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Some apparent periodic errors in the crystal lattice of the
molecular complexes of 4:4’-dinitrodiphenyl with

4-10do- and 4-bromodiphenyl
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[Plate 23]

Oscillation photographs from crystals of the complexes of 4 4’-dinitrodiphenyl with 4-bromo-
and 4-10dodiphenyl show a mixture of sharp and diffuse spots. When the oscillation is about
the c¢-axis the spots on every seventh laver-line are observed to be sharp, those on all the
other lines being diffuse. The diffuseness varies from line to line, but in all cases corresponds
to an elongation of the maxima of the interference function in the reciprocal-lattice space
in the &*-direction. The spacing of the diffuse laver-lines in the c-axis photographs from the
complex with 4-bromodiphenyl is anomalous, and the positions of the lines correspond to
those of optical ghosts accompanying the sharp laver-lines, such as would be expected if a
fundamental spacing of 3-69 A were periodically distorted, the period of the distortion being
rather less than 34 times that of the fundamental spacing. The diffuseness of the spots
suggests that the structure also contains faults in the b-direction. A suggested explanation of
the effects in terms of the structure is put forward.

In the second part of the paper, a mathematical discussion of diffraction by a simplified
model, consisting of a lattice with a periodic error in spacing in the c-direction, and faults
consisting of sudden random changes in the phase of a periodic error in lattice planes per-
pendicular to the b*-axis, is discussed, and it is shown that the diffraction pattern given by
such a structure exhibits features similar to those observed.

IxXTRODUCTION

The crystal structures of a number of molecular complexes of 4 : 4"-dinmitrodiphenyl
with other 4- and 4: 4'-substituted diphenyl compounds have been investigated by
one of us (Saunder 1946, 1947). Although the compounds examined vary consider-
ably both in crystal symmetry and in the ratio of the two components of the complex,
the underlying structure is undoubtedly of the same general type for all of them.
The typical arrangement may be taken as that in the complex of 4 : 4'-dinitrodipheny]l
with 4-hydroxydiphenyl in the ratio of three molecules of the first to one of the
second, the structure of which has been fully determined (Saunder 1946). Two of
the complexes examined, those with 4-bromo- and 4-iododiphenyl, give X -Tay
photographs showing certain peculiarities, which are of considerable interest from
the optical point of view, and which it is the purpose of this paper to discuss.

A general idea of the type of structure to which all complexes of the kind con-
sidered approximate may be given as follows. The dinitrodiphenyl molecules form
layers in face-centred array, as shown in figure 1. In any given crystal. the molecules
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519  Periodic errors in the crystal lattice of molecular complexes

will not in general lie exactly in these idealized planes, but they never depart oreatly
from them. Suppose a series of such planes to lie one above the other with a spacing
of about 3-7 A. The dinitrodiphenyl molecules in any one layer are denoted by 4
in figure 1, and those in any row parallel to a are so placed that a gap is left between
adjacent nitro groups. When a series of superposed layers is considered, it will be
seen that these gaps produce a set of tubular cavities, also in face-centred array,
running through the structure. The characteristic molecules of the complex, in the
cases to be considered, the 4-bromo- and 4-iododiphenyl molecules, occupy these
tubular cavities. They are seen end-on in figure 1, and are denoted by B. The general

[F'TarvrE 1. Projection along ¢ on to the ab-plane of the idealized structure of the complexes
of 4:4’-dinitrodiphenyl with 4-iodo- and 4-bromodiphenyl. In the distance ¢ there are two
lodo- or bromodiphenyl molecules (B), seen end-on. Each dinitrodiphenyl molecule (4)
represents seven molecules one above the other, separated by ¢/7.

direction of the long axes of these B molecules is perpendicular to the planes con-
taining the 4 molecules. In the only structure fully worked out, mirror planes ot
symmetry lie perpendicular to the planes of A molecules, and contain their long
axes and also the planes of the benzene rings of the B molecules. This exact arrange-
ment is not found in all the complexes, although it is probably also that of the iodo-
and bromo-complexes discussed here, but the departure from 1t never seems to
be large.

The ratio of the number of 4 to the number of B molecules varies from complex
to complex, but appears to depend on the length of the B molecules, rather than on
chemical considerations; and, indeed, it has been found possible to predict the ratio
from a knowledge of this length (Rapson, Saunder & Stewart 1947). In general, the
A molecules do not lie exactly in planes, nor is the direction of the length of the B
molecules perpendicular to that of the lengths of the 4 molecules, and on account
of these and other departures from the ideal structure outlined above, the actual
symmetry of the crystals may differ widely from case to case, but consideration ot
the actual structures shows the departure from the ideal type to be relatively slight,
and oscillation photographs taken about structurally equivalent axes are extra-
ordinarily similar for all the complexes.
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THE COMPLEXES WITH 4-TODO- AND 4-BROMODIPHENYL

The preparation and chemical analysis of these complexes has been described by
Rapson et al. (1947). The molecular ratio of dinitrodiphenyl to iodo- and bromo-
diphenyl is found to be 7:2 in each case, so that the complexes may be represented
by the formulae

(LCH,CH.), (O,NCH,CH,NO,), and (BrCH,CH.), (0,NCeH,CH,NO,),.

