
Insurance recommendation engine
using a combined collaborative

filtering and neural network
approach

Prinavan Pillay (PLLPRI017)

Masters Dissertation

Department of Statistical Sciences

University of Cape Town

Supervisors:

Dr. Sebnem Er.

Mr. Allan Clark

Abstract

A recommendation engine for insurance modelling was designed, implemented and
tested using a neural network and collaborative filtering approach. The recommenda-
tion engine aims to suggests suitable insurance products for new or existing customers,
based on their features or selection history. The collaborative filtering approach used
matrix factorization on an existing user base to provide recommendation scores for
new products to existing users. The content based method used a neural network ar-
chitecture which utilized user features to provide a product recommendation for new
users. Both methods were deployed using the Tensorflow machine learning frame-
work. The hybrid approach helps solve for cold start problems where users have no
interaction history. The accuracy on the collaborative filtering produced 0.13 root
mean square error based on implicit feedback rating of 0-1, and an overall Top-3
classification accuracy (ability to predict one of the top 3 choices of a customer) of
83.8%. The neural network system achieved an accuracy of 77.2% on Top-3 clas-
sification. The system thus achieved good training performance and given further
modifications, could be used in a production environment.

Contents

1 Introduction 8

2 Literature Review 10

2.1 Applications of Recommendation Engines 10

2.1.1 Movie Recommendations . 10

2.1.2 Mobile Application Downloads 11

2.1.3 Online video streaming and e-commerce 11

2.2 Other Case Studies . 12

2.3 Benefits of Research . 13

3 Proposed Methodology 14

3.1 Collaborative Filtering . 14

3.1.1 User and item based collaborative filtering 15

3.1.2 Matrix factorization . 16

3.1.3 Weighted Alternating Least Squares Algorithm 20

3.1.4 Other collaborative filtering techniques 24

3.2 Neural Networks . 24

3.3 Combined Approach . 30

4 Data Exploration 31

4.1 Data Schema and Entity Relationship Diagram 31

4.2 Preprocessing and Analysis . 32

4.2.1 Feature Analysis . 34

1

4.2.2 Cluster Analysis . 36

4.2.3 Categorical Transformations 40

4.2.4 Continuous Distributions . 40

4.2.5 Correlation Test . 41

4.2.6 User Item Matrix Generation 42

5 Model Implementation 44

5.1 Collaborative Filtering Model . 44

5.1.1 Input data into the model . 45

5.1.2 Model Parameters for WALS Library 45

5.1.3 Model Output . 45

5.1.4 Hyperparameter Tuning . 47

5.2 Neural Network Architecture . 48

5.2.1 Content based models . 48

5.2.2 Build the feature columns for the model 49

5.2.3 Developing the Input Function 50

5.2.4 Model Activation and Architecture 50

5.2.5 Model Output . 51

5.2.6 Hyperparameter Tuning . 52

5.2.7 Other Model Evaluation Metrics 53

6 Discussion and Analysis 55

6.1 Model Performance . 55

6.2 Discussion of Results . 56

6.3 Combined System Analysis . 57

6.4 Future Recommendations . 58

7 Conclusion 60

A Further Data Exploration 62

A.1 Correlation Tests . 62

A.2 Visualizations . 64

B Tensorflow Algorithms 67

2

B.1 Generate input rows and Columns for WALS algorithm 67

B.2 Key remapping algorithm . 69

B.3 Weighted Alternating Least Squares Algorithm 70

C Insurance Products 71

D Hyperparameter Tuning 72

E Linear Model Implementation 74

F Source Code 75

3

List of Figures

3.1 Typical Feed-Forward Neural Network 25

3.2 Simple neural network example . 26

4.1 Entity Relationship Diagram of current database structure 31

4.2 All products in data showing number of corresponding members . . . 33

4.3 Scatter Plot showing Average Age and Average Premium for various
products . 35

4.4 Bar graph showing the variation in premium amounts by gender and
smoking habits. This indicates generally higher premiums for males
and for smokers. 36

4.5 Bar graph showing average premium amounts and policy time for dif-
ferent occupation groups . 36

4.6 Average silhouette widths for different cluster sizes after PAM cluster-
ing is performed . 38

4.7 Lower dimensional visualization of clustering 39

4.8 Continuous variable distributions . 41

4.9 Log transform of monthly premiums to address skewed data issues. . 42

4.10 Generation of User Item Matrix. Unpurchased items indicated with n/a 43

5.1 Hyperparameter tuning for neural network recommendation engine.
Selection of optimal parameters are shown on the left, as well as accu-
racy for each configuration tested on the right. 48

5.2 Softmax function for converting logits to probabilities 51

5.3 Hyperparameter tuning for neural network recommendation engine.
Selection of optimal parameters are shown on the left, as well as accu-
racy for each configuration tested on the right 53

4

A.1 Box Plot Showing the distribution of policy time for various Occupa-
tion Groupings . 64

A.2 Bar graph Showing the number of products per Occupation Group . . 65

A.3 Scatter plot showing the variation of clustering of occupation groups
according to premium amount and age 65

A.4 Bar graph showing the average member time per product 66

B.1 TFRecord structure for mapping the rows of the user-item matrix into
the appropriate storage structures in Tensorflow 68

B.2 Process for generating sparse tensors to provide to WALS 68

B.3 Weighted Alternating Least Squares algorithm 70

D.1 True objective function mapped to observed points 72

D.2 Possible curves shown as a Gaussian process between known points . 73

D.3 Refined predicted function after sampling with acquisition function in
regions of high uncertainty and known maxima/minima. The values
which yield expected improvement are selected as likely points on the
predicted curve . 73

5

List of Tables

3.1 User item matrix for insurance customers 16

3.2 User item matrix for insurance customers with explicit ratings 17

3.3 Latent Features for customers . 17

3.4 Latent Features scores for products 17

3.5 User item matrix for insurance customers with explicit ratings 18

3.6 User item matrix for insurance customers with explicit ratings 21

3.7 Different configurations of weights for simple neural network 28

3.8 Different configurations of weights for simple neural network 29

4.1 Details of insurance variables used for recommendation engine 32

4.2 Feature Highlights after PAM Clustering 39

5.1 Key input fields for the WALS library 46

5.2 Hyperparameter Tuning . 47

5.3 Sample feature in raw form . 50

5.4 Variable Embedding . 50

5.5 Key input fields for neural network 52

5.6 Hyperparameter Tuning neural network 53

6.1 Model Accuracy . 55

6.2 Diversity measures for recommendation engines 56

6.3 Catalogue coverage . 56

6.4 Novelty Results . 56

6

A.1 Results of significance tests after Chi Square is applied 63

C.1 Full list of insurance products and definitions 71

7

1. Introduction

The insurance industry has seen a recent surge of development in the data sci-
ence space, particularly with regards to understanding consumer behaviour and the
propensity to purchase new products based on an individual’s particular profile and
their similarity to other customers (Lumb 2016). These approaches are being used to
accelerate digital marketing processes and techniques to advertise the most relevant
content to the correct target market. Research into new behavior modelling tech-
niques have thus emerged, which in particular tries to exploit the ability to up-sell
and cross-sell products in the insurer’s product catalogue. Product up-sell refers to
the ability to convince a customer to purchase a more premium or high-end version
of a product that they already own or intend to own, thus spending more money on
the same type of service or product offered. Cross-sell refers to the ability to convince
a customer to purchase similar items to previously purchased items, thereby increas-
ing their total portfolio of products (Low 2017). Traditionally, cross-sell and up-sell
have been sales and marketing tactics which relied on deep customer insight from
industry experts. However, given the emergence of scalable computing environments
to build machine learning models on massive consumer datasets, automated models
have begun to accurately predict up-sell and cross-sell opportunities in the insurance
space.

A particular machine learning application which has been widely implemented with
propensity modelling is called recommendation engines (Furnas 1995). Recommen-
dation engines have been implemented in a number of production e-commerce, video
streaming sites and other massive user-base applications to suggest and predict new
user content based on historic item selection. Traditionally, the techniques employed
in recommendation engines are usually supervised learning algorithms using neural
networks (ibid.), generalized linear models (Jhalani, Kant, and Dwivedi 2016), or
collaborative filtering (Rosa 2003) to predict the most relevant unseen content for
new and existing users. Unsupervised learning strategies can also be applied, with
recent focus on association rule mining, which aims to highlight interesting patterns
in purchasing data, and frequent combinations of items that are not directly obvious
(Wong and W. Yang 1997).

8

The proposed research aims to implement a recommendation engine on a local South
African insurance database, with the ability to identify the most relevant insurance
products for new and existing users. The data consists of a member database with
current insurance products, as well as qualitative member data (profession, age, gen-
der, etc.). The research will involve exploring a modelling technique which uses a
combination of collaborative filtering, and neural networks. Collaborative filtering
will be used for existing users to provide recommendations based on historic selec-
tion, and neural networks will be used for new users based on their features (age,
gender, occupation, etc.). These hybrid approaches have shown success in massive
online platforms including predicting app downloads for the Google Play Store, and
Youtube suggestions which involve hundreds of millions of active users (Cheng et al.
2016).

This dissertation firstly presents a literature survey in Chapter 2, which outlines suc-
cessfully implemented recommendation engines in industry. The proposed method-
ology and background theory of using collaborative filtering for existing users, and
neural networks for new users is then presented in Chapter 3. A data exploration
is then conducted in Chapter 4, which provides an overview of the source data set.
The model architecture is then presented in detail in Chapter 5, which discusses the
detailed implementation of the model. A critical analysis follows in Chapter 6, which
analyses the results of testing, and future recommendations to continue research on
the system are also proposed. Finally a conclusion and summary is presented in
Chapter 7, highlighting key findings of the research.

9

2. Literature Review

A variety of recommendation engines are implemented commercially on large scale
databases, each of which contain a number of advantages and pitfalls. The following
literature review discusses a number of different case studies of successful commer-
cial recommendation engines, as well as the underlying algorithms and mathematical
approaches used.

2.1 Applications of Recommendation Engines

The following case studies were particularly chosen based on the input data similarity
to the insurance dataset structure being tested. Specifically, this involves a set of user
features (gender, age, occupation, ethnicity, etc.) and the selection of a product or
item.

2.1.1 Movie Recommendations

The use of recommendations for movie viewers is widely researched and implemented
both academically and commercially. The first commercial case study involves the
Netflix Prize solution for a recommendation engine (Koren 2008). The technique used
collaborative filtering to predict user ratings for movies, given no information other
than historic ratings from other users and films. The algorithm was designed to cope
with high scalability with over 100, 480, 507 ratings that 480, 189 viewers provided
for 17, 770 movies (ibid.). Matrix factorization was the specific collaborative filtering
technique used in the approach. Matrix factorization involves using linear algebra
techniques to decompose the sparse user-item matrix into two complete matrices
(Chris 2009). When multiplied together, the lower dimensional matrices produce a
complete user-item matrix, with a recommendation score for every item and every
user. While collaborative filtering techniques have been widely publicized as one of
the most common recommendation engine approaches, the major drawback is the
requirement to retrain the entire model to provide suggestions to a new user. This
is referred to as a cold start problem, since new users have no selection history, and

10

collaborative filtering cannot use any of their features to suggest or predict ratings.
(Alan 2014).

2.1.2 Mobile Application Downloads

The next major commercial case study reviewed involves using a recommendation
engine for the Google Play Store, to provide recommendations for new application
downloads for Android users using wide and deep learning (Cheng et al. 2016). The
implementation resulted in a significant increase in app sales after operationalizing
the model (ibid.). Wide and deep learning is a new methodology built on a joint
training approach which utilizes the benefits of both generalized linear models, as
well as neural networks with a joint training (multi-task learning) approach. Joint
training refers to the ability of simultaneously optimizing an objective function with
multiple models, reinforcing the strengths of each model and mitigating the weak-
nesses. Generally, with joint training the results of each model’s training iteration is
backpropogated to the other model during the training process (Ruder 2017). The
fundamental advantage of wide and deep learning is to explore the benefits of both
memorization and generalization. Memorization relates to the ability to use linear
regression to exploit the correlation in datasets, to predict the common sets of occur-
rences based on historical training data (Cheng et al. 2016). Memorization thus learns
particular combinations of products or items that have been selected, and provides
recommendations to users based on their previous selections (Arpit et al. 2017), but
lacks diversity required to provide new interesting recommendations. Generalization
refers to the ability to recommend unique combinations to users that have not nec-
essarily occurred before (Cheng et al. 2016). These transitive properties are usually
exploited in non-linear models like neural networks (Krueger et al. 2017). This tends
to improve the diversity of recommendations served. However, the transitive prop-
erties can tend to recommend irrelevant items and over-generalize in certain cases
(ibid.). While potentially quite a powerful technique, this approach is new with few
successfully implemented case studies on a wide academic and commercial scale.

2.1.3 Online video streaming and e-commerce

The next case studies reviewed are the recommendation engines employed for e-
commerce site Amazon and Youtube video streaming. The underlying algorithms
and models used for both these cases are neural networks. Neural networks are usu-
ally used for content/model based recommendations, where the metadata surrounding
the user-item interactions are also incorporated into the model (Schmidhuber 2015).
In the context of Amazon and Youtube, the models utilized various features such as
profile data, product information and other characteristics. Neural networks also al-
low for unstructured data such as product catalogue images or user profile pictures to
be incorporated into the training data set. This technique has seen particular success
using convolutional neural network architectures (O’Shaughnessy 2009), due to the

11

ability to learn and process low level image features to make predictions with high
accuracy. Other models such as recurrent neural networks have been used where se-
quential input data significantly contributes towards the recommendations provided
(Zweig 2015), as in the case of online advertising campaigns on Youtube or Amazon
where a sequence of clicks on a website might lead to a product being sold. One of
the key advantages of this approach is the ability to perform non-linear transforma-
tions of interactions. This allows for complex interactions to be modelled in higher
dimensions, or as a combination of different variables, which can express a better
relationship with the recommended output. Conventional methods employ linear or
algebraic matrix modelling techniques which might fail to model complex interaction
patterns and combinations (Charu 2016). One of the major limitations of neural net-
work approaches is the requirement for significant amounts of data to provide high
quality recommendations (Cheng et al. 2016).

