Tshivenda 208 125:83 147

Xhosa 209 103:106 157
Zulu 210 112:98 150

In Table 3.1 one can see a summary of each language’s metadata before any filtering

11

or cleaning takes place. As can be seen the Germanic languages (Afrikaans and
English) as well as Ndbele have significantly fewer hours than the other languages.
Also, the gender distribution is evenly spread in all languages with the biggest
difference found in Sesotho and Zulu. Ndbele though has substantially less speakers
than the other languages.

Because of the researchers deciding to prompt non-English speakers with roughly
20% of English prompts, some of the recordings for the speakers are not in the
language which is expected. Also, due to the methods used to gather text examples
during the NCHLT project, some text gathered was not linked to the language
it was gathered for. Some shortcomings of the methods for example are that the
community generated the text and thus there was very little control. Even the text
gathered from Wikipedia for English could contain other languages as Wikipedia
articles do not always contain only one language. For example, in one instance a
Setswana speaker was prompted to say “air traffic control” and on another occasion
an English speaker received the prompt “Dien Bien Phu”. The last example is a
very good example of how an FEnglish participant does not specifically receive an
incorrect prompt as Dien Bien Phu is a city in Vietnam which could pop up in
normal conversation, but for the sake of this project pure language examples are
required.

To find these sorts of recordings, each recordings’ text (found in the XML meta-
data files) was inspected with a language detection algorithm created by Google,
[Shuyo, 2010]. The algorithm simply returns the predicted language of the given
text. Even though the algorithm has support for over 50 languages, the only lan-
guages supported from South Africa are Afrikaans, English and Sesotho. In order
then to still use the algorithm to find discrepancies, it was decided to only flag
recordings that are predicted to be English if the speakers language was not En-
glish.

It is assumed that the algorithm will incorrectly predict certain examples, but the
decision was made that losing examples outweighs the risk of training the model
on incorrect data. To reduce the risk of false negative predictions made by the
algorithm, the predicted language will have to have a confidence of over 90% to
be accepted. This value is assumed to be high enough to filter out any unwanted
predictions. After applying this logic it was found that 65,094 recordings (64 hours)
of the total 1,251,009 (1369 hours) recording<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>