Details of the crystallographic determinations will be found in a previous paper
(Saunder 1947). The crystal symmetry is monoclinic. As will be seen later, the
arrangement of the spots in oscillation photographs from the bromo-complex is 1n
some respects abnormal, but with the iodo-complex the positions of the spots on
the photographs are normal and show the dimensions of the unit cell to be

a=200A, b=95A c¢=258A /[=100".

f !
2ir

The space-group may be !, or (. . but there is reason to think that of these
(' is the most likely, which is the same as that for the complex with 4-hydroxy-
diphenyl, the structure of which has been fully determined. Detailed comparison
of the intensities of the more important spectra given by this compound with those
given by the iodo-complex, and comparison of the cell dimensions, the retractive
indices, and the diffuse spectra due to thermal vibrations, leads to the conclusion
that the structures of the two crystals must be extremely similar.

If the abnormalities in the spectra from the bromo-complex are for the moment
disregarded, all the remarks given above may be taken as applying to it also, the
dimensions of the two unit cells being the same within the limits of error of the
photographs taken.

DISCUSSION OF THE OSCILLATION PIIOTOGRAPHS

In the erystals of these complexes, the planes most closely corresponding with the
idealized planes containing the 4 molecules in figure 1 are the (001) planes, and if
the planes of A molecules were regularly spaced the distance between successive
planes would be 3-69 A. If the structure consisted only of such regularly spaced
planes of 4 molecules, a rotation photograph taken about the c-axis would show
widely spaced layer-lines corresponding to this distance. In the actual complex
with lododiphenyl, the pattern repeats itself every seven layers of 4 molecules,
there being two B molecules in this distance, so that intermediate layer-lines make
their appearance dividing the distance between the layer-lines due to the A molecules
into seven equal parts, thinking in terms of the reciprocal-lattice space. Actual
oscillation photographs taken about the c-axis show the layer-lines corresponding
to this larger spacing, 7 x 3-69 A; their appearance is, however, abnormal. The Oth,
7th and 14th layer-lines, corresponding to a spacing of 3-69 A, which on an ideal
structure would be given by the layers of 4 molecules alone, are sharp and clear,
but all the intermediate layer-lines show spots that are more or less diffuse, with
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elongations along the layer- lines. The diffuseness of the spots on any one line appears
to be about the same, but it varies markedly from line to line. There 18 no trace of
diffuseness in the 4 layer-lines, which are in every way nor mal. A photograph from
the bromo-complex is reproduced in figure 2, plate 23. Alternations of sharp and
diffuse layer-lines have also been observed by Powell & Huse (1943) from molecular
complexes of picryl chloride with hexamethylbenzene, and trom several other
complexes of a similar type. They have ascribed these to faults in the regular
sequence of atomic planes 1n structure.

Oscillation photographs about the h-axis show sharp and dittuse spots also (see
ficure 4, plate 23), and in every case the diffuse spots are those that would lie on the
intermediate layer-lines in photographs about the c-axis. On the photographs taken
with rotations about the b-axis the diffuse spots are elongated transversely to the
layer-lines, as would, ot course, be expected from the c-axis photographs, but the
elongated spots are not always centred on the layer-lines, but show marked dis-
placements above and below them. The degree of this displacement appears to be
a. property of the individual erystal, since it varies in photographs obtained from
different specimens.

A careful study of photographs taken with oscillations about different axes shows
the elongation of the maxima of the interference function about the corresponding
points in the reciprocal-lattice space to be parallel to 6*. An elongation in this
direction would be produced by a crystal having only a small extension in the b
direction, but this would make all the spots equally diffuse, which is not observed
here. The explanation of the diffuseness is therefore probably to be sought in faults
of the nature of those discussed by Wilson (1942), which are superposed on the
framework of a fundamentally regular lattice structure. A possible type of fault
which might account for the effect will be considered later.

ABNORMALITIES OBSERVED IN PHOTOGRAPHS FROM
THE COMPLEX WITH 4-BROMODIPHENYL

Photographs taken with oscillations about the c-axis with the bromo- and iodo-
complexes are at first sight very similar (figures 2 and 3, plate 23, respectively).
Both show the sharp Oth, 7th and 14th layer-lines, and the diffuse intermediate ones.
(‘areful inspection shows, however, that in the photograph from the bromo-complex
the spacing of the intermediate layer-lines is not uniform, when considered in terms
of the reciprocal-lattice space, but that the lines are arranged in groups, themselves
evenly spaced, about the sharp layer-lines. So far as the position of the lines alone
is concerned, the arrangement is exactly that to be expected of a series of optical
chosts accompanying the sharp layer-lines, such as would appear if a set of planes
of recular spacing 3-69 A had been modified by a periodic error of spacing repeating
itself in a distance 12-7 A in the direction of the c-axis, that is to say, with two
repetitions in a distance a little less than that corresponding to seven layers of the
A molecules. Had the error repeated itself exactly twice in seven layers, the ghost
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layer-lines would have exactly divided the spacing between the zero layer-line and
the 7th layer-line, and between the 7th and 14th layer-lines, as in fact they do within
the errors of measurement in the case of the iodo-complex.