2.2 Other Case Studies

While the majority of recommendation engines use a variation of techniques discussed
above, there are other approaches which have shown success. One of the most no-
table includes the use of linear regression to recommend academic resources (research
papers, books etc.) to students (Thai-Nghe 2010). Firstly, similar to neural net-
works, generalized linear models use all features as inputs to predict a particular type
of output. This differs from collaborative filtering, which only considers the selec-
tion history and performs similarity measures to find groups of users based purely
on this selection history (Sweeney et al. 2016). Also, due to the simple scalability
of linear models, this makes them particularly useful for large scale recommendation
engines. Lastly, another advantage of generalized linear models is the interepretabil-
ity. This refers to the ability to directly understand the relationship between input
variables and output variables, which allows one to enhance model performance and
understand factors and relationships which contribute towards high quality recom-
mendations. This is often more difficult with other techniques like neural networks,
where there is higher order, non-linear transformations of the input data set across
multiple hidden layers. Another technique used for predicting purchasing propen-
sity, commonly used in the retail industry, involves using association rule mining in
market basket analytics (Wong and W. Yang 1997). Association rules primarily aim
to understand the frequency of items that are purchased together. However, since
these are primarily targeted towards understanding how items are sold together, and
usually do not involve mapping user interactions, these approaches usually do not
perform well within the context of user-driven recommendation engines.

12

2.3 Benefits of Research

As highlighted in the various studies shown above, recommendation engines offer a
very relevant application of traditional statistical and machine learning tools to solve
real-world customer matching problems. Performing further research in this field can
assist in identifying enhancements to the ways current collaborative filtering, neural
networks and other methods can be adapted to deal with massive data sets, thereby
providing more accurate results and better scalability. This is important since the
current surge in data volumes from various academic and industry sources require
the current approaches to be refined. Furthermore, as discussed above, different
recommendation engine approaches are suited for different input feature sets. Further
research can help highlight where ensemble approaches, or joint models need to be
implemented for recommendation engines to take advantage of the strengths of many
different models to suit a particular feature set.

13

3. Proposed Methodology

As discussed with the various production recommendation systems in Chapter 2, there
are a number of strengths and weaknesses of the various algorithms and approaches.
The two key algorithms which are widely implemented are collaborative filtering
and neural networks. Collaborative filtering is powerful in recommending content to
existing users which have a selection history, but are subject to “cold-start” problems
with new users that have no interaction history. Neural networks perform well when
taking user and item features into account (age, gender, occupation, etc.) but for users
with a wide selection history, this can over-specialize the recommendations where the
user is never served new products, but only ones that they already have. Another
typical problem experienced with a neural network based approach is keeping users
in a filter bubble, where a user’s specific profile (age, gender, location etc.) can limit
the variety of suggestions for users (Nguyen et al. 2014).

The proposed approach for an insurance dataset studied in this research will therefore
involve a combined strategy of using neural networks for new users to avoid cold start
problems, combined with collaborative filtering for existing users who already have
one or more products. This chapter involves exploring each of these algorithms in
more detail, before testing the performance of each technique in subsequent chapters.
The actual implementation and detailed applied architectures of these techniques are
discussed in Chapter 5.

3.1 Collaborative Filtering

Collaborative filtering mainly utilizes the selection history of users to generate a
sparse user-item (customer-product) matrix mapping existing customers to previ-
ously selected products (Charu 2016). This sparse matrix serves as the foundation
for collaborative filtering to provide relevant new suggestions of products or content
through three different methods, namely user-based collaborative filtering, item-based
collaborative filtering or matrix decomposition. The advantage of collaborative fil-
tering is to find similarity without knowledge of the embedding space (Sarwar et al.
2001). This means that hidden features of the products or the users (age, category,

14

preference) do not need to be explicitly stated, but these latent features can be discov-
ered through similarity measures between users or between products/items (Sarwar
et al. 2001). For example, in the context of insurance, certain products might be
more suited towards older users (retirement annuities) and some products might be
suited towards younger users (unit trusts for young professionals). In the absence
of an explicit age feature, collaborative filtering can be useful in discovering age as
a latent factor based on finding and grouping similar users who typically purchase
age-related products. In this way, collaborative filtering is known to be both a su-
pervised and unsupervised learning technique, where the discovery of latent features
usually follows an unsupervised process of clustering users, and the ability to perform
a prediction or recommendation for a specific product follows a supervised learning
process.

3.1.1 User and item based collaborative filtering

In the case of user-based collaborative filtering, new products are recommended to
users based on the choices of users most similar to the current user being recom-
mended. After a sparse user-item matrix is obtained for all users, a similarity func-
tion is applied to every user to find similar users, and new products are served to
users based on the most similar users choosing those products (Bracha 2015). For the
current insurance data set, a cosine similarity function can be used, with the following
formula:

Similarity(~a,~b) =
~a ·~b
||~a|| ||~b||

=

∑N
i=1 aibi√∑N

i=1 a
2
i

√∑N
i=1 b

2
i

(3.1)

As shown above, vector ~a and ~b represent the list of N ratings that 2 users have given
for a set of products or items. The cosine similarity is determined by dividing the dot
product of the two vectors, by the product of the vectors lengths. This determines the
similarity of the 2 users. Once determining the similarity, products that are chosen
by users are recommended for those users who are most similar to them that have
not yet purchased those products.

Example 1. The above similarity can be demonstrated with an example from the
insurance data set with 3 users and 3 products. In this case, the matrix displays
which products a user has purchased or not purchased as a binary representation (1
for purchased, 0 for not purchased). Consider the user-item matrix in Table 3.1.

15

Customer Unit Trust Retirement Annuity Life Insurance

1 0 1 1
2 1 0 0
3 0 1 0

Table 3.1: User item matrix for insurance customers

Using equation 3.1, the similarity between Customer 1 and Customer 3 can be calcu-
lated as follows:

Similarity(C1, C3) =
(0× 0) + (1× 1) + (1× 0)√
02 + 12 + 12 ×

√
02 + 12 + 02

= 0.707

Similarity ranges from 0 to 1, with 0 indicating highly dissimilar and 1 indicating
highly similar. This indicates that customer 1 & 3 are quite similar, and they might
have a preference for similar products. Both customers have purchased a Retirement
Annuity (RA) product, while customer 1 has also purchased Life Insurance. Based on
the similarity, this means we can now cross-sell Life Insurance to customer 3, based
on his/her similarity to customer 1. Using the same approach, it can be calculated
that the similarity between customer 1 & 2 is 0, and the similarity between customer
2 & 3 is also 0. This means that we would not be cross-selling any products between
these two customers.

Item-based collaborative filtering is very similar to user-based collaborative filtering,
but differs in that new recommendations are provided based on product similarity, as
opposed to user similarity. In the example demonstrated above, this would perform
the same calculation between products instead of users (between unit trust, RA and
Life Insurance policy). New products are thus recommended to existing users if they
are most similar to products the user has already purchased.

Typical similarity functions such as the cosine similarity shown above are efficient
for binary interactions (seen/unseen, purchased/not purchased, etc.), while Pearson
correlation can also be used for continuous variables (Buda 2010). In the case of larger
databases with many users, K-nearest neighbour techniques are used to recommend
frequent content only among the K-most similar users (Alan 2014), or other clustering
techniques are applied to determine similarity in higher dimensions.

3.1.2 Matrix factorization

Matrix factorization is a subset of collaborative filtering. The outcome of similarity
functions is to map the similarity of users and items along an N-dimension embedding
space. For example, if we are mapping insurance product similarity in 1 dimension
based on age, this would involve determining where each insurance product lies on
the scale of “young to old”. These features may not always be obvious in the data

16

set, and may not be as intuitive as age or gender. These hidden dimensions are
known as latent features, which need to be experimentally determined. These are
many dimensions which define similarity, and collaborative filtering aims to produce
a vector for each item or user with a value which shows its preference for a particular
dimension.

Example 2. Consider the example of customers and products shown in Table
3.2. In this case, customers provide explicit ratings or preferences for products on a
scale of 1-5, with 5 indicating high preference and 1 indicating low preference. If a
customer does not have a preference or has not purchased the product, it is indicated
by n/a.

Customer Unit Trust RA Life Insurance Malpractice Disability

A 3 n/a 1 n/a 1
B 1 n/a 4 1 n/a
C 3 1 n/a 3 1
D n/a 3 n/a 4 4

Table 3.2: User item matrix for insurance customers with explicit ratings

This ratings matrix can be decomposed into latent features. Let’s consider 2 la-
tent features, gender and smoking habits. The customers can be expressed as either
smokers/non-smokers, or male/female as shown in Table 3.3.

Customer Gender (1= Male) Habit (1=Smoker)

A 1 0
B 0 1
C 1 0
D 1 1

Table 3.3: Latent Features for customers

Similarly, the same latent features need to be applied to the products. In this case, we
can assign a hypothetical range of how suitable a product is for a particular hidden
feature. For example, on a scale of 0 to 5, let’s assume disability insurance scores 3/5
in its suitability for smoking customers. Table 3.4 shows these scores for the products
along the hidden dimensions.

Dimension Unit Trust RA Life Insurance Malpractice Disability

Gender=Male 3 1 1 3 1
Habit=Smoker 1 2 4 1 3

Table 3.4: Latent Features scores for products

Now to determine if the latent features are correct, we express the user and item
feature tables from Tables 3.3 and 3.4 in matrix form. The customer-feature matrix
has the following form:

17

1 0
0 1
1 0
1 1

The product-feature matrix has the following form:[

3 1 1 3 1
1 2 4 1 3

]
Now we multiply the customer features matrix by the product features matrix to get
the following user-item matrix:

3 1 1 3 1
1 2 4 1 3
3 1 1 3 1
4 3 5 4 4

The above matrix can once again be expressed in tabular form as shown in Table 3.5.
This view shows that the original ratings are preserved, indicating that these latent
features are suitably assumed. Furthermore, based on these latent features there are
recommendations for ratings that were previously unknown (n/a). In this case, the
hidden or latent features were trivial to deduce, but in practice there may be hidden
features that are not as intuitive and predictable, and this process would need to be
repeated with new latent feature sets, until an appropriate matrix is obtained.

Customer Unit Trust RA Life Insurance Malpractice Disability

A 3 1 1 3 1
B 1 2 4 1 3
C 3 1 1 3 1
D 4 3 5 4 4

Table 3.5: User item matrix for insurance customers with explicit ratings

The discovery of these hidden features or dimensions are the main tuning parameters
for collaborative filtering (Resnick et al. 1994). We can generally tune the algorithm
to determine the best amount of latent features, provided that the number is less
than half the harmonic mean of the number of users and number of items as shown
below (ibid.):

k <
U × V

2(U + V)
(3.2)

where k represents the number of latent features, U represents the number of users
and V represents the number of items. Selecting k values in this range can be used

18

to appropriately find the divisors needed to factor the matrix into latent features
(Spiliopoulos, Vouros, and Karkaletsis 2007).

Matrix factorization involves using linear algebra techniques to decompose the sparse
user-item matrix into two complete matrices (Chris 2009), similar to the user and
product feature matrices shown in Example 2 above. This is usually more efficient
than performing user-based and item-based collaborative filtering individually, and
then combining the results to make predictions as performed in the example. Specif-
ically, matrix factorization involves factorizing the user-item interaction matrix into
a user-feature matrix, and item-feature matrix. When multiplied together, the user-
feature and item-feature matrices produce a complete user-item matrix, with a pre-
dicted recommendation score for every item and every user, as shown below:

A′ij = UiVj (3.3)

where A′ represents the predicted matrix with rows i and columns j obtained from
multiplying user features U and item features V. The aim of the decomposition is
to preserve the original user-item mappings while simultaneously obtaining new user-
item combinations, as was the case in the example demonstrated. When decomposing
the matrix, the original (i× j) matrix is split into two lower dimensional (i× k) and
(k × j) matrices. The lower dimensional matrices consist of one matrix that has
a row for every user, and one matrix that has a column for every product. The
value of k is referred to as the number of latent factors, and constitutes the hyper-
parameter which needs to be tuned to generate accurate results, since different values
of k produce complete matrices with different accuracies. Solving for the optimal A′

involves minimising the loss function expressed below with least squared error:

min
∑
i,j∈obs

(Aij − UiVj)2 (3.4)

where A represents the original sparse matrix. True observations obs (actual pur-
chased products) are located at row i and column j of matrix A, and the sum is
therefore computed for all non-zero entries in A. The dimensions of U and V corre-
spond to the number of latent features k.

This is much more computationally efficient than working with the entire sparse ma-
trix, since the user-feature and item-feature matrices are of much smaller dimensions.
Given a particular user ID, we can multiply the user features for that particular user
by the product features to find predicted ratings for all products for that user. Vice
versa, to find all user ratings for a particular product, we can use the product ID
and multiply all item features by user features to find the ratings of all users for that
particular product ID.

The matrix factorization approaches can be optimized using various algorithms to
produce user and product feature matrices in a computationally efficient way. Tech-
niques usually implemented for the purpose of recommendation engines include the

19

following algorithms:

• Stochastic gradient descent (Gemulla et al. 2011)

• Alternating Least Squares (Takács et al. 2009) - discussed in detail in section
3.1.3

• Singular value decomposition (Koren, Bell, and Volinsky 2009)

All methods can be parallelized, which leads to faster computation times. However,
stochastic gradient descent is weaker at handling unobserved interaction pairs (Takács
et al. 2009). In the case of a sparse interaction matrix, with many unobserved inter-
actions, it therefore would be more advisable to use alternating least squares in the
algorithm approach. Singular value decomposition also performs poorly with unob-
served pairs, since it requires real values for every entry of the matrix. This requires us
to explicitly set unobserved interactions as null or zero, which can bias the predicted
ratings significantly (ibid.).

