
JACK DE WET COMPETITION 2013
The Centre of Theoretical and Mathematical Physics at the University of Cape Town announces the Jack
de Wet Student Competition 2013. The Department of Physics and the Department of Mathematics at the
University of Cape Town sponsor the competition with R2000 to be awarded for the best and most elegant
solution to the problem set out below. The winner will be invited to UCT for a presentation and award
ceremony.

Science students up to and including Masters Level who are registered at a university or a comparable
institution of tertiary education in South Africa are eligible to participate. Contributions must be submitted
by 4pm Saturday, 15 February 2013, by email, preferably in pdf form, to the secretary of the physics
department of UCT, Margaret Maich at margaret.maich@uct.ac.za. We require the entrant to provide
his or her study record to allow us to verify academic affiliation. Candidates have to attest that their
contributions represent own work.

Holographic QCD: strong interactions from a gravity dual
: Set by Dr. W. A. Horowitz, Department of Physics, UCT, wa.horowitz@uct.ac.za:

”Those who are not shocked when they first come across quantum theory cannot possibly have
understood it.” - Niels Bohr

1 Statement of the Problem
Compute the energy momentum tensor T µν for a glueball –a bound state of gluons, here used generically
to refer to the interaction carriers of a Yang Mills theory– in strongly-coupled N = 4 super-Yang-Mills
in an arbitrary number of spatial dimensions D.

2 Introduction
The AdS/CFT correspondence [1, 2, 3], also known as the Maldacena conjecture, is the most exciting
development in theoretical physics of the past 30 years. The correspondence relates the physics of a
field theory in D dimensions to a string theory in D + 1 dimensions (really the product of a D + 1
dimensional space with a compact manifold). The miracle of the conjecture is that the dual descriptions
swap strong and weak coupling limits: when the string theory is strongly-coupled the field theory is
weakly-coupled, and vice versa. This exchange of limits is extraordinarily useful because physicists
often have very few tools to explore the physics in strongly-coupled regimes; however, there are well-
defined means of computation in the limit of weak-coupling. For instance, Feynman diagram techniques
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are extremely useful when a field theory is in the weakly-coupled limit; on the other hand, the weakly-
coupled limit of string theory is classical gravity (i.e. Einsteinian general relativity). We can therefore
use the AdS/CFT correspondence to quantitatively derive the properties of objects in limits heretofore
inaccessible to physics. One uses a “dictionary” to translate between the dual pictures.
In this problem, you will determine some characteristics of a glueball in strongly-coupled N = 4 super-
Yang-Mills (SYM). SYM is a cousin of quantum chromodynamics, the theory of the strong force. A
glueball is a particle consisting only of gluons and no quarks; glueballs have been conjectured to exist
in QCD (and some of their properties predicted using lattice gauge theory) but have yet to be observed
experimentally.

3 Detailed Description of the Problem
According to the AdS/CFT dictionary, a glueball in D + 1-dimensional SYM corresponds to a point
particle in D + 2-dimensional anti-de-Sitter space1,

ds2 = gAdS
D+2

mn dxmdxn =
L2

z2

(
dt2 +

D+1∑
i=1

(dxi)2
)
. (2)

According to holographic renormalization [5, 6], the energy-momentum tensor Tµν in the strongly-coupled
field theory is related to the metric perturbations hmn = gmn−gAdS

D+2

mn on the boundary ofAdSD+2 space,

Tµν =
(D + 1)LD

16πGD+2

lim
z→0

hµν
zD+1

. (3)

Note that we use Greek indices for the D + 1 dimensions in the field theory and Roman indices for
the D + 2 dimensional AdS gravity theory and that the boundary of the AdS space is the usual RD, 1

Minkowski space,

ds2 = gR
D, 1

µν dxµdxν = ηµνdx
µdxν = −(dt)2 +

D∑
i=1

(dxi)2. (4)

Your task, then, is to compute the full gmn = gAdS
D+2

mn + hmn from Einstein’s equations coming from
coupling a probe point particle to gravity. It turns out that this is one of the few exactly solvable problems

1You can see that (2) solves Einstein’s equations in empty space by extremizing the action

SAdS =
1

16πGD+2

∫
dD+2x

√
g

[
R+

D(D + 1)

L2

]
(1)

with respect to the metric gmn, where R is the usual Ricci scalar [4].
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in general relativity, where one takes a massless point particle p of energy E travelling at a fixed depth
z ≡ xD+1 = z0. Fig. 1 shows a visual representation of the problem: the particle p moves in the AdSD+2

bulk, emitting gravitons that slightly perturb the metric; one then uses Eq. (3) of the AdS/CFT dictionary
to translate these perturbations in the string theory to the energy-momentum tensor that we are interested
in that exists in the dual field theory.

Figure 1: Schematic setup of the problem.

To compute the full gmn, first derive the motion of the point particle p of energy E and constant depth
z = z0 in empty AdSD+2 space; i.e., compute the motion of the point particle in the metric given by (2).
(Not simultaneously and self-consistently solving for the metric and the motion of the point particle as we
are doing here is known as the probe limit.) One may do this by extremizing the action

Sp =

∫
dη

[
1

2e
gAdS

D+2

mn

dXm

dη

dXn

dη
− e

2
m2

]
, (5)

with respect to Xm and e where gAdSD+2

mn is fixed and given by (2), e is the einbein on the point particle
worldline, and the Xm(η) : R → AdSD+2 are the embedding functions which parameterize the point
particle worldline in AdS space [7, 8].
Then compute the perturbation to the metric caused by the presence of the point particle propagating with
the motion you just found (this perturbation is known as the backreaction of the particle on the metric).
One may compute this backreaction from the coupling of the probe to gravity by extremizing the action

S = SAdS + Sp =
1

16πGD+2

∫
dD+2x

√
g

[
R +

D(D + 1)

L2

]
+

∫
dη

[
1

2e
gmn

dXm

dη

dXn

dη
− e

2
m2

]
(6)

with respect to gmn. Once you have the equations of motion for the full gmn, take gmn = gAdS
D+2

mn + hmn
and solve for the hmn perturbation of the metric.
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Once you have the full T µν , confirm that
∫
dDxT 00 = E. Compute the apparent size of the glueball from∫

dDx r2T 00.
Possibly useful hints:

• the calculation may be easier in places if lightcone coordinates are used, x± = t± x

• the symmetries of the generalized Laplace equation that you will have to solve are perhaps best
represented/found from the geodesic of the (sub)manifold involved, which might be a hyperboloid.
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