On the actual photographs from the bromo-complex the departure from regularity
is very plain to the eye. The measured spacings of the layer-lines in the reciprocal-
lattice space, as determined by means of the Bernal chart, and using Cu K , radiation,
are shown diagrammatically in figure 5. The notation used in the figure has the
following significance. Let n be the order of a spectrum from a series of regularly
spaced plancs. Suppose these planes to be displaced periodically, a complete period
of the displacement occurring every ¢ planes. Then additional spectra of order
n +m /() make their appearance, and these are the optical ghosts. Any spectrum is
denoted by the symbol (n,m), the spectra from the undisturbed planes being those
of order (n, 0). When the planes are periodically displaced, the spectra of order (n, 0)
still appear, but those with m == 0 also appear. In the photographs from the bromo-
complex, the positions of the layer-lines correspond to a value of ¢ rather less
than 33.7

The positions of the irregularly spaced layer-lines are explained in detail by the
assumption of a periodic error in spacing. According to this view, the layer-lines, in
the order in which they occur in the photograph, are (0, 0), (1, 3), (0, 1), (1, 2), (0, 2),
(1, 1), (0,3), (1,0), (0,4), (1,1), (2,2) and (0,5), (1,2), (2, 1), (1,3), (2,0), .... Asa
working hypothesis, the occurrence of the B molecules at regular intervals might
be supposed to impose a variation of spacing on the sheets of 4 molecules. It
is significant that the error period in the case of the bromo-complex, as determined
by direct measurement from the photographs, is 12-7 A, which 1s the length, as
closely as can be determined from the available data, to be expected for the molecule
of 4-bromodiphenyl; and twice this length, which is 25-4 A 1s rather less than 7 x 3-69,
which is 25-8 A. The length to be expected for the molecule of 4-10dodiphenylis 12-9 A,
and twice thisis equal to 25-8 A. The periodic error then becomes part of the regularly
repeating pattern of the crystal, and the ghost layer-lines become ordinary layer-

lines.

On the view that the intermediate layer-lines are ghost spectra due to a periodic
error in a fundamental spacing, the ghosts accompanymg the zero layer-line, the
spectra (0, +m), would be expected to be very weak, although not in principle
absent, while in the actual photograph these spectra are quite strong. It must,
however, be remembered that the structure contains the regularly spaced B mole-

t After this paper had been sent for publication photographs were taken from the complex
of 4:4’-dinitrodiphenyl with 4-chlorodiphenyl. The irregularity of the spacing of the layer-
lines is even more marked than in the case of the complex with the bromo-compound, as had
in fact been anticipated. The lines again form groups about the zero and seventh layer-lines,
and are consistent with an error period of 12:3 A and ratio of the dinitro constituent to the
chloro constituent of 3-3:1. Photographs from the corresponding fluoro-compound are
perfectly normal, all spots being sharp, the ratio of the constituents being now 3:1. The
photographs resemble extremely closely those from the complex with 4:4"-hydroxydiphenyl.
It is hoped to publish further detalls of these cases in a subsequent paper.
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cules, which, considered alone, would give a set of spectra in the positions of the
spectra (0, +m) so that in any case these would be expected to occur.

Another point requiring consideration is the diffuseness of the lines. The existence
of diffuse ghost spectra must be explained, the diffuseness of which, moreover,
varies with the order m of the ghost. It is plain that the crystals of these complexes
are not simple enough for an exact quantitative explanation of the observed effects
to be possible. All that can be attempted with much hope of success 1s to produce
a simplified model that will give spectra exhibiting the same general type of pro-
perties as those actually observed. In the second half of the paper an attempt will
be made to do this.

Bernal chart

reading (nm)
0'836-'T _______________________________ (20)
BE [ i — e e AR 13
0782 (.1213 (13)
0 715 l ______________________________ (‘21')
0661 & —— — — — ———— —— o ———— (12)
0-608 (08
4 S s ———————————r 05)
e T T T T T T T T T T T (11)
60 01215 (04)
: 418_% _____________ (10)
0-365 o115 (03)
oo _____ ”
0-243 (02)
0-175 e 05)
0-122 T (01
0053 012150 — — 0 e o e (13)

FIGURE 5. Scale representation of the layer-lines as they appear on a rotation diagram
for a rotation about the c-axis with the complex with 4-bromodiphenyl.