Typical matrix factorization usually involves predicting numerical ratings for items
by users. In the case of insurance product items, the user-item matrix purely provides
user-item mappings, without explicit ratings. Explicit ratings are common in the case
of movie or ratings datasets, where a score or rank is provided by each user for an
item. A modification to the typical matrix factorization will be implemented with
implicit feedback, which aims to weight the interaction with a particular interaction
bias (Xing 2015). This interaction bias can be provided from any of the other features
available in the data. For example, the insurance premium, the number of years that
the user has owned the insurance product can be used as an interaction bias or implicit
feedback mechanism. If a particular user has owned a product for many years, this
might indicate a strong preference for the product.

3.1.3 Weighted Alternating Least Squares Algorithm

As discussed, the method of matrix factorization that will be implemented is the
alternating least squares technique. The main aim of the alternating least squares
method is to choose latent features which minimize the least square error when making
recommendations, as shown in equation 3.4. This method however, only sums the
error over the observed instances (actual purchases). A better approach for this is
to weight the unobserved interactions to provide a low confidence score for these
unobserved interactions, and add these to the least squares error sum as shown below
(He et al. 2016):

∑
i,j∈obs

(Aij − UiVj)2 + w0 ×
∑
i,j 6∈obs

(0− UiVj)2 (3.5)

where in this case the unobserved interaction pairs are weighted with w0. The
weighted values for these pairs allow for better recommendations, and the optimal

20

weight can be experimentally determined. Recall from section 3.1.2, the number of
latent factors k needs to be selected in advance. The goal of the model is to choose
the number of latent factors which produce the smallest least squares error.

Example 3. For this example we will revisit the user item matrix in Table 3.2,
from Example 1 and 2 in section 3.1.2.

Customer Unit Trust RA Life Insurance Malpractice Disability

A 3 n/a 1 n/a 1
B 1 n/a 4 1 n/a
C 3 1 n/a 3 1
D n/a 3 n/a 4 4

Table 3.6: User item matrix for insurance customers with explicit ratings

Express the table in matrix form Aij:
3 n/a 1 n/a 1
1 n/a 4 1 n/a
3 1 n/a 3 1
n/a 3 n/a 4 4

Create an initial random customer feature matrix, with 2 latent features Ui:

0.2 0.5
0.3 0.4
0.7 0.8
0.4 0.5

Create an initial random product feature matrix, with 2 latent features Vi:[

1.2 3.1 0.3 2.5 0.2
2.4 1.5 4.4 0.4 1.1

]

Multiply the user-feature and product-feature matrices to get a recommendation ma-
trix UiVi:

1.44 1.37 2.26 0.7 0.59
1.32 1.53 1.85 0.91 0.5
2.76 3.37 3.73 2.07 1.02
1.68 1.99 2.32 1.2 0.63

Now calculate the standard mean square error for all cases that there was a true
interaction/observation:

21

∑
i,j∈obs

(Aij − UiVj)2

= (1.44− 3)2 + (2.26− 1)2 + (0.59− 1)2 + (1.32− 1)2 + (1.85− 4)2 + (0.91− 1)2

+(2.76−3)2+(3.37−1)2+(2, 07−3)2+(1.02−1)2+(1.99−3)2+(1.2−4)2+(0.63−4)2

= 35.67

For the cases with no interaction n/a, weight the interaction with w0 of 0.1 and
calculate:

w0 ×
∑
i,j 6∈obs

(0− UiVj)2

= 0.1((0−1.37)2+(0−0.7)2+(0−1.53)2+(0−0.5)2+(0−3.73)2+(0−1.68)2+(0−2.32)2)

= 0.27

Therefore, the total error in the solution is:

∑
i,j∈obs

(Aij − UiVj)2 + w0 ×
∑
i,j 6∈obs

(0− UiVj)2

= 35.94

As shown above, this is a large error since the actual range of the ratings is between
1-5. Hence, the particular choice of latent features might not be a good fit, and a
new selection will need to be initiated. To prevent overfitting, we can now also add
regularization into the loss function. In summary, this produced the following loss
function:

∑
i,j∈obs

(Aij − UiVj)2 + w0 ×
∑
i,j 6∈obs

(0− UiVj)2 + λ(
∑
u

||Ui||2 +
∑
j

||Vj||2) (3.6)

Optimizing and solving for both the customer features Ui and product features Vj
at the same time is not trivial. We rather initialize random customer features and
product features. We then keep product features constant, and solve for the user
features:

ui = (
∑
rij∈ri∗

vjv
T
j + λIL)−1

∑
rij∈ri∗

rijvj (3.7)

where rij∈ri∗ represents all columns of row i in original user-item matrix, vj represents
product features which will be held constant, and regularization with Ridge Regres-
sion (L2 Regularization) is conducted with constant λ. This process is repeated for
every customer ui in the batch selected, to solve for the customer features.

22

Once we have solved for a set of user features, we then alternate by keeping the user
features constant, and then solving for the product features. This is the alternating
nature of the WALS algorithm. Similarly, to solve for the latent features for every
product vj, we use the following formula:

vj = (
∑
rij∈r∗j

uiu
T
i + λIL)−1

∑
rij∈r∗j

rijui (3.8)

Where rij∈r∗j represents all rows of column j in the original user-item matrix, ui
represents user features that will be kept constant, and regularization with Ridge
Regression (L2 Regularization) is conducted with constant λ. This process is repeated
for every product Vj in the batch selected. The pseudo-code for this algorithm is
shown in Appendix B. This is an iterative process which obtains an optimal U and V
matrix, to produce the best latent features for each customer and each product, such
that when they are multiplied together the ordinary least squares error is minimized
in the predicted matrix. After a customer feature matrix, and product feature matrix
is computed, the accuracy is calculated, and the process is repeated until the error
decreases to a desired level.

Example 4. The test data from Example 3 can be further extended to demon-
strate solving for customer and product features, using the same user-item matrix of
customer and product interactions, as well as the randomly generated user feature
matrix, and product feature matrix. Using the initialized feature matrices with 2
latent dimensions, we can optimize and solve for the best latent features as follows:

ui = (
∑
rij∈ri∗

vjv
T
j + λIL)−1

∑
rij∈ri∗

rijvj

We can experimentally pick a regularization constant of 2.3. For the first user u1, the
customer features can be calculated by keeping the first row of the random generated
product features Vj constant.

u1 = (

[
1.2
2.4

] [
1.2 2.4

]
+

[
3.1
1.5

] [
3.1 1.5

]
+

[
0.3
4.4

] [
0.3 4.4

]
+

[
2.5
0.4

] [
2.5 0.4

]
+

[
0.2
1.1

] [
0.2 1.1

]
+ 2.3

[
1 0
0 1

]
)−1

×(3

[
1.2
2.4

]
+ 1

[
0.3
4.4

]
+ 1

[
0.2
1.1

]
)

=
[
0.6 0.2

]

23

This returns the optimized user features for u1. We repeat the process for the remain-
ing user features. We then alternate to solve for the product features using equation
3.6. This produces the following user feature matrix after 1 iteration:

0.6 0.2
0.3 1.4
1.8 0.5
1.7 1.9

The following product feature matrix is obtained after 1 iteration:[

2.2 1.5 1.9 2.4 0.8
1.4 1.6 4.8 0.5 2.6

]
When the user feature and product feature matrices are multiplied, this produces the
following prediction matrix:

1.6 1.22 2.16 1.6 1
2.62 2.69 7.29 1.45 3.88
4.66 3.5 5.82 4.75 2.74
6.4 5.59 2.35 4.2 5.64

The error calculated from the above matrix is 28.32, which is lower than the initial
35.94 calculated for Example 1. This indicates that already after 1 iteration of opti-
mizing the customer and product features, the error is decreasing. This process can
then be repeated until a desired error is achieved.

3.1.4 Other collaborative filtering techniques

There are other subset techniques of collaborative filtering which purely model item-
item interaction. Such techniques usually use association rule mining in market basket
analytics to understand purchase propensity (Wong and W. Yang 1997). Association
rules primarily aim to understand the frequency with which items are purchased
together. For example, if unit trusts and retirement annuities are frequently purchased
products, they will be recommended regardless of the user. Due to the less personal
nature of item-item interactions, and the abundance of user data available in our
dataset, item-item interactions will not be considered in this research, but will be
noted for literature purposes.

3.2 Neural Networks

The use of neural networks for both supervised and unsupervised learning has gained
popularity in recent years due to the advancements of hardware architectures and

24

scalable computing environments which are optimized for neural network training
models (Schmidhuber 2015). In the context of recommendation engines, neural net-
works are usually used for content/model based recommendations, where the meta-
data surrounding the user-item interactions are also incorporated into the model
(O’Shaughnessy 2009). For example, with insurance data, this does not simply re-
strict the data to the user-item matrix as an input source, but also uses user features
(age, profession, gender, etc.) as well as product features (category, price, etc.). An
advantage of neural networks is that interaction terms do not usually need to be
explicitly handled prior to input. Interaction terms usually are seen in regression
problems, where a combination of terms serve as a better input to the model than
the terms individually. For example, in insurance, premium amount and age might
have significant correlation since older individuals tend to pay higher life insurance
amounts. Due to the multiple layers of a neural network, these interactions are usually
derived implicitly through the modelling process (Schmidhuber 2015). The following
discussion provides an overview of the methodology of a neural network architecture
primarily suited for a classification problem. The exact architecture and implemen-
tation details for the insurance data-set will be provided in Chapter 5, after the data
has been described and analysed. However, a sample architecture of a typical feed-
forward neural network with 4 input features, one hidden layer and a classification
output is shown in Figure 3.1.

Figure 3.1: Typical Feed-Forward Neural Network

The network of neurons (represented as circles) across the various layers provide a
set of transformations which map a set of inputs towards a distinct output (ibid.).
In this case it would be to determine the best product to recommend an insurance

25

customer (classification output). The feed forward architecture connects multiple
layers of neurons, and an input propagates through the network to return an output
value or prediction. To determine the activation aij, which is the jth neuron value in
the ith layer, the following formula is used (Nielsen 2015):

aij = σ(
∑
k

(wijk · ai−1k) + bij) (3.9)

As shown in formula 3.8, the activation of a particular neuron is dependant on the
activation of a previous layer, where wijk is the weight from the kth neuron in the

(i− 1)th layer applied to the jth neuron in the ith layer. bij refers to the bias of the jth

neuron in the ith layer. The bias for a nueron is analogous to an offset or intercept
in linear models, where the bias delays the onset of the activation function (ibid.).
Lastly, σ refers to the activation function. Given a set of input data points, the
activation function is an important element which determines whether the network of
neurons will start firing for the particular input. This checks whether the input data
is within the allowable range of data points required for the particular model (Haykin
1994). There are a number of different activation functions used, the most common
being sigmoid, hyperbolic tangent and rectified linear unit, depending on the bounds
of the input data points. The following sigmoid function will be used in the sample
architecture:

σ(z) =
1

1 + e−z
(3.10)

The above concepts can best be illustrated through an example. Consider the basic
neural network architecture shown in Figure 3.4.

Figure 3.2: Simple neural network example

This configuration has 2 inputs, a bias and a single output. In the context of insurance
recommendation, this could represent two binary feature inputs (male/female, and

26

smoker/non-smoker) to recommend one of two products (sickness benefit or unit
trust). Weights are randomly initiated, and these will need to be adapted to enhance
the accuracy of the neural network. Using the formula 3.9 with activation function
3.10, the output can be calculated as follows:

Output = a((I1 ×W1) + (I2 ×W2) + (B ×W3))

Output = a((0× 0.5) + (1× 0.6) + (1× 0.7))

Output = a(1.3)

We now apply the sigmoid activation function a

Output =
1

1 + e−1.3

Output = 0.79

As shown, the output in this case is 0.79. In the case of a product recommender, an
output range of 0-0.5 could correspond to one product, and an output in the range of
0.5-1.0 correspond to a different product. If there is a large discrepancy in the outputs
from expected results, the weights can be adjusted to better model the mapping of
inputs to outputs. Furthermore, the above system can also represent a single layer
in a complex neural network. The inputs in this case can represent the outputs from
previous layers, and the outputs represent the inputs to the next layer. However,
the calculations and methodology remains the same to derive the final output or
recommendation.

In practice, the neural network can range from simple single layer networks which
resemble generalized linear models with each neuron representing a different variable,
to multi-layered networks which contain a number of non-linearities. For example,
simpler neuron architectures are popular in the finance industry, especially around
risk behaviour. A case study shows that a single layer neural network can be used to
determine whether a credit card customer will default on a payment (Bherde 2015).
Multi-layer architectures are common in cases where the predicted output is highly
nonlinear, such as speech and natural language prediction (Graves, Mohamed, and
G. Hinton 2013). In the case of insurance data modelled in this study, the various
features of a customer (age, gender, occupation, etc.) are used as inputs during the
training process, and the weights of each neuron in corresponding layers are adapted
in order to produce an output that most accurately maps the input to the predicted
output (Schmidhuber 2015).

The goal of neural network training is to minimize a cost function for regression
or for classification. Cost functions assist in determining the error of the predicted
values from true values, using various algorithms. One of the most typical algorithms
use gradient descent methods (O’Shaughnessy 2009). With gradient descent, it is
important to ensure that the function which measures the difference is differentiable
with respect to the outputs. This ensures that a gradient search can be performed

27

to find a local or global minima which reduces the overall error. Once a desired error
level is obtained, weights no longer need to be adjusted in the neural network and
a converged solution is achieved. For the insurance product predictor that will be
designed, the model will provide a classification output. For classification, one of the
most widely used cost functions are the cross-entropy cost function for multi-layer
neural networks (Nielsen 2015):

C = −
K∑
i=1

yi log ŷi (3.11)

The above equation calculates the total loss over all K outputs, based on the difference
between the expected output y and the output generated from the neural network ŷ.

Finally, a major pitfall to avoid when designing a neural network is preventing overly
complex architectures from overfitting the training data. Generally to prevent over-
fitting, neural network training involves model fitting with regularization to penalise
the model for complexity. In each iteration of training, minimizing the cost function
includes a regularization term which penalizes the weights of the neural network to
prevent overfitting. This makes the model better at generalisation for new data. One
of the more commonly implemented regularization techniques includes Ridge Regres-
sion (L2 Regularization), which adds a regularization or “penalty” term to the Cost
function as shown below:

C = −
K∑
i=1

yi log ŷi + (
n∑
j=1

||wj||2) λ

2m
(3.12)

The above equation adds a regularization term to the cross-entropy cost function. The
regularization term multiplies the sum of all sqaured weights w across the n neurons
with a regularization term λ, scaled by m number of inputs. To better understand
the technique of regularization, we will revisit the example discussed earlier. Table
3.7 provides different configurations of the neural network setup in Figure 3.2.

Architecture Inputs W1 W2 W3 ŷ y

1 I1 = 0, I2 = 1 0.5 0.6 0.7 0.79 1
2 I1 = 0, I2 = 1 0.2 0.5 0.8 0.79 1

Table 3.7: Different configurations of weights for simple neural network

As shown, both configurations produce the same expected output. Now, to consider
the effects of regularization, we compare the regularized loss function to a standard
mean square error calculation. This is calculated using an experimentally chosen λ
of 2.3. Using equation 3.6, the cross-entropy loss is calculated for Architecture 1 as
follows:

28

C = −(1× log(0.75)) + (0.52 + 0.62 + 0.72)(
2.3

2× 2
)

C = 1.274

The cross entropy loss can be calculated in a similar way for Architecture 2. The
results are indicated in Table 3.8, along with the mean square error for comparison.

Architecture ŷ y (y − ŷ)2 λ Cross Entropy Loss

1 0.79 1 0.044 2.3 1.274
2 0.79 1 0.044 2.3 1.079

Table 3.8: Different configurations of weights for simple neural network

As shown in the example, 2 different architectures that produce the same output and
same mean square error can be penalised differently with a regularised loss function.
In this case, architecture 1 is penalised more heavily based on the choice of weights.
This indicates that model 1 may be more prone to overfitting. In context of the
insurance product recommender, this means that architecture 2 may be better at
recommending products for users.

The learning method for neural networks depends on the type of problem being solved
(supervised, unsupervised, or a combination). In the case of the insurance predictions,
this would be considered a supervised learning problem. Neural networks also allow
for unstructured data such as product catalogue images or user profile pictures to be
incorporated into the training data set. In the case of fashion or retail recommen-
dation engines, this technique has seen particular success with convolutional neural
network architectures (O’Shaughnessy 2009), due to the ability to learn and process
low level image features to make predictions with high accuracy. Other models such
as recurrent neural networks have been used where sequential input data significantly
contributes towards the recommendations provided (Zweig 2015), as in the case of
online advertising campaigns where a sequence of clicks on a website might lead to
a product being sold. There are therefore a number of different architectures possi-
ble based on the format of the input data (Covington, J. Adams, and Sargin 2016).
For the purpose of this research, a typical feed-forward neural network will be used
(Schmidhuber 2015).

One of the key advantages of using a neural network approach for recommenda-
tion engines include the ability to perform non-linear transformations of user-item
interactions. Conventional methods, including collaborative filtering, employ linear
modelling techniques which might fail to model complex interaction patterns and
combinations (Charu 2016). Furthermore, neural networks can also be used along-
side collaborative filtering strategies, as a form of preproccesing of information prior to
typical collaborative filtering techniques being employed (Bracha 2015). Often user-
item interactions may not be directly obvious, as in the case of obtaining sentiment
from a product review or comment. Such cases require powerful natural language

29

processing and text mining techniques which utilize neural networks to build a can-
didate user-item matrix which can then be processed using traditional collaborative
filtering techniques (L. Zhang, S. Wang, and B. Liu 2018).

3.3 Combined Approach

There are drawbacks to standard collaborative filtering techniques which rely solely
on user-item ratings as the source data. Collaborative filtering allows for general
recommending ability across broad categories, while other techniques such as neural
networks utilize user and item features and allow for deeper modelling of localized
relationships. Furthermore, with standard collaborative filtering techniques, there is
the requirement to retrain the entire model to provide suggestions to a new user, only
once the new user has made some purchases. As previously mentioned, this is referred
to as a “cold start” problem, since new users have no product history, and the model
cannot use any features or relationships to suggest or predict ratings (Alan 2014).
Constantly retraining the model for new users is also computationally unfeasible.

One of the major limitations of neural network approaches is the requirement for
significant amount of data to provide high quality recommendations (Cheng et al.
2016). Another drawback of neural networks is the requirement for significant hyper-
parameter tuning, as opposed to other techniques. This also tends to give rise to
a lack of interpretability due the multiple hidden layers and non-linearities inherent
in the models for neural network architectures. This makes it difficult to determine
aspects like variable importance in a model. However, there have been large scale
implementations of neural network based recommendation systems (Covington, J.
Adams, and Sargin 2016), as commercially seen in the case of Youtube and Amazon.

Collaborative filtering and neural networks therefore both have a number of strengths
and weaknesses. In summary, new users with no (or limited) interaction history are
better suited for recommendations from neural networks. In the context of insurance
users, this could represent customers that don’t hold any products and have no pur-
chase history. Because there is limited data on their choices, neural networks can use
other features of the customer like age, profession, gender and smoking habit. Neural
networks perform well with this metadata about the customer, and can produce high
quality recommendations. Users and items with significant interaction data are more
suited for recommendations with collaborative filtering. This represents insurance
customers that have been members or customers for a long time, and have multiple
products in their portfolio. To test this across the models, validation data for the col-
laborative filtering model will include customers with only an interaction history. For
neural networks, validation data will involve only new customers with no interaction
history.

30

4. Data Exploration

This chapter aims to explore the enterprise insurance data-set available for analysis,
as well as all relevant statistical features required for quality machine learning model
development. Note that the following analysis is conducted after extraction from a
production data warehouse. This warehouse is the running database system where the
core tables are located. Following the extraction of this data, wrangling operations
are required to format data appropriately for statistical analysis.

4.1 Data Schema and Entity Relationship Diagram

An entity relationship diagram of the databases extracted from the warehouse is
shown in Figure 4.1.

Figure 4.1: Entity Relationship Diagram of current database structure

31

The following key tables are stored in the data warehouse:

• User profiles - this table consists of core identification data for the various
insurance clients. Due to privacy and ethical concerns, this data will not be
used directly in the modelling process. The member ID will be retained as a
primary key and used as a point of reference across other tables, along with the
gender and age of the member, since these will be useful features for content
based models.

• Risk profiles and credit score - This table provides key risk bands for mem-
bers as supplied by the South African credit bureau, along with a credit score.
This information is used to calculate members’ affordability of certain insurance
products, as well as verifying authenticity of applications.

• Policy information - This table consists of the policy details of existing members
and various terms relating to the products. Policy time refers to how long the
particular policy holder has been active as a member.

• Occupation information - The occupation information table is used to determine
the profession and industry details of current members. This is mainly used to
determine the fit of an appropriate insurance product for different professionals.

4.2 Preprocessing and Analysis

After data extraction was completed from the data warehouse, the final dataset that
was generated for model building is displayed in the schema in Table 4.1.

Field Name Data Type Examples

Member ID Integer 61627384, 263748423, 237483948
Occupation String Financial, Medical, Scientific
Premium Float 140.89 , 690.4, 1223.34
Gender String Male, Female
Habit String Smoker, Non-Smoker
Age Integer 63, 67, 31

Time Integer 12, 8, 15
Product String DISA, SPPI Supp A, Sickness Benefit

Table 4.1: Details of insurance variables used for recommendation engine

As shown, the key fields that are extracted are occupation, member age, policy time
(years), gender, habit (smoker/non-smoker), premium amount and product type. The
machine learning model will thus aim to predict the product type, providing the age,
gender, occupation, premium amount, habit, and policy time as inputs. As shown
in Figure 4.2, there are a number of different products that can be chosen. The
codes for the various products are explained in Appendix C. Typical products include
retirement annuities for people looking to invest in a pension account, sickness cover

32

for people who are unable to work and require insurance payouts for days of work
missed, disability benefits for insurance cover in the case of permanent injuries, as well
as other general purpose insurance products. Some products are specific to certain
professions. For example, in the medical or legal industry, certain liability insurance
may be required to protect professionals against malpractice or other issues.

Figure 4.2: All products in data showing number of corresponding members

Age, gender and smoking habit are useful input features for a product recommender.
There are key products which target people of specific age groups (young working
professionals or people close to retirement). There are also gender specific products
(unit trusts for females). In terms of health and well-being, smoking habits might
place individuals at risk for certain health-driven insurance products (sickness ben-
efits). Premium amount is an important feature to consider as an input as this can
give an indication of the budget that a prospective customer can provide towards the
insurance product. Individuals seeking more comprehensive cover will have higher
budgets for their monthly instalments. Policy time is an indication of how long the
particular customer has been a member with the insurance company, and how long
a particular product has been in force on the customer profile. However, policy time
can vary based on different products that are chosen. Usually, customers that are
happy with their products retain them for many years.

The preprocessing involves transforming the data set into useful inputs which can be
efficiently processed by the various modelling strategies discussed in Chapter 3. For
efficient model building, this is important since the data can be unbalanced, contain
missing values or contain too many anomalies which can reduce the accuracy of the
statistical models being generated.

33

4.2.1 Feature Analysis

The next stage involves analyzing the various features for statistical relevance, and
ensuring that the data sets are balanced. This ensures that there is enough training
data for the various numerical and categorical features to build high quality models.
The first feature that will be analysed is the output product feature, which originally
contained 38 different types of products which members can purchase. However,
when analysing the number of people with various products, it is evident that cer-
tain products have very few members (8-20) while other products have large member
databases (over 10 000). Including products with few members increases the complex-
ity of the modelling process, since this increases the sparsity of the user-item matrix
for collaborative filtering, as well as the extensive mapping required for categorical
variables. This often involves using modelling techniques to deal with high cardinality
variables. Products with fewer than 100 members were neglected. This produces the
distribution of products as shown in Figure 4.2. The distribution between 22 different
products shows between 5000−15000 members each, which is a significant amount of
data per product for modelling purposes. Credit scores, ID numbers and Risk bands
were ommitted from the dataset due to restrictions by the credit bureau based on
POPI requirements (Protection of Private Information act 2013).

The next statistical comparison involves comparing relationships between the various
features, to understand if there are particular features which directly or indirectly
affect the output feature product. The scatter plot in Figure 4.3 displays the dis-
tribution of the various products according to age and product price. In this case,
premium refers to the monthly amount that people invest in their product. Higher
premiums indicate larger portfolios and investments into insurance products. Age and
premium certainly seem to drive product choice. There also appears to be similar
products grouped together across the scatter plot. For example, RA and LA products
are typically chosen by older people and premiums are very expensive, while Sickness
Benefits have lower premiums and are mostly purchased by younger people.

Following this, the next exploration conducted was to understand the relationship
between the different genders, premiums and whether smoking affects the insurance
products. Figure 4.3 has shown distinct groups where products are spread across
a range of premium amounts. The various codes for the products are explained in
Appendix C. Figure 4.4 displays how this premium amount is affected by smoking
habits for both male and female. In general, smokers tend to have higher premiums
(possibly due to health risks and especially among male members), and in general
males tend to pay more for insurance than women. This is important to factor in,
since the type of product recommended will therefore be influenced by gender and
smoking habit.

34

Figure 4.3: Scatter Plot showing Average Age and Average Premium for various
products

Lastly, another set of important features is the occupation group and time of policy.
We explore the relationship of these features in Figure 4.5, where premiums vary
significantly for the occupation groups. Medical and legal professionals for example,
pay much higher premiums possibly due to the higher risks in the profession or due
to affordability for high end products. Policy time refers to how long individuals have
retained a particular policy. As shown in the various groups, policy time does vary
between the different profession groups, with legal and medical groups keeping prod-
ucts the longest, and science and academic groups having products or membership
status for the least amount of time on average. Other views are shown in Appendix
A.

35

Figure 4.4: Bar graph showing the variation in premium amounts by gender and
smoking habits. This indicates generally higher premiums for males and for smokers.

Figure 4.5: Bar graph showing average premium amounts and policy time for different
occupation groups

4.2.2 Cluster Analysis

After the initial descriptive analysis provided above, it is evident that the data set
exhibits some form of grouping according to its various features. This is clear with
certain age groups, genders or professions having a preference for certain types of
products. A more statistical way to explore the potential groups in a data set is to
perform a cluster analysis. Clustering is an unsupervised machine learning technique,
since there is no target variable to predict (Xu and Wunsch 2008). Instead, the
analysis aims to determine whether the data can be divided into a set of groups, in
which each group contains similar data points (ibid.).