THEORETICAL: THE DISCUSSION OF AN IDEALIZED MODEL

Assume the crystal to consist of lavers of 4 molecules, all exactly alike, placed
one above the other in the array represented in figure 1, and this array will be
assumed to persist coherently throughout the cryvstal. Through this structure the
chains of B molecules pass transversely to the A planes, and parallel to the c-axis
of the crystal. Suppose the B molecules lying in any one chain to maintain an
unchanged regular sequence through the crystal. The dotted lines in figure 1 are
the traces of planes dividing the crystal into a series of slabs parallel to the planes
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(010). In any one such slab the structure is supposed to be without faults, corre-
sponding atoms in the different B chains all having the same ¢ co-ordinates, so that
the consequent periodic displacements of the 4 planes are all in phase. Suppose,
however, that in different slabs there are relative displacements of the B molecules,
so that in passing from one slab to the next there may be a sudden change in the
¢ co-ordinates of corresponding B molecules. It will be assumed that there 1s a
certain probability that within any distance measured parallel to b such a sudden
change, or fault, may occur. Making the simplest possible assumption, it 18 seen
that there are two possible sets of co-ordinates for the B molecules. It will then be
necessary to work out in the manner described by Wilson (1942) the probability
that two slabs separated by a given distance shall have the same or different ¢
co-ordinates, and thence to calculate the interference tunction for the crystal,

remembering at the same time that the B molecules introduce periodic variations
in the spacing of the A4 molecules, which will vary in phase according to the occur-
rence of faults in the slabs. Consideration is given first to the scattering due to the
A molecules alone, with the periodic errors imposed on their spacing by the 5 mole-
cules, neglecting for the time being the scattering by the B molecules themselves.
For this purpose, the model will be still further simplified, each unit of the structure
being replaced by a scattering point.

SOATTERING BY A PERIODICALLY DISTORTED POINT-LATTICE WITH FAUL'TS

Consider a point-lattice that is parallelepipedal in form, having N,, N, and N
points parallel to a, b and ¢ respectively. The position relative to the origin of a
point in the lattice when it is undistorted is given by the vector

r = ua+vb+wc, (1)
w, v, w being mtegers.

Suppose a periodic error of the ¢ spacing to be introduced, which for the sake of
simplicity will be taken as sinusoidal in character, the ¢ co- -ordinate of a point being
given by [w+ qcos{2mcg(w+¢,)}]c. Here, g is the frequency of the periodic dis-
turbance, the number of times it occurs in unit distance, so that cg = 1/Q), @ being
the number of ¢ spacings within which a complete period of the error occurs. The
maximum amplitude of the displacement, expressed as a traction of ¢, is ¢, and ¢,
is a phase constant, which depends on v, and has the same value so long as v 1s
constant, that is to say, over any (010) plane. According to this simple assumption,
it will later be supposed that ¢, may have the values 0 or ¢ but no other value.

Consider first scattering by a single b-plane of points, with v constant and ¢, = ¢.
The vector position of a point on such a plane may now be written

r, = ua+vb + [w+qcos 2meg(w + P)i] €. (2)
Let s, and s be unit vectors in the directions of incidence and scattering, and let

S=s-s5, |S|=2smn0, (3)
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20 being the angle of scattering. One may then write for the amplitude scattered by
a single plane v, in terms of that scattered by a single unit,

u=N1""‘1 w=.N3— 1

4,= ¥ Y exp{2mi(S.r,)/Al (4)

u=I\) w=0

- The scattering in terms of a distribution in the reciprocal-lattice space may now
be expressed in the usual way, writing

S/A = fa* +yb* 4 {c*, (5)
which gives, using (2) and the properties of reciprocal vectors,

A, = exp (2mivn) ¥ exp (2miug) Y exp 2mi[wl + qf cos {2meg(w + IHI (6)
U w
A, 18 now expressed as a function of £, # and ¢, and it gives the amplitude scattered
in the direction s when the conditions of incidence and scattering are such that the
extremity of the vector S/A lies at the point (&a*, 5b*, {c*) in the reciprocal-lattice
space, that is to say, when the sphere of reflexion passes through this point.
Carrying out the summation with respect to u, (6) may be written in the form

2 .iT q___lw:-ﬁ'*a_‘l
exp (2714V; €) 2 exp2mwc+qlcos{2meg(w+@)].  (7)

exp (2mif) =1,

A, = exp (2mivy)

T'he summation with respect to w may be handled by a method employed by

Rochendorfer (1939) in a paper on the effect of periodic errors in lattices. Now use
an expansion in terms of Bessel functions.

| == oo

exp (ipr) = Jy(p)+2 3 imJ,(p) cosma, (8)

m=1
from which follows immediately

=0

exp [2mglcos 2meg(w+ )} = X ™ (2mql) exp (2mimegw) exp (2mmegg), (9)

= — 00

a result that follows at once if the cosines are expressed in the exponential form.
The sum with respect to w in (7) can now be written

m= w=Ng—1
2= 2 v™J  (2mgl)exp (27r-£mcg¢) > exp {27riu*(§ +mcy)}. (10)
w M == — 0 w=1{0