The first step in performing the cluster analysis involves determining a similarity
measure between all the data points, using a distance measure or other similarity

36

function. The particular metric that will be used in this case is the Gower dissimilarity
function (Xu and Wunsch 2008). The Gower dissimilarity is particularly useful in
that it can be used to measure the distance between data points whose features are
a mix of both categorical and continuous values, as in the case of the insurance data
set. The Gower dissimilarity is essentially a measure between 0-1 of the average
dissimilarity between 2 data points (rows). The dissimilarity is averaged across all
features of the data points, and is calculated with the following function to determine
the dissimilarity between rows i and j in the dataset:

d(i, j) =
1

p

p∑
f=1

d
(f)
ij (4.1)

where p represents the total features in a row, and f represents the particular feature
being measured. The particular dissimilarity measure d

(f)
ij is dependant on the type

of feature being compared. For continuous variables, the following formula is used:

d
(f)
ij =

|xif − xjf |
Rf

(4.2)

In the above equation, the absolute value of the difference between row i and j for
feature f is divided by Rf , which represents the range of the continuous variable. For

categorical variables, d
(f)
ij is 0 if the values have the same value, and 1 otherwise.

Once the pairwise dissimilarities are obtained between all points in the data set, a
clustering technique known as partitioning around medoids (PAM) can be applied
(also known as k-medoids clustering) (ibid.). This algorithm selects certain points
in the data set as cluster centers, and aims to minimize the distance between points
labelled as a part of the cluster, and the center of the cluster. This process is itera-
tively repeated with new cluster centers selected, until an optimal number of clusters
are formed (ibid.).

Prior to performing PAM clustering, the number of clusters need to be selected.
The optimal number of clusters can be determined by measuring the average cluster
silhouette width for various cluster sizes (Aranganayagi and Thangavel 2007). The
silhouette width contrasts the average distance of points within the same cluster,
with points in other clusters (ibid.). Generally, a higher silhouette width indicates
better separability in clusters. Figure 4.6 displays the various average silhouette
widths for different cluster sizes after PAM clustering is applied on the data points.
As shown, both 5 clusters and 3 clusters generates high silhouette widths. However,
when visualised, 5 clusters produced more interpretability and grouping in the data.
The optimal number of clusters is therefore chosen as 5.

37

Figure 4.6: Average silhouette widths for different cluster sizes after PAM clustering
is performed

After the clustering is performed, a lower dimensional visualization of the clusters
can be obtained, which can help in identifying general groups and whether certain
points clearly cluster in certain regions. Figure 4.7 displays this visualization.

As shown, there are distinct regions of the xy plane associated with each cluster.
Hence, data points can be well grouped and separated according to their particular
cluster, with minimal overlapping regions. There are outlier points which do not fit
exactly within their cluster region, however this is due to boundary cases in data where
feature sets are very similar. A final analysis would be to list highlighted features of
each cluster, to determine the particular features that are strongly associated with
each cluster. For continuous variables age, policy time and premium, the average
values of the group are indicated. For example, the average age of members in cluster
1 is 43 years old. For categorical variables, the most prominent variable is indicated,
along with its representation in the group. For example, the most prominent members
in Cluster 2 are medical professionals, making up 76.34% of the group. Table 4.2 shows
the results of the clustering process, for features that were distinctly similar among
the group.

38

Figure 4.7: Lower dimensional visualization of clustering

Feature Cluster 1 Cluster 2 Cluster 3

Prominent Occupation Legal 61.23% Engineer 76.34% Legal 71.63%
Average Age 43 41 50
Average Premium 751.46 343.59 727.34
Average Policy Time 16.58 14.35 22.05
Prominent Product PLP WL 22.23% SPPI Supp A 26.21% RA 21.34%
Prominent Habit Smoker 74.78% Non-smoker 67.23% Non-smoker 66.23%
Prominent Gender Male 58.42% Male 60.23% Male 63.34%

Feature Cluster 4 Cluster 5

Prominent Occupation Financial 81.23% Medical 76.34%
Average Age 45 35
Average Premium 483.46 218.59
Average Policy Time 15.58 10.35
Prominent Product SPPI Ord 32.83% Sickness Benefit 26.72%
Prominent Habit Non-smoker 69.28% Non-smoker 73.91%
Prominent Gender Male 54.34% Female 88.23%

Table 4.2: Feature Highlights after PAM Clustering

As shown in table 4.2, the most prominent feature in each group is occupation, with
the 5 clusters mainly separating into the Medical, Legal, Engineering and Financial
Groups. Premium and policy time are continuous variables which vary among the

39

groups. Finally, the most common product is also specific to each group. The cluster-
ing process therefore indicates that there is definitely key features which drive certain
types of product uptake. For example, from the above table, it can be seen that
female medical professionals in their thirties, who are aiming to pay around R300.00
for premiums, and who have had insurance for over 10 years will be suited for the
Sickness Benefit.

4.2.3 Categorical Transformations

The next step of feature engineering is dealing with categorical data. One-hot en-
coding be used to map the distinct values of each of the categories to new columns,
with binary fields indicating the presence or absence of the feature. For example,
gender will be mapped into isMale and isFemale columns which contain 1’s and 0’s
indicating presence or absence of these features. This is usually referred to as the
creation of dummy variables (Harris 2011). Since certain features can be derived from
each other (as in the case of isMale/isFemale), some variables are dropped to ensure
multi-collinearity does not take place. The variables that are dropped become the
reference categories.

4.2.4 Continuous Distributions

In addition to processing the categorical features, the continuous variables (policy
time and age) are also analysed to assess whether data normalization, standardization
and skewness should be addressed. The plots in Figure 4.8 display the distributions
of age, policy time and premium amount.

The major concern to address in the histogram is the monthly premiums, since this
data is skewed, with the majority of premiums between 0-1000. A log transform is
performed on this variable, to produce Figure 4.9. As shown, the log transformed
premium amounts are better distributed across the new range.

Following this transformation, the key age ranges are from 20-80, the transformed
premium amounts are between 0 and 5 and the valid policy times are from 0-50 years.
Negative values are discarded since these are invalid values for all features. Due to the
significantly different ranges, data normalization will be implemented. Since age and
policy time have a much larger range than premiums, the large difference in variance
would load more on the principal components in this data set. Normalization, as
opposed to standardization, will be used since irrelevant outliers in the data were
already eliminated in the previous step. This is important since removing outliers
ensures that variance caused by these outliers will not be scaled as well, which can
reduce the range of valid data. This ultimately produces all values within a range of
0 and 1 for premium, age and policy time using formula 4.3.

x∗ =
x− xmin

xmax − xmin
(4.3)

40

Figure 4.8: Continuous variable distributions

where xmax − xmin refers to the range of the untransformed data.

4.2.5 Correlation Test

Correlation tests are applied on the data to determine relative importance of features
to the target label “product”. This provides an indication of predictability of the
target column, based on a combination of the input columns. Considering the large
amount of categorical columns in the data, we use the Chi Square test to determine
whether there is possible association between the outcome variable and the input
variables (McHugh 2013). Appendix A provides a detailed implementation of the
Chi Square test. As calculated in Appendix A, statistical relevance is proved between
the various fields and the target field “product”. This indicates that a modelling
process could potentially be viable.

41

Figure 4.9: Log transform of monthly premiums to address skewed data issues.

4.2.6 User Item Matrix Generation

The final dataset generated can be used for content based recommender models (linear
regression and neural networks) but for collaborative filtering based systems, a user
item matrix is required. The final step of data prepossessing involves generating a
sparse matrix of member numbers and products. The interaction value of the matrix
is shown with the policy time (how long the member has had that particular policy).
As discussed later, this policy time will be used for implicit feedback purposes. The
other qualitative features (gender, age, occupation, etc.) are discarded for the user-
item matrix. An example of this matrix is shown in Figure 4.10.

42

Figure 4.10: Generation of User Item Matrix. Unpurchased items indicated with n/a

43

5. Model Implementation

The recommendation engine will be built using both a collaborative filtering tech-
nique, as well as neural networks. As discussed, the collaborative filtering technique
will primarily be used to provide existing users with recommendations, while the
neural networks learning system will be used to provide recommendations for new
users. This will aim to address the cold start problem discussed previously. Thus,
two separate models will be built and tested, and the results of each system will be
analysed independently. No joint models (multitask learning) will be implemented
at this stage, where the results of each model’s training iteration is backpropogated
to the other model during the training process. Essentially, the system will use an
ensemble model approach, where models are trained independently but combined for
classification purposes (Dietterich 2000). Based on new input data presented, the
appropriate model will be chosen. The following section provides details and re-
quirements to implement the system specifically on Tensorflow (Abadi et al. 2016),
a machine learning library with high level functionality and support for both matrix
factorization and neural networks. The general structure of developing a Tensorflow
model involves defining the input function to map data into the library, building the
machine learning model and then training and performing hyperparameter tuning to
optimize the accuracy.

5.1 Collaborative Filtering Model

As discussed previously, the collaborative filtering approach that will be used is matrix
factorization, which involves decomposing the sparse user-item matrix into a user-
feature and item-feature matrix. The dimensions of these smaller matrices depend on
the number of latent or hidden features chosen for the decomposition. Specifically,
the matrix factorization will be conducted using Weighted Alternating Least Squares
(WALS) methodology discussed in Chapter 3 to obtain the ideal latent features. This
approach is proven to be faster since the algorithm can be computed in a distributed,
parallel approach (He et al. 2016). Furthermore, this algorithm has techniques for
dealing with unobserved interaction pairs, as in the case of a sparse user-item matrix.

44

5.1.1 Input data into the model

For this component, we are considering how data needs to be supplied to the Ten-
sorflow WALS estimator, which is a high level library used to perform WALS with
parallel processing. The following input requirements need to be addressed:

• Mapping - creating a user-ID mapping and item-ID mapping for algorithm
efficiency to process the variables more easily in Tensorflow. This mapping
means user IDs need to start from (0, 1, 2, ...) and items need to start from
(0, 1, 2, ...). The first step therefore involves building the member-ID to user-ID
mapping, as well as the product to item-ID mapping. The mapping is essential
to make business sense of the predictions and recommendations.

• Implicit Rating - determining an implicit rating column for the WALS algo-
rithm. This implicit rating column could be an indication of the user preference
for a particular product. This is usually best explained through a continuous
numerical feature. This provides better indication of a user’s preference for a
particular product, instead of labelling the interaction as a binary interaction
(1 or 0 for purchased/not purchased). In the case of the insurance data, the
purchase affinity could be influenced by how long they have kept a certain pol-
icy (eg. 20 years with an RA policy). If a user has had a product for a long
time, this is a good indication that they are happy with this product, and a
similar user might want this product too. Another feature which could pro-
vide implicit feedback is premium amount. People who invest more into their
particular insurance and investment schemes tend to prefer their service more.
However, premiums could also be higher due to risk, hence this might not be as
clear an implicit feedback indicator. The policy time is thus used as an implicit
indicator, and is scaled for a value between 0-1 (based on longest and shortest
policies) to indicate a rating value for the model.

• Generate Tensorflow records - this step involves generating the input rows
and columns in a format that can be inputted to the Tensorflow WALS package.
The full algorithm and details of this parser function is discussed in Appendix
B, which describes how the record structures are built in Tensorflow, as well as
how each iteration of the algorithm handles batches of rows and columns from
the sparse matrix.

5.1.2 Model Parameters for WALS Library

The inputs required for the WALS model library are shown in Table 5.1.

5.1.3 Model Output

Once the optimal latent features are determined, the item and user features are saved
in a features dictionary, for remapping into customer and product IDs. The output

45

Model parameter Description Starting Value

Number of users Indicates the total number
of insurance customers.

75 308

Number of products Indicates the total number
of insurance products avail-
able for purchase.

22

Number of latent factors Indicates the number of hid-
den features we are predict-
ing (number of dimensions)
for the users and items.

5

Training input function This is the input function
created to take in the pre-
processed TFrecords for the
training dataset.

Custom Parser

Evaluation input function This is the input function
created to take in the pre-
processed TFrecords above
for the evaluation data set.

Custom Parser

Number of steps Number of training and
evaluation steps

1000

Training size Number of rows 182 036
Evaluation data size Number of rows 45 509

Table 5.1: Key input fields for the WALS library

of the model can be in the form of a list of items for users, as well as a list of users
for items. In the case of user driven recommendation, this will provide a list of
insurance products that a particular user might want to purchase. In the case of item
driven recommendations, if a marketing campaign requires who the top users are for
a particular product, we can use this method.

We also need to specify the “Top-N” items per user, or users per item for computa-
tional efficiency, so we do not store unnecessary predicted ratings. Typically, only a
few recommendations are provided to target the user. This will depend on the size
of the product dataset. In the case of the insurance products, there are 22 products
in total. For this we will use a top 3 measure where only the top 3 recommended
products are stored for each user. The full list of recommendations can be provided
if required, but 3 were chosen since this represented about 10% of the total product
portfolio (22 insurance products). This Top-3 metric is also used as an accuracy mea-
sure, where evaluation will determine whether any of the top 3 predicted purchases
correspond with actual purchases. For the validation data set, if any of the top 3
products recommended are the ones that the user actually purchased, this will be
classified as an accurate prediction.

46

5.1.4 Hyperparameter Tuning

Hyperparameter tuning is a key element required to optimize the model for higher
accuracies. In the context of the collaborative filtering model, the Root Mean Square
Error (RMSE) is the key metric used as evaluation for prediction quality. For each
item recommended to the user, the error calculates the deviation of the rating for the
product from the true value with the following formula:

RMSE =

√∑n
i=1(Predictedi − Actuali)2

n
(5.1)

where RMSE is a numerical error calculated, for each of the n evaluation points
(predicted recommendations for all users). In this case the error is calculated only
on the top recommendation for each user. The true values in this case is the actual
implicit rating that customer would provide a product. Recall that in the case of
this dataset, there is no explicit rating, so the policy time was used as an implicit
rating. The objective function for hyperparameter tuning is a function of the various
model parameters, which needs to be optimized to find the correct combination of
hyperparameters.

Bayesian optimization is used as a method of hyperparameter tuning (Swersky, Snoek,
and R. P. Adams 2013). Bayesian optimization is powerful in optimizing parameters
when the mathematical form of the objective function is difficult to compute (ibid.).
Tensorflow’s native Bayesian optimization library is applied for hyperparameter tun-
ing. The full details of the algorithm is discussed in Appendix D. After tuning the
model, parameters are obtained in their optimal form as shown in Table 5.2.

Model parameter Value

Number of latent factors K 8
L2 Regularization constant 0.236
Weight on unobserved interactions 0.045
Weight on observed interactions 97
Feature Weight Exponent 1
Alternating Least Squares Iterations 40

Table 5.2: Hyperparameter Tuning

Figure 5.1 shows a graphical representation of the hyperparameter tuning process.
The left graph shows the accuracy produced for various combinations of hyperpa-
rameters. The green line shows the optimal combination of hyperparameters which
correspond to Table 5.2, producing the lowest RMSE on the validation data. Due to
computation limitations and the size of the dataset, only 10 hyperparameter tuning
trials were conducted, each trial consisting of 50 epochs of training. The training
process for each trial is shown in the right hand side of Figure 5.1. The trial which
generates the highest accuracy after 50 training epochs corresponds with the green
line on the left graph of configurations.

47

Figure 5.1: Hyperparameter tuning for neural network recommendation engine. Se-
lection of optimal parameters are shown on the left, as well as accuracy for each
configuration tested on the right.

5.2 Neural Network Architecture

The above model using WALS matrix factorization is important in making recom-
mendations for existing users with products. However, as discussed, this has a cold
start problem where users with no selection history will not be able to receive recom-
mendations. The following model architecture aims to use a neural network approach
using various user features to make recommendations.

5.2.1 Content based models

Content based recommendation models involve using features of a user to predict a
particular field or target. In the case of the insurance dataset, this involves using
age, premium range, gender and smoking habits to predict a product that the user
might purchase. This is primarily targeted for new users who have no history of
prior purchases, but we know some details about them. The model that will be used
is a Tensorflow feed forward neural network using a custom estimator. A custom
estimator in Tensorflow is a ground-up neural network design in Tensorflow where all
layers, inputs and parameters are customizable (ie. not prebuilt model). Building
the architecture of the neural network involves developing the input function to feed
data into the model, creating the embeddings for the feature columns, implementing
a model function, training and evaluating the dataset.

48

5.2.2 Build the feature columns for the model

Tensorflow neural networks involve embedding features into columns which can be
used by the neural network model. This involves a transformation of numerical and
categorical data into embedded features represented as numerical values. The vari-
ous layers of the neural networks contain weights which undergo multiplication and
addition operations. There exists a number of embedding techniques which can help
map categorical variables into numerical inputs.

The first embedding will be for the “occupation grouping” column. This column
consists of 7 distinct occupation groupings. The embedding in this case will be as a
categorical column with vocabulary list. For Tensorflow feature columns, the library
cannot handle string features directly, and the data needs to be encoded into integers
(Martın Abadi et al. 2015). The vocabulary is the set of categorical labels. The
input features for the neural network are more effective as numerical values, so this
embedding will create a mapping of the occupation categories to an integer ID ranging
from 1-7. This creates a lookup dictionary with a vocabulary (category list) of all
possible occupations. Out of vocabulary values are ignored, unless out of vocabulary
values are specified. In this case, the embedding assigns these values a new integer
ID beyond the expected ranges. This is common in practice, for example when an
occupation is passed to the model which has not been dealt with before. For the
case of this model, we will only be working with the occupation groupings in the
training and test datasets. The same approach is used for the columns gender, and
smoking habit. The vocabulary is stored as an in-memory vocabulary, since there
is not a significant amount of distinct categorical values for each of the features. In
the case of a feature with many variations, this would typically be implemented via
a vocabulary file. For the numerical columns policy time, premium amount and age,
direct continuous variables are supplied as inputs to the neural network.

The last type of feature which will be used in the model is the concept of crossed col-
umn features (interaction features). Often some features make more sense combined
rather than having the network train weights for the feature independently. For exam-
ple, premium amount might be highly dependant on policy time (how long somebody
has been a member with the insurance company). Thus, we create a crossed feature
(interaction term) between policy time and premium amount and feed this into the
neural network.

The various feature embeddings discussed above can be shown with an example.
Consider a set of features with raw values as shown in Table 5.3. The various trans-
formations are applied to these raw features to obtain the final feature embeddings
as displayed in Table 5.4, which is inputted to the first layer of the neural network.

49

Variable Value

Occupation Lawyer
Gender Male
Habit Non-smoker

Policy Time 12 years
Premium Amount R300

Age 65

Table 5.3: Sample feature in raw form

Variable Embedding Input value

Occupation Categorical Vocabulary 3
Gender Categorical Vocabulary 1
Habit Categorical Vocabulary 1

Policy Time Direct 12
Premium Amount Direct 300

Age Direct 65√
Premium× PolicyT ime Crossed 207

Table 5.4: Variable Embedding

5.2.3 Developing the Input Function

The next step involves writing the input function for the neural network, to pass the
data into the first layer of the model. This function essentially reads the data from the
feature embedding and feeds this into the first layer of the neural network. The input
function involves specifying the feature columns as well as the label column. The
label column in this case is “product”, which corresponds to the predicted product
type for a particular set of input features. Essentially this input function builds an
input pipeline to the model which yields batches of features and labels. The batches
are obtained according to the rules of the model specified below.

5.2.4 Model Activation and Architecture

The model function involves specifying the details of the neural network architecture
that will be used to train the model. The first step involves specifying the number
of layers, with the number of neuron units in each layer. Default values are used
initially, and will be optimized in the hyperparameter tuning process later. The
model function also initializes with the feature embeddings, as well as the number of
distinct labels (products) that can be classified. In terms of the activation function,
a Rectified Linear Unit (ReLU) is used due to its computationally faster performance
(Dahl, Sainath, and G. E. Hinton 2013), as the training does not slow down or stop as
the error gradients updates become very small, like in the case of sigmoid activation
functions. (ibid.).

50

The output layer of the neural network uses a function which predicts an “n-class”
probability since the output is categorical in nature. This aims to classify an ob-
servation into an appropriate class. Specifically the logits from the final layer are
transformed into probabilities using the softmax function which outputs a vector
which represents the probability distribution for the various intended outcomes. The
logit scores are the raw scores from the final layer of the neural network, which are
mapped into the probabilities using the following operation.

Figure 5.2: Softmax function for converting logits to probabilities

The above figure shows how the final layer outputs y are transformed into probabilities
for classification.

Loss functions help in evaluating the performance of the neural network architecture
to the particular dataset being trained. When predictions vary significantly from
intended values, the losses are larger. The particular loss function in this case is
the sparse softmax cross entropy loss function (W. Liu et al. 2016). This expands
on the loss function discussed in section 3.2 and is particularly suited for mutually
exclusive classification losses, as in the case of a specific product recommender. This
function performs particularly well when the output uses an integer representation of
the various labels. A summary of the model parameters are shown in Table 5.5.

5.2.5 Model Output

The final model output is similar to the collaborative filtering model. This is in the
form of a list of ranked items for users, as well as a list of ranked users for items.
In terms of the accuracy measures, classification error is calculated based on the
number of incorrectly classified labels. A Top-3 accuracy measure is also implemented,
based on whether the top 3 recommended products are within the actual products
purchased. Because content based models tend to recommend the same product that
a user already has, for user IDs in the evaluation set, all products are removed from
the training set, so this does not overfit the data points.

51

Model parameter Description Value

Number of users Indicates the total number
of insurance customers.

75 308

Number of products Indicates the total number
of insurance products avail-
able for purchase.

22

Number of layers Hidden Layers 3 - initialize
Categorical Embed-
dings

Categorical Features Gender, Habit,
Occupation

Continous variables Direct model input Policy Time,
Age, Premium
Amount

Activation Function Neuron activation ReLu
Number of steps Number of training and

evaluation steps
250

Loss Function Used to calculate error Cross Entropy
with L2 Regu-
larization

Training size Number of rows 173 036
Evaluation data size Number of rows 41 309
Output function converting logits to proba-

bility
Softmax

Table 5.5: Key input fields for neural network

5.2.6 Hyperparameter Tuning

Similarly to collaborative filtering, we employ hyperparameter tuning to optimize
the model parameters listed in Table 5.6, to find the best overall accuracy. In this
case, we optimize for classification accuracy as well as the Top-3 accuracy. The
strategy chosen for hyperparameter tuning is the grid search method, with 10 trials.
This refers to the number of times a model is retrained with various combinations of
tuning paramaters. To prevent overfitting, L2 regularization is used. When the upper
and lower boundary for the various parameters are provided, grid search exhausts the
various options and combinations to find the best combination of metrics. For each
combination of hyperparameters, a model is trained on the test dataset, and evaluated
on a validation dataset. The model with the highest accuracy is chosen as the best set
of hyperparameters. Table 5.6 shows the hyperparameters for the Tensorflow neural
network after tuning.

Figure 5.3 shows a graphical representation of the hyperparameter tuning process.
The left graph shows the accuracy produced for various combinations of hyperpa-
rameters. The green line shows the optimal combination of hyperparameters which
correspond to Table 5.6, producing the highest classification accuracy on the vali-
dation data. Due to computation limitations and the size of the dataset, only 10

52

hyperparameter tuning trials were conducted, each trial consisting of 75 epochs of
training. The training process for each trial is shown in the right hand side of Figure
5.3. The trial which generates the highest accuracy after 75 training epochs corre-
sponds with the green line on the left graph of configurations.

Hyperparameter Value

Hidden layers [100,80,110]

Dropout 0.0053
Learning rate 0.017
Optimizer Adam optimization

Table 5.6: Hyperparameter Tuning neural network

Figure 5.3: Hyperparameter tuning for neural network recommendation engine. Se-
lection of optimal parameters are shown on the left, as well as accuracy for each
configuration tested on the right

5.2.7 Other Model Evaluation Metrics

The above discussion explains metrics used to optimize model performance with
RMSE and Top-N accuracy. However, there are other metrics which can be used to
assess overall recommendation engine quality. The criteria for measuring performance
of a recommendation engine varies quite significantly. This is because recommenda-
tion engines serve potential items of interest to purchase. While the top item served
might actually be the most relevant, the correct item chosen by the user might be
the 3rd or 4th item recommended.

53

In the case of insurance, we want to know how diverse the recommendations are for
the test set provided. High diversity indicates that a wider range of products have
been suggested, as opposed to one or two very popular products that are always
being recommended. For a test data set, we calculate the diversity using the Intra-
List-Similarity (ILS) for a user using the following formula (Ziegler et al. 2005):

ILSUser =
1

2

∑
ij∈L

∑
ik∈L

S(ij, ik) (5.2)

where L represents the list of recommendations provided to a particular user, and the
similarity function S implemented is the cosine similarity between products j and k
shown above, however other similarity functions can be implemented as well (ibid.).
The cosine similarity uses the overall similarity of the vectors for product j and k
based on the total users who have rated the products historically (see section 3.1 for
item-based similarity details). Once the ILS for each user is calculated, this can then
be averaged for all users. The ILS is measured on a scale of 0 to 1, from completely
dissimilar (diverse) recommendations to highly similar recommendations respectively.

Catalogue coverage is another important indicator which shows what percentage of
the full catalogue list was recommended to users. This is determined using the fol-
lowing formula:

CoverageCat =
length(F)

N × U
× 100 (5.3)

where F represents the full list of all items recommended, N is the total number of
users in the test set, and U is the total number of products.

The final measure of recommendation engine quality is novelty (Castells, Vargas,
and J. Wang 2011). Novelty is a measure of uniqueness and specificity of a product
to a particular user, instead of just recommending globally popular options (ibid.).
The novelty is measured on a product basis, by determining the difference between
the probability product i is recommended for a particular user and the probability
that product i is recommended for any user. This is determined with the following
function:

Pi(User) =
n− ranki(user)

n− 1
(5.4)

Pi(allUsers) =
n− ranki(allusers)

n− 1
(5.5)

Where Pi(user) indicates the probability for product i being recommended for a
particular user, and Pi(allusers) is the probability of product i being recommended
for all users. The difference between these 2 probabilities indicate the novelty.

54

6. Discussion and Analysis

This chapter involves analysing the final trained performance of the recommendation
engines developed, both in isolation and as a combined system. The criteria for
measuring performance of a recommendation engine varies quite significantly. This
is because recommendation engines suggest potential items of interest to purchase.
While the top item recommended might actually be the most relevant, the correct
item chosen by the user might be the 3rd or 4th item recommended by the algorithm.
This chapter aims to discuss some of the results of the models built, as well as future
improvements which could be made to the system.

6.1 Model Performance

Following the model training and hyperparameter tuning process for the collaborative
filtering and neural network models, the results indicate the following accuracies:

Model Accuracy Measure Test Training

Neural network Top-3 Classification Error 77.2% 88.9%
Collaborative Filtering Top-3 Classification Error 83.8% 91.35%
Collaborative Filtering RMSE 0.13 0.06

Table 6.1: Model Accuracy

Since collaborative filtering produces a predicted implicit rating, we can obtain both
an RMSE as well as classification error. RMSE error obtained is based on predicting
an implicit feedback rating of 0 to 1. Neural networks produce only a classification
output. Both datasets had a 80-20 split in the dataset where 80% of the data is
used for training the model, and 20% is used for evaluation. For the neural network,
there was an additional filtering component for the training and evaluation dataset.
For the chosen members used for evaluation, all products owned by the member were
removed from the training set of neural networks. This avoided the issue of overfitting
the members to products that they already had. This essentially treated all test

55

data as new members. If any of the top 3 products recommended to the member
corresponded to their true choice, then this was classified as a correct prediction.

The following results show the ILS measures for both the neural network and collab-
orative filtering models.

Model Average ILS

Neural Network 0.624
Collaborative Filtering 0.723

Table 6.2: Diversity measures for recommendation engines

The following results are obtained for catalogue coverage.