T'he sum over w on the right-hand side of (10) is a geometrical progression of a type
occurring in the theory of the ordinary diffraction grating, and is equal to

exp {2mi Ny({ + meg)} — 1 . sin {ww Ny (& + mey)}
" L2 NG (AN 1 el o 4
exp {2mi({ + mcg)} — 1 exp {mi{dNy — 1) (§ +meg) sin {7 (£ + mceg)} abt

The expression (11) has maxima equal to N; whenever {4 mcg is a whole number,
and these maxima are exceedingly sharp if N, is large, while, under the same con-
ditions, the subsidiary maxima that occur between the main maxima are negligible.
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Considered as a function of ¢ therefore, (11) has sharp maxima when { = [ + meg,
l being an integer, and is otherwise of negligible magnitude, a result that will be
used later.

Now write (6) in the form

A, = exp (2mivy) __._‘f_____.i___.ﬂ___ -, (12)

where F, = 3 and is given by (10); and for the whole crystal the amplitude scattered
(L

in the direction considered is

exp (2m N, £) — 1 v=N.—1 o
A4=yx4,-PEN) = ITGT o @i, (13)
; exp (2mif)— 1 =,
T'he corresponding intensity, expressed in terms of the scattering by a single point,
and considered as a function of £.  and ¢, is ealled the interference function for the

piece of crystal considered. Tts value is
sin® (r N, £) .
L&, Q) =1A2=""7", VL0015 F FXexp{2min(v— v’ 14
k&1, 6) = LA = e ey S S Fexp {2min(v—v')}, (14)

' PE, — 2minn?. 15
S s %% v oy €Xp{ — 2miny} (15)

oy

Now £, can have one of two possible values, one being that given by (10) and the
other the corresponding value with ¢ = 0. These two values may be called F, and
Fy respectively. Let I be the average value of £, FF, , for two b planes separated by

n planes, and let M be the number of times this particular separation occurs. Then

sin® (77N _
IE 7,8 =N  yrr oxp (= 2ming), (16)

sin? (n8) 4

In the case of a parallelepipedal lattice, M = N, — |

— (N, —1). Thus

, and »n can run from N, —1 to

sin®(w N, §) =N . |
WE 7.8 =5 S TN o [y exp (— 2minn). (17)

Shk (ﬁg) n=—(N;~1)

T'he next step is to calculate the average value 1, and to do this the method given
by Wilson (1942, 1943) in dealing with the effects of faults in alloy structures is
applied. Assume that there are two possible values of £, Iy and F,, and that a fault
may occur at any O plane of such a kind that the value of F,, changes from one
possible value to the other. Let P(n) be the probability that the plane v +n is like
the plane v, and let ads be the probability that a fault occurs between bs and b(s + ds).
Consider a plane (2) at a distance b(s +ds) from a plane (1). The plane (2) may be
like plane (1) because the plane at a distance bs is like plane (1) and no fault occurs
in the turther distance bds; or because the plane at a distance bs is unlike plane (1)

and a fault occurs in the further distance bds which once more makes plane (2) like
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plane (1). The probability that plane (2) is like plane (1) is therefore the sum of the
probabilities of these two mutually exclusive types of event. Thus -

P(s+ds) = P(s) (1 —ads)+ {1 — P(s)}ads = P(s)—2aP(s)ds + ads. (18)

But since ds 1s small, then

P(s+ds) = P(s)+(dP(s)ds)ds, (19)
whence, by comparing (18) and (19),
dP(s)/ds = —2aP(s)+a,

which, on integration, remembering that P(0) = 1, gives

-

P(s) = (1 +e7%%), (20)

1o

or, since s gives the distance expressed as a multiple of the lattice spacing b,
P(n) = }{1+exp(—2|n|a)y. (21)
The average value of F, F* . [, may be written in the form

I, = B[ P(n) F§ +{1 - P(n)} F]+ }F,[P(n) F§+{1— P(n); Fy]

!

= LPm){| By |2+ | F, |2+ {1 = P(n)} {F, F5+ Fg I (22)
Now
M= o0 = Ng - 1 * | ’
Fy= Y imJ,,@2mgl) Y  exp{2miw(l+meg); = X BoulS); (23)
M —=— 0 =1 m
M == o0 - ;}-‘*3— 1 _
Fy= % i™J,(2mqC)exp (Zmmceyo) Zﬂ exp {2miw({+meg)} = % Byn(8).  (24)
Mm=— 0 == ¥

Rach of these expressions is a function of { with very narrow maxima, and the only
termsin | £ |2and | F; |2 that are appreciable are those of type | Bou(8) |20r | Byl() |7
while in Fy F'} or F§ F, the only terms of appreciable value are those Q,f the types
By,.(§) B3,,(8) or Bgu(£) By, (C). Neglecting all other terms, and using (11), then

om

. omee sin2 {7 Ny({ 4 mcey)}
2 2y . W 2 ey L BN e e ) N 25

H

WE FS+ FyFyl = XS, cos (2mmegg). (26)