Model Catalogue Coverage %

Neural Network 83.12
Collaborative Filtering 94.4

Table 6.3: Catalogue coverage

The average novelty for all users shown in the results below for the 2 models tested.

Model Average Novelty

Neural Network 0.21
Collaborative Filtering 0.27

Table 6.4: Novelty Results

6.2 Discussion of Results

The results above indicate a successful prediction for both the content-based model
and collaborative filtering model. Considering that for new customers that join, there
is a 77.2% accuracy in being able to predict the product that will be best suited for
their needs. This is powerful from a marketing perspective. For existing customers,
to predict cross-sell for new products with a 83.8% accuracy is extremely valuable
for growing portfolio bases with existing customers. Hence the solution solves the
problem of cold-start for new customers as well as cross-sell for existing customers.
The RMSE is based on using the member time as implicit feedback to measure the
affinity of customers for a particular product (on a rating scale of 0-1).

To compare the results obtained above to a simpler model, a multinomial logistic re-
gression was conducted on the dataset used to predict new products for existing users.
The product was modelled as a function of gender, policy time, habit, age, premium
and occupation. The classification accuracy obtained from this model was 38.4% on a
validation dataset. Details of this implementation are presented in Appendix E. This

56

indicates that the methods explored in this research definitely outperform simpler
regression techniques.

As shown in the ILS results, the neural network has a lower ILS and thus greater di-
versity than collaborative filtering. This means that the approaches complement each
other, since new users joining the company will get diverse recommendations from
the neural network, but once they become a more well established client with more
products, the collaborative filtering will make more niche suggestions. The results for
catalogue coverage indicate good coverage for both neural networks and collaborative
filtering. However, the high coverage in this case might be due to the relatively small
number of insurance products (22), in comparison to most recommender systems on
movies or e-commerce systems with thousands of products. In these cases, this value
is usually significantly lower (Arora et al. 2014).

As shown in the results, novelty is greater for collaborative filtering than for neural
networks. This could be due to neural networks providing recommendations based on
features (age, gender, occupation, etc.), hence similar products may be recommended
for certain groups of people without much individual specificity. Collaborative filter-
ing uses a rich selection history to make a recommendation instead of general features,
and this could explain slightly more novel or unique suggestions in products. Once
again, this does suit a complementary approach of using neural networks for new
users, and collaborative filtering for existing users.

6.3 Combined System Analysis

As discussed previously, the system developed indicated a good performance on both
the content based side of the recommendations with neural networks, as well as the
collaborative filtering side. This indicates that the approach of using neural networks
for new users, and collaborative filtering for existing users is powerful in providing
holistic recommendations for all users. In production, this system could theoretically
route a user based on the number of products they have to the correct recommender,
and provide a classification. However, this is not a true hybrid system, and the
method implemented here is more of an ensemble approach.

A true hybrid system uses the latent features learned from collaborative filtering as
additional inputs into a neural network based model (Lee, Choi, and Woo 2002).
The latent features represent hidden features of the products and users which are not
directly obvious from observation or from explicit labels. The matrix factorization
process thus learns these hidden dimensions and features for existing users. These
hidden features can then be used as inputs to a neural network, in combination
with the explicit features (gender, age, occupation, etc.). This architecture would be
relevant for both new users and existing users. New users might not have data for
latent features, so only the explicit fields would be used with null entries for latent
features. This would be a potential research area that could build on the results
obtained here.

57

Another approach in using hybrid models is incorporating a joint model or multitask
learning model. Joint training or multitask learning refers to the ability of simultane-
ously optimizing an objective function with multiple models, reinforcing the strengths
of each model and mitigating the weaknesses. Generally, with joint training the re-
sults of each model’s training iteration is backpropogated to the other model during
the training process (Ruder 2017). Joint training differs from ensemble approaches
where models are trained independently, and models are integrated only at the pre-
diction stage for new data (inference stage) (Cheng et al. 2016). The drawback of an
ensemble approach is that it requires large models since each model independently
requires sufficient training data to produce accurate predictions. Joint training, how-
ever, only requires each model to be trained for components which complement the
weaknesses of other models (Q. Yang and Y. Zhang 2017).

In the context of recommendation engines building on this research, joint training
approaches could be used for a hybrid collaborative filtering and neural architecture.
A particular case study which has shown great results with recommendation engines
is wide and deep learning. This combines the strengths of generalized linear models
and deep neural networks.

6.4 Future Recommendations

Based on the results obtained above, there are a number of approaches which can
be implemented to enhance the capabilities of the current recommendation engine.
These recommendations will primarily aim to increase the model performance and
provide a more production ready hosted version of the model.

The first approach would be to integrate the two models trained independently into
a single hybrid model. As discussed in section 6.3 above, the WALS method which
obtains the latent factors can be combined with a neural network approach to build
an end to end hybrid system. Furthermore, in order to gain better hyperparame-
ter values, a future suggestion would be to perform more exhaustive hyperparameter
tuning strategies. For the system built, a bayesian optimization was conducted to
tune the parameters for WALS, and a grid search technique was used for the neural
network. Various approaches such as grid search, random search and bayesian opti-
mization should all be tested with more trials. Furthermore, a joint training model
could be incorporated for multitask learning to optimize both the neural network and
WALS method simultaneously, instead of feeding the data separately in an ensemble
approach. This would make the model much more efficient to deploy at scale in a
production system, and when there is much more input data.

The next recommendation would be to host the model in a more production ready
environment to test the model at scale. Although the statistical analysis of the data
provided a good set of results, actual performance may vary on real-world data. For
the system built on Tensorflow, the model would need to be packaged into an Ap-
plication Programming Interface (API), which can provide recommendations to front

58

end environments such as web or mobile sites. This tests the capabilities of the model
with both real data and in a scalable environment with many users. Furthermore,
for online training to dynamically update the results, we would need to incorporate
a feedback mechanism to retrain the data.

59

7. Conclusion

The aim of this research was to design a recommendation engine for insurance cus-
tomers which could suggest appropriate products for new or existing users based on
their age, gender, occupation, smoking habits, premium amount, and policy time.
Two major approaches of building recommendation engines involve collaborative fil-
tering techniques and neural networks. Collaborative filtering techniques work well
for long standing customers with a rich purchase history. Neural networks work well
by using customer features (age, gender, etc.) to find suitable products.

A combined recommendation engine was therefore designed, implemented and tested
on an insurance dataset. The two models built involved a collaborative filtering
approach using Weighted Alternating Least Squares (WALS), and a Content based
Model using neural networks. The Collaborative filtering approach achieved a 83.8%
accuracy and the neural network achieved a 77.2% accuracy on classification. Test
results are indicated that both models are essential for a successful recommendation
engine, since the neural network helps with solving a cold start problem for new users
with no data, and the matrix factorization approach is useful for existing users. Given
enhancements to the system, like combining the two models into single system, and
making the system more production ready, the designed system could certainly be
implemented into a production insurance environment to enhance targeted marketing,
cross-sell and up-sell approaches in the insurance industry.

60

Appendices

61

A. Further Data Exploration

This section involves showing further data exploration, with a number of different
variables compared to test for statistical relevance. The visualizations are produced
as support for the model building process to identify correlation and relationships in
the data.

A.1 Correlation Tests

Correlation tests are applied on the data to determine relative importance of features
to the target label “product”. Considering the large amount of categorical columns in
the data, we use the Chi Square test to determine whether there is possible association
between the outcome variable and the input variables (McHugh 2013). Using the Chi
Square test, we are trying to determine whether a relationship exists between two
categorical variables. This involves defining a null hypothesis, and then testing this
hypothesis. For the purpose of each categorical feature, this hypothesis is as follows:

H0: There is no association between the target feature and the categorical feature
being compared.

Ha: There is an association between the target feature and the categorical feature
being compared.

To test this hypothesis, we need to compute a test statistic using the following Chi-
squared test (ibid.):

χ̃2 =
n∑
k=1

(Ok − Ek)2

Ek
(A.1)

where χ̃2 is the test statistic, Ok refers to instances observed for each categorical
feature of the insurance data set, and Ek is the expected outcome assuming the null
hypothesis is true (no association) across all cases n. For example, in the case of

62

gender, for the null hypothesis it is expected that there will be an equal distribution
of males and females across the product catalogue. Once χ̃2 is determined, this
test statistic follows a particular Chi-square distribution, with degrees of freedom
dependant on the variables being tested, and calculated as follows:

DOF = (V ar − 1)(Products− 1) (A.2)

where V ar is the possible types of the variable being tested, and Products is the
possible types of the target variable Product. For example, when testing association
between gender (2 types) and product (22 types), the total degrees of freedom is
21. We then use the standard Chi-square distribution with 21 degrees of freedom
to find a critical value for χ̃2 at a significance level of 0.05. If the value determined
from equation A.1 is greater than the critical value, this means that the probability
(p − value) of experiencing conditions under which the null hypothesis holds true
is greater than 0.05, and we thus accept the null hypothesis. Using this approach
approach, we can calculate the p− values for each of the categorical features against
the target product feature, and the results are indicated in Table A.1. For continuous
variables, we group the data into specific categorical ranges. For example, the variable
age could be grouped into young, middle-aged and old. After grouping the continuous
variables, we apply the Chi Square test in the same manner. As shown in Table A.1,
for all variables the null hypothesis is rejected, indicating statistical relevance between
the various fields and the target field “product”.

Feature p− value
Habit << 0.01

Gender << 0.01
Occupation << 0.01

Age 0.0023
Policy Time 0.018

Premium << 0.01

Table A.1: Results of significance tests after Chi Square is applied

63

A.2 Visualizations

Figure A.1: Box Plot Showing the distribution of policy time for various Occupation
Groupings

64

Figure A.2: Bar graph Showing the number of products per Occupation Group

Figure A.3: Scatter plot showing the variation of clustering of occupation groups
according to premium amount and age

65

Figure A.4: Bar graph showing the average member time per product

66

B. Tensorflow Algorithms

The following sections provide an overview of key logic algorithms used in the model
building process.

B.1 Generate input rows and Columns for WALS

algorithm

This involves generating a Tensorflow Record (TFRecord) for all the rows (users) and
another record for all the columns (products/items). Tensorflow records are specific
storage objects which are optimized for efficient processing by the Tensorflow library.
When feeding the list of rows into the TFRecord storage object, we specify a “key”,
“index” and “value” field for each row/column. In the case of dealing with rows
(insurance users), the key in this case will be the user for the row, the indices would
be the various item IDs, and the values would be the implicit feedback that the user
provides each item (the policy time in this case). An example of this record structure
is shown in Figure B.1. Similarly, for the columns TFRecord (products), the key
would be the item, the indices would be the user IDs for that particular column,
and the values would be the various implicit feedback ratings. These TFrecords can
now be parsed and batched rows or columns can be sent to the WALS estimator for
training.

For the input functions, a parser is developed for the TFrecords that store the user
and item data. The objective of parsing is to store the item and products into a data
storage object that efficiently handles sparse data points for computation efficiency.
Typical arrays or matrices are not optimized for sparse data points. Within the
tensorflow library, Sparse Tensors are storage objects which handle these datasets,
where it stores the non-zero values and the corresponding coordinates from the orig-
inal TFrecord.

The input function also specifies an epoch which repeats the parsing process for a
group of users or items (rows or columns) a number of times to determine the optimal
latent features during the training process. Batching is a technique used to group a set

67

Figure B.1: TFRecord structure for mapping the rows of the user-item matrix into
the appropriate storage structures in Tensorflow

of user and items that are processed at once through the WALS matrix factorization
process. Figure B.2 shows the overall process.

Figure B.2: Process for generating sparse tensors to provide to WALS

As mentioned before, for a batch obtained from the user or product set, we need to
generate a sparse tensor before feeding this into the WALS library for processing.
Batching is important, since we want to work with alternating subsets of rows and
columns as per the WALS algorithm (alternating). When we generate a batch of rows
or columns in a sparse tensor, the row or column IDs of each record get overwritten by
the batch ID. A remapping process then needs to occur, where we replace the batch
ID for the particular value with the user ID (for rows) or item ID (for columns).

68

B.2 Key remapping algorithm

Specifically this refers to the key remapping algorithm used for Weighted Alternat-
ing Least Squares (WALS) in matrix factorization, and the alternating process to
solve for the row and column latent features discussed in Chapter 5. In the WALS
algorithm, for a batch obtained from the user or product set, we need to generate a
sparse tensor before feeding this into the WALS library for processing. Batching is
important, since we want to work with alternating subsets of rows and columns as per
the WALS algorithm (alternating). When we generate a batch of rows or columns in
a sparse tensor, the row or column IDs of each record get overwritten by the batch
ID. A remapping process then needs to occur, where we replace the batch ID for the
particular value with the user ID (for rows) or item ID (for columns). The specific
algorithm for key remapping is explained with the following pseudocode.

Algorithm 1 WALS Key remapping

1: procedure Parse TFrecord(filename) . Input function
2: Open File . Either row or column file
3: Create a sparse tensor . store in Better structure
4: Save Key . remapping IDs
5: Concatenate key with sparse Tensor . pass the keys back
6: Generate a batch of rows or columns
7: Remap the keys from batch overwriting
8: return remapped batch . Return and iterate

69

B.3 Weighted Alternating Least Squares Algorithm

For the algorithm used to solve iteratively for the user and item features, the following
pseudocode indicates the process:

Figure B.3: Weighted Alternating Least Squares algorithm

This is an iterative process which obtains an optimal U and V matrix, to produce
the best latent features for each customer and each product, such that when they
are multiplied together the ordinary least squares error is minimized in the predicted
matrix.

70

C. Insurance Products

The insurance product recommender references a number of insurance products which
use codes and abbreviations which are not intuitive to interpret. This section provides
a lookup table of all insurance products and codes and names used in the database.

Product Database name (code) Full Name

SPPI Sickness and Permanent Incapacity Benefit
DISA Disability Cover
LA Life Assurance

OSRB Occupation Specific Rider Benefit
WL Wellness Lifestyle
PLP Accidental Death

Catchall Comprehensive Medical Cover
PHP Professional Health Provider

Core 100% General Health Cover
PDP Professional Disability Provider

Rider Benefit Dependants on main member
RA Retirement Annuity

Sickness Benefit Income protection for sickness

Table C.1: Full list of insurance products and definitions

*Note: The full list of products includes variations of the above codes. For example,
a product may be PDP OSRB which indicates that it is for a Professional Disability
Provider (PDP), but with an additional dependant (rider benefit) on the insurance
(spouse, child, etc.).

71

D. Hyperparameter Tuning

Hyperparameter tuning is a key element required to optimize the model for higher
accuracies. This section discusses Bayesian optimization as a method of hyperparam-
eter tuning. For implementation, the native Tensorflow library is used to perform
Bayesian optimization (Swersky, Snoek, and R. P. Adams 2013). Bayesian optimiza-
tion is powerful in optimizing parameters when the mathematical form of the objective
function is difficult to compute (ibid.). In the case of a single hyperparameter, con-
sider Figure D.1 below (Ravikumar 2018). This shows the actual output points for
various values of the hyperparameter. The true objective function is shown, and the
goal of hyperparameter tuning is to approximate this function as closely as possible.
We can approximate the values between the known points with a Gaussian process,
as shown in Figure D.2. As illustrated, the most likely function can be estimated as
the curve with the mean of the Guassian process (ibid.).

Figure D.1: True objective function mapped to observed points

To further refine the most likely function, regions of known maxima/minima as well
as high Gaussian variance (uncertainty) are sampled. The points are sampled in
these regions with an acquisition function (ibid.). A variety of different acquisition
functions can be used, but the details are beyond the scope of this research. The

72

Figure D.2: Possible curves shown as a Gaussian process between known points

primary goal of the function is to find points which yield expected improvement in
these regions, as shown in Figure D.3. The samples which yield the maximum value
in the acquisition function are selected as new points on the most likely function.

Figure D.3: Refined predicted function after sampling with acquisition function in
regions of high uncertainty and known maxima/minima. The values which yield
expected improvement are selected as likely points on the predicted curve

73

E. Linear Model Implementation

The recommendation engines designed are based on neural networks and collaborative
filtering techniques. This section involves the implementation of a simpler model to
compare. Specifically a multinomial logistic regression was implemented using the R
nnet package. The source code for the model is shown in Appendix F. Multinomial
logistic regression is used to test the significance of continuous variables on multi-
class categorical variable outcomes. In a similar way to traditional logistic regression
for binary outcomes, multinomial logistic regression predicts the probability that the
outcome is equal to one of the possible categorical values using the formula below:

P (1), P (2), ..., P (K − 1) =
eβK−1 × xi

1 =
∑K−1

j=1 eβj × xi
(E.1)

Where P(1), P(2), ..., P(K-1) represent the probabilities of the various outcomes. β
represents the coefficients for linear combinations of the independent variables, and
xi represents the input data associated with outcome Yi.

The insurance data is imported, and split into training (80%) and test (20%) datasets.
A multinomial regression is performed by modelling the “product” column with all
other columns as inputs. The validation obtained a classification accuracy of 38.4%.
A deeper analysis of variance and other statistical features were not extracted, since a
basic classification accuracy was required to compare with collaborative filtering and
neural networks.

74

F. Source Code

All source code for the research is stored in a remote repository with the following
link:

https://github.com/prinpillay/masters/

This repository contains the code and notebooks required for model development.
The following notebooks and modules can be found:

1. GLM insurance.ipynb - this contains a simple multinomial logistic regression on
the insurance dataset.

2. Clustering.ipynb - data exploration with unsupervised clustering techniques

3. nn preproc.ipynb - this is the preprocessing of data required for neural network
model development

4. nn model.ipynb - the neural network recommendation engine.

5. nn htuning.ipynb - hyperparameter tuning for the neural network recommen-
dation engine

6. nn htuning.ipynb - hyperparameter tuning for the neural network recommen-
dation engine

7. CF wals.ipynb - collaborative filtering recommendation engine including pre-
processing, model development and model tuning

8. wals packaged - packaged python module version for CF wals.ipynb.

9. wals htune - packaged files required for hyperparameter tuning of WALS rec-
ommendation engine

75

Bibliography

Abadi, Martın et al. (2016). “Tensorflow: A system for large-scale machine learning”.
In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 265–283.

Alan, Shi Yue; Larson Martha; Hanjalic (2014). “Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges”. In: ACM
Computing Surveys (CSUR) 47, pp. 1–45. doi: http://doi:10.1145/2556270.

Aranganayagi, S and K Thangavel (2007). “Clustering categorical data using silhou-
ette coefficient as a relocating measure”. In: International Conference on Compu-
tational Intelligence and Multimedia Applications (ICCIMA 2007). Vol. 2. IEEE,
pp. 13–17.

Arora, Gaurav et al. (2014). “Movie recommendation system based on users’ similar-
ity”. In: International Journal of Computer Science and Mobile Computing 3.4,
pp. 765–770.

Arpit, Devansh et al. (2017). “A closer look at memorization in deep networks”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, pp. 233–242.

Bherde, Prof Gajanan (2015). “Credit Card Fraud Detection”. In: International Jour-
nal on Recent and Innovation Trends in Computing and Communication. IJRITCC,
pp. 2069–2071.

Bracha, Adomavicius Gediminas; Tuzhilin Alexander; Ricci Francesco; Rokach Lior;
Shapira (2015). Recommender Systems Handbook. Springer.

Buda Andrzej; Jarynowski, Andrzej (2010). Life time of correlations and its applica-
tions. Wydawnictwo Niezależne.

Castells, Pablo, Saúl Vargas, and Jun Wang (2011). “Novelty and diversity metrics
for recommender systems: choice, discovery and relevance”. In:

Charu, Aggarwal (2016). Recommender Systems: The Textbook. Springer.
Cheng, Heng-Tze et al. (2016). “Wide Deep Learning for Recommender Systems”.

In: arXiv:1606.07792. url: http://arxiv.org/abs/1606.07792.
Chris, Koren Yehuda; Bell Robert; Volinsky (2009). “Matrix Factorization Techniques

for Recommender Systems”. In: Computer 42.8, pp. 30–37. doi: http://doi:
10.1109/MC.2009.263.

76

Covington, Paul, Jay Adams, and Emre Sargin (2016). “Deep neural networks for
youtube recommendations”. In: Proceedings of the 10th ACM conference on rec-
ommender systems. ACM, pp. 191–198.

Dahl, George E, Tara N Sainath, and Geoffrey E Hinton (2013). “Improving deep
neural networks for LVCSR using rectified linear units and dropout”. In: 2013
IEEE international conference on acoustics, speech and signal processing. IEEE,
pp. 8609–8613.

Dietterich, Thomas G (2000). “Ensemble methods in machine learning”. In: Interna-
tional workshop on multiple classifier systems. Springer, pp. 1–15.

Furnas, Will Hill; Mark Rosenstein; George (1995). “Recommending and evaluating
choices in a virtual community of use”. In: Proceedings of the SIGCHI conference
on Human factors in computing systems. doi: http://pages.cpsc.ucalgary.
ca/~saul/601.13/readings/Recommending/wch_bdy.htm.

Gemulla, Rainer et al. (2011). “Large-scale matrix factorization with distributed
stochastic gradient descent”. In: Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM, pp. 69–77.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech recogni-
tion with deep recurrent neural networks”. In: 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, pp. 6645–6649.

Harris, David (2011). Digital design and computer architecture (2nd ed.) Morgan
Kaufmann Publishers.

Haykin, Simon (1994). Neural networks: a comprehensive foundation. Prentice Hall
PTR.

He, Xiangnan et al. (2016). “Fast matrix factorization for online recommendation
with implicit feedback”. In: Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval. ACM, pp. 549–
558.

Jhalani, Tanisha, Vibhor Kant, and Pragya Dwivedi (2016). “A linear regression
approach to multi-criteria recommender system”. In: International Conference on
Data Mining and Big Data. Springer, pp. 235–243.

Koren, Yehuda (2008). “The BellKor 2008 Solution to the Netflix Prize”. In: Netflix
Prize Forum.

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix factorization tech-
niques for recommender systems”. In: Computer 8, pp. 30–37.

Krueger, David et al. (2017). “Deep Nets Don’t Learn via Memorization”. In:
Lee, Meehee, Pyungseok Choi, and Yongtae Woo (2002). “A hybrid recommender sys-

tem combining collaborative filtering with neural network”. In: International con-
ference on adaptive hypermedia and adaptive web-based systems. Springer, pp. 531–
534.

Liu, Weiyang et al. (2016). “Large-margin softmax loss for convolutional neural net-
works.” In: ICML. Vol. 2. 3, p. 7.

Low, Jerry (2017). Super Sales Strategies: Quick Tips for Upselling And Cross-Selling.
url: https://www.business.com/articles/quick-tips-for-upselling-
and-cross-selling/.

77

Lumb, Richard (2016). Fintech Report. url: https://www.accenture.com/t20170411T170619Z_
_w__/id-en/_acnmedia/PDF-15/Accenture-Fintech-Report-London-Lab-

News-Release.pdf.
Martın Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensorflow.org. url: https://www.

tensorflow.org/.
McHugh, Mary L (2013). “The chi-square test of independence”. In: Biochemia med-

ica: Biochemia medica 23.2, pp. 143–149.
Nguyen, Tien T et al. (2014). “Exploring the filter bubble: the effect of using recom-

mender systems on content diversity”. In: Proceedings of the 23rd international
conference on World wide web. ACM, pp. 677–686.

Nielsen, Michael A. (2015). Neural Networks and Deep Learning. Determindation
Press.

O’Shaughnessy, Baker J.; Deng Li; Glass Jim; Khudanpur S.; Lee C.-H.; Morgan
N.;D. (2009). “Research Developments and Directions in Speech Recognition and
Understanding, Part 1”. In: IEEE Signal Processing Magazine 26, p. 3. doi: http:
//doi:10.1109/msp.2009.932166..

Ravikumar, M (2018). Let’s Talk Bayesian Optimization. url: https://mlconf.
com/blog/lets-talk-bayesian-optimization/.

Resnick, Paul et al. (1994). “GroupLens: an open architecture for collaborative fil-
tering of netnews”. In: Proceedings of the 1994 ACM conference on Computer
supported cooperative work. ACM, pp. 175–186.

Rosa, M. Montaner; B. Lopez; J. L. de la (2003). “A Taxonomy of Recommender
Agents on the Internet”. In: Artificial Intelligence Review 19.4, pp. 285–330. doi:
http://10.1023/A:1022850703159.

Ruder, Sebastian (2017). “An Overview of Multi-Task Learning in Deep Neural Net-
works”. In: CoRR abs/1706.05098. arXiv: 1706.05098. url: http://arxiv.org/
abs/1706.05098.

Sarwar, Badrul Munir et al. (2001). “Item-based collaborative filtering recommenda-
tion algorithms.” In: Www 1, pp. 285–295.

Schmidhuber, J. (2015). “Deep Learning in Neural Networks: An Overview”. In: Neu-
ral Networks 65, pp. 85–117.

Spiliopoulos, Vassilis, George A Vouros, and Vangelis Karkaletsis (2007). “Mapping
ontologies elements using features in a latent space”. In: IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI’07). IEEE, pp. 457–460.

Sweeney, Mack et al. (2016). “Next-term student performance prediction: A recom-
mender systems approach”. In: arXiv preprint arXiv:1604.01840.

Swersky, Kevin, Jasper Snoek, and Ryan P Adams (2013). “Multi-task bayesian opti-
mization”. In: Advances in neural information processing systems, pp. 2004–2012.

Takács, Gábor et al. (2009). “Scalable collaborative filtering approaches for large
recommender systems”. In: Journal of machine learning research 10.Mar, pp. 623–
656.

Thai-Nghe, N. (2010). “Recommender system for predicting student performance”.
In: Proceedings of the 1st Workshop on Recommender Systems for Technology
Enhanced Learning.

78

Wong, AKC and Wang Yang (1997). “High-order pattern discovery from discrete-
valued data”. In: IEEE Transactions on Knowledge and Data Engineering 9.6,
pp. 877–893. doi: http://10.1109/69.649314.

Xing, Cao Jian; Hu Hengkui; Luo Tianyan; Wang Jia; Huang May; Wang Karl; Wu
Zhonghai; Zhang (2015). “Distributed Design and Implementation of SVD++
Algorithm for E-commerce Personalized Recommender System”. In: Communi-
cations in Computer and Information Science. 572, pp. 30–44. doi: doi:http:
//10.1007/978-981-10-0421-6_4.

Xu, Rui and Don Wunsch (2008). Clustering. Vol. 10. John Wiley & Sons.
Yang, Qiang and Yu Zhang (2017). “An overview of multi-task learning”. In: National

Science Review 5.1, pp. 30–43. issn: 2095-5138. doi: 10.1093/nsr/nwx105. eprint:
http://oup.prod.sis.lan/nsr/article-pdf/5/1/30/24164435/nwx105.pdf.
url: https://doi.org/10.1093/nsr/nwx105.

Zhang, Lei, Shuai Wang, and Bing Liu (2018). “Deep learning for sentiment analy-
sis: A survey”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 8.4, e1253.

Ziegler, Cai-Nicolas et al. (2005). “Improving recommendation lists through topic
diversification”. In: Proceedings of the 14th international conference on World
Wide Web. ACM, pp. 22–32.

Zweig, Heck L.; Tur G.; Yu D.; G. (2015). “Using recurrent neural networks for
slot filling in spoken language understanding”. In: IEEE Transactions on Audio,
Speech, and Language Processing 23, pp. 530–539. doi: http://doi:10.1109/
taslp.2014.2383614.

79