(i

By (22), (25), (26) and (21), therefore,
I =Y [P(n)S,+{1—Pn)}S, cos (2mrmcgp))

Ht

+

= L3S, {14 cos (2mmey)} +exp (— 2 | n | a) S, {1 — cos (2mmege);]

= 3 8, {cos? (mmegd) +exp(—2 | n | a) sin? (Tmegad)s. (27)

it
T
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Kquation (17) now becomes

Sln-z (;TN g) ﬂ:%—l mim
SIN (7E) e — (V=) m= = w0

1§, 9, 8) =

X Sycos® (mmegd) + exp (— 2 | n | o) sin? (mmegd)t (Ny — | n |) exp (— 2ming).  (28)

Now write

n=N,—1 n=Ny—1
Y (Ny—|nlyexp(—2ming) = Ny+2 S  (Ny—|n[)cos2my  (29)
n:"(Nz‘“l) n=1

_ _ sin*(mNyy). (29a)
sin2 (7)) ’

for (29) is an alternative form of the ordinary grating formula (29a). The right-hand
side of (29) is a Fourier series of N, terms, and the greater N, the sharper are the

~periodic maxima in #. This gives a clue to the nature of the second term in (28),
which contains the summation

n=N,—1

D(yp)=N,+2 ¥ (Nz—]ﬁ‘)exp(—*2|‘n]oc)0082nmy. (30)
n=1

T'his again is a Fourier series, with maxima for the same values of { as those for which
(29) 1s a maximum. The coefticients are, however, multiplied by the factor
exp(—2|n|a), which decreases rapidly with increasing | n | if a is appreciable.
T'he effect of this is to broaden the maxima; for the terms of higher order, to which
the sharpening of the maxima is due, become ineffective. This sum is therefore
denoted by D(%) to indicate that its maxima are relatively diffuse.

Using (25), (29a) and (30), (28) may now be written in the form

2 j\?’ M=o 2l AT
31N 2 ( L 7TE) S ][w(‘)m]C)qm LT (§+mcg)

Sin2 (7€) o sin? fﬁ(C+mcg)}

]{}(‘g: 1, g) T

y [sin* (N, 7)

| sin? (7y)

cos® (mmegep) + D(9) sin? (mncgg&)}} : (31)
When m = 0.

sin? (mV, £) sin? (7, 7) sin? (7N, ) 32)
sin? (7€) sin(my)  sin?(af) |

1y(&,7,8) = J§(2mql)
an expression giving sharp maximawhen & = A, 9 = kand { = I, h, I, | being integers.
These are in fact the ordinary lattice maxima, which are in the same positions as
those given by the undistorted lattice and are just as sharp. The intensities are,
however, modified by the factor J2(2mq¢), which may be written .J 2(2mlg) for the
sharp maxima, and this becomes smaller with increasing I, the rate of decrease
depending on ¢, the maximum distortion.
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THE GHOST SPECTRA

In addition to the main maxima, other maxima occur when
(x| mleg=1 or {=l+|m|cg=1+|m|/Q,

where () is the number of repetitions of the undisturbed spacing in one repetition
of the periodic distortion. These extra maxima are the ghost spectra, a group of
which, corresponding to different values of m, for the same value of [ accompanies
each main maximum. The ghost maxima are sharp in § and {, but their sharpness
in 7 1s governed by the factor

Sl NT . %
bl:itng (;:;H o (mgé) + D(y) sin? (W?;;qf*) |
and so is a function of m, the order of the ghost, and not of the order of the main
spectrum that the ghost accompanies. The first term of this factor is sharp if AV, 18
large, but the second term is much more diffuse if «, the probability of a tault, 1s
appreciable. The two terms, however, make different relative contributions for
different values of m. For small m¢/@Q, the first term will be preponderant and the
second will have small values, but, as mdg/¢) grows, the importance of the second or
diffuse term increases and that of the first or sharp term diminishes. For still larger
values of mdg/() the relative importance of the terms may be once more reversed.
The form of the factor suggests that the spots on the ghost layer-lines might show
sharp nuclei with relatively diffuse wings, and on the photographs from the bromo-
and iodo-complexes a number of such spots are in fact to be seen, which may perhaps
be some confirmation of the view that the effects observed are due to an irregularity
of the same general nature as that discussed.

The intensities of the ghost maxima for the simple lattice with a sinusoidal
displacement are determined by the factor JZ,(27¢{), which for m +0 is small for
small values of . So long as 27¢{ is not too large, J (2mq{) is proportional to ™.
The ghosts of higher order are therefore unimportant for the low orders ot main
spectra, but become more important for the higher orders, even when the distortion
is sinusoidal. The ghosts accompanying the zero-order spectrum will be expected
to be faint, since they are given by the values of J2,(2mmg/@)), which will be small
unless the maximum displacement is large. The zero-order ghosts are not in prin-
ciple absent, as the approximate treatment of periodic errors, given, for example,
by Daniel & Lipson (1943), seems to indicate.

The assumption of a sinusoidal distortion has been made for the sake of sim-
plicity. It is clear that the actual distortion, although periodie, cannot be sinusoidal.
It would, in fact, be more accurate to represent it by a Fourier series of the type
¢ Y q,. cos (2mkegw), instead of by cq cos (2megw). If no limitations to small displace-

k

ments are imposed, the algebra in this case becomes rather heavy. If, however, it
is assumed that ¢, is always small, it is easy to show that the kth order ghost accom-
panying any main maximum has an amplitude proportional to ¢;, the kth Fourier



R. W. James and D. H. Saunder 530

coefficient of the series representing the periodic displacement. If the displacement
is not small, matters are more complicated, and the amplitude of the kth order
ghost does not depend on ¢, alone, but it appears still to be true that the value of
7 exercises the determining influence.

THE SPECTRA DUE TO THE B MOLECULES

In the actual photographs, the ghosts accompanying the zero layer-line are
strong, much stronger than would be expected from the analysis given above. It
must be remembered, however, that this refers only to the effect of the 4 molecules
of the underlying lattice, distorted. it is supposed, by the B molecules, the scattering
by which bas so far been neglected. In the actual photographs, the scattering by
the B molecules is of course recorded. The structure must be considered as a whole.
Betore doing so, however, the scattering from the B molecules alone will be con-
sidered, assuming the same probability of faults in the structure as was assumed
above. Consider, as before, the amplitude scattered by the B molecules lying in a
single (010) plane, corresponding to a given value of ». Write this in the two possible
torms

. A4, = £(&) Ry() exp (2mvy),
A, = R,(&) By({) exp (2miv'n) exp (2mih{), (33)

fiy(&) and Ry({) being the amplitude factors obtained by summing over % and w
respectively. It must be remembered that the frequency in R,()is that corresponding
to the repetition of the B molecules, that is to say it is ¢, the frequency of the periodic
error assumed 1n calculating the effect of the distorted lattice of 4 molecules. Just
as before, one writes for the interference function due to the B molecules alone

IB(g? 7, g) —

By(€) 2| By() | F,, Fy, , exp (— 2miny), (34)

where F, and F,,_, are now either + 1 or exp (2mi{).

Now introduce the probability of a sudden change from one type of F to the other
Just as betore. This gives for the average value of F, F*,

L, = cos*(mp{) +exp(—2|n|a)sin2(7pd), (35)
and, following exactly the same argument as that given above in deriving (31), then

sin? (N, 1)
sin? (777)

IyE1,0) = | Ry&) ] By(©) cos? (m) + Dl sin® (mg0)}. (36

It ¢ has the same significance as in the discussion of the scattering by the 4 mole-
cules, its maxima, and so the layer-lines in a rotation photograph about the ¢ axis,
occur when § = +m/), for the c* spacing of the B reciprocal lattice is 1/Q of that of
the A lattice. Equation (36) shows therefore that the B molecules alone would
produce a set of layer-lines having the same positions, and the same variation of
diffuseness with order, as those predicted for the ghost spectra of zero order. The
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relatively strong spectra actually observed in these positions can therefore mainly
be ascribed to this cause, the true ghosts being those accompanying the higher
orders.

In the case of the iodo-complex, in which the spacing of the sheets ot 4 molecules
and the period of the distortion appear to be commensurable, and which is thus to
be considered only as a degenerate case of a structure with a periodic error, the
higher orders of these (0,m) spectra produced by the B molecules will always
coincide with ghost spectra (n, m) accompanying higher orders. In the case of the
bromo-complex, in which the two periodicities appear not be to commensurable,
this will not be so, and some doubling of the layer-lines might theretore be expected.
There is some evidence that it does actually occur. Reference to figure 5 will show
that the layer lines (0,5) and (2,2) lie very close together. The layer line (0, 5) 1S
faint, and no (0, 6), or higher orders, are observed at all. but there are one or two
spots on the line (0, 5) visible on the actual photographs which quite definitely do
not lie on the line (2,2). Doubling between (0, 4) and (2,3) is also to be expected,
but is not observed in the photographs. It is, however, perhaps significant that this
layer-line, and some of the other lines of higher order, are broadened in the c-direc-
tion, which might indicate an incipient doubling of the lines. Corresponding lines
in the photographs from the iodo-complex are not thus broadened.

DIFFRACTION BY TWO LATTICES WITH INCOMMENSURABLE SPACINGS
BUT WITH A DEFINITE PHASE RELATIONSHIP

In the above discussion, it has been assumed that the interference function can be
built up by adding together the effects of the A and B molecules, considered separ-
ately. This, of course, 1s an over-simplification. Interference effects occur that
depend on the juxtaposition of the two types of molecule, and these may be very
important if the two periodicities are commensurable, so that the two structures,
taken together, constitute a single repeating pattern. It is necessary to consider
this point in more detail.

The simple case of reflexion from two sets of parallel planes, one set with a spacing
a,, the other with a spacing «,, will now be discussed. Let f; and f, be the structure
factors of a single plane of each set, which may conveniently be supposed as complex,
to take into account any phase difference due to the relative positions of the sets of
planes. Let f be the glancing angle of reflexion from the planes. Then the phase
difference between waves reflected from successive planes of the two sets are
respectively pa, and pa,, where ¢ = (47 sin f)/A. If in the piece of crystal considered
there are N, planes of one set and NV, planes of the other, the amplitude reflected 1n
the direction & may be written

n=N,;—1 _ m=N,—1 _
A =f ZO exp (inpay) +f, Z(} exp (1mua,)
n= m=

sin (4 u ¥, a, sin (L Nya,)

. ) T .
= fyexp {3(N,— ) pa— Ffoexp {3 (N, — 1) gy

37
sin (3 sin(buag) =~ )
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The intensity [ is equal to | A |2, which gives

sin? (5/04V; @

SinZ (3/64Vy )

[=]|f|? Ilez

sin2 (3 /m sin2 (1 a.,)

sin (/0N a )%l_n(ﬁ-/fi\«f ()

£2] fy] | fol S o 4, — 1)y — (N 1) 0],
(38)

where & is given by f /5 = | fi]] /s | €, and is the phase difference between waves
reflected from the first planes of the two sets. If these planes are at a distance d
apart, ¢ = pud.

The first two terms in (38) give the sum of the intensities produced by the two sets
of planes acting independently. The effect of their interaction is given by the third
term. Considered as functions of 0, the two factors involving sines have very sharp
maxima when N, and N, are large, and the value of the last term will therefore be
inappreciable unless both factors have principal maxima for the same value of 6.
If @, and a, are commensurable, so that p,a; = pya,, p; and p, being integers, this
will occur for a number of values of 6. If p, and p, have no common factor, the first
coincidence will be between the spectrum of order p, due to the planes a, with that
of order p, due to the planes a,; and the next will be between the spectra of order
2p, and 2p,, and so on. It is plain that these coincidences produce no spectra in
positions other than those already given by the two sets of planes considered 1n-
dependently, but they will modify the intensities of certain of these, because there
is a definite phase relationship between the two sets of planes. When the spacings
are commensurable (N,—1)a, = (N,—1)a, in any block of crystal that contains
a number of complete repetitions of the pattern, so that the cosine factor in the last
term of (38) becomes simply cos 0.

To take a very simple example, the (111) planes of diamond may be considered
to consist of two sets of planes with a, = a,, one set being displaced relative to the
other through a distance a,/4. The spectra due to the two independent sets of planes
now coincide for all orders, but since & = 0 for the zero order, /2 for the first, 7 for
the second, 37/2 for the third, 27 for the fourth, and so on, it will be seen that the
intensities of these spectra are respectively 4f2, 2f2, 0, 2f2, 4f%, and so on. 1t 1s clear
that this is merely a slight modification of the ordinary method of calculating the
intensity from the structure factor. '

If the spacings are not commensurable, coincidences will not occur, and if XV, and
N, are large, the last term of (38) will always be negligible, and the spectra observed
will be just those due to the two sets of planes considered independently. In the case
considered in this paper, one set of planes has been assumed, the 4 planes, to have
a periodic variation of spacing of the same period as the spacing of the other set, the
B planes, and this produces, in addition to the two sets ot spectra given by the two
sets of planes independently without error of spacing, the sets of ghost spectra
accompanying the spectra due to the A planes. The effects observed with the
bromo-complex appear to be adequately explained by this type of assumption. If
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the two periodicities are commensurable, as appears to be the case with the iodo-
complex, the problem can be treated as a case of a repeating pattern, with a definite
structure factor, which can be considered as a degenerate case of a structure with a
periodic error. In the case actually dealt with, the pattern does not repeat itselt
exactly at all, so that ordinary methods of structure-factor calculation are not
applicable.

The treatment of the problem given here must be regarded only as an attempt to
produce a model that shall show effects of the same general type as those observed.
I't has not been found possible to account in detail for the patterns obtained from the
actual crystals. No really satisfactory explanation of the fact that, in the oscillation
photographs taken about the b-axis, the diffuse spots are not always centred exactly
on the layer-lines has been found, although it seems almost certainly to be connected
with some imperfection in the crystals on a scale larger than those considered here.

Part of the work described in this paper has been carried out during the tenure
by one of us (D. H. N.) of a Beit Railway Trust Fellowship.
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DESCRIPTION OF PLATE 23

Ficurg 2. The complex with 4-bromodiphenyl: 15° rotation about the c-axis. Rays initially
incident along a*.

FiGURE 3. The complex with 4-iododiphenyl: 15° rotation about the c-axis. Rays'initially
incident along a*. |

Ficure 4. The complex with 4-iododiphenyl: 15° rotation about the b-axis. Rays mitially
incident along a*. |
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