

Monday, September 10, 2012

What are you made of?

Forces of Nature

The Standard Model

A little bit of maths

Z = - + FAU FAU + iFDy + h.c. + X: Yis Xs\$ the $+ |D_{a}g|^{2} - V(g)$

A little bit more maths...

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{\nu}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}Q^{0}_{\nu}Q^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m^{2}_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}_{w}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{2M}{g}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{g^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\mu}) - Z^{0}_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu})] + Z^{0}_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - igs_{w}[\partial_{\nu}A_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu})] - igs_{w}[\partial_{\mu}W^{+}_{\nu}W^{-}_{\nu} - g^{2}e^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\nu} - W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu})] - igs_{w}[\partial_{\nu}W^{+}_{\mu}W^{-}_{\nu} - W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}W^{-}_{\nu} - g^{2}e^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\nu} - g^{2}e^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}W^{-}_{\nu}) - ga_{\mu}[W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\mu$

$$\begin{split} W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] &+ \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H) - ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+}) - \frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-}[H^{2} + (\phi^{0})^{2} + 2(2s_{w}^{2} - 1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-}-g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-}-e^{\lambda}(\gamma\partial+m_{k}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{\lambda}^{\lambda}(\gamma\partial+m_{k}^{\lambda})u_{\lambda}^{\lambda} - d_{\lambda}^{\lambda}(\gamma\partial+m_{\lambda}^{\lambda})d_{\lambda}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{\lambda}^{\lambda}\gamma^{\mu}u_{\lambda}^{\lambda}) - \frac{1}{3}(\bar{d}_{\lambda}^{\lambda}\gamma^{\mu}d_{\lambda}^{\lambda})] + \frac{ig}{4c_{w}}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1-\gamma^{5})u_{\lambda}^{\lambda}) + (\bar{d}_{\lambda}^{\lambda}\gamma^{\mu}(1-\gamma^{5})u_{\lambda}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{\lambda}^{x}c_{\lambda\kappa}^{\mu}(1+\gamma^{5})u_{\lambda}^{\lambda})] + \frac{ig}{2\sqrt{2}}M_{\mu}^{\lambda}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1-\gamma^{5})u_{\lambda}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{\lambda}^{x}C_{\lambda\kappa}^{\mu}(1+\gamma^{5})u_{\lambda}^{\lambda})] + \frac{ig}{2\sqrt{2}}M_{\mu}^{\lambda}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}) - 1-\gamma^{5})u_{\lambda}^{\lambda}] + \frac{ig}{2\sqrt{2}}M_{\mu}^{\lambda}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})v_{\lambda})] - \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}[(\bar{e}^{\lambda}c^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{\lambda}^{x}C_{\lambda\kappa}(1+\gamma^{5})u_{\lambda}^{\mu}] + \frac{ig}{2\sqrt{2}}M_{\mu}^{\lambda}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})u_{\lambda}^{\mu}] + \frac{ig}{2\sqrt{2}}M_{\mu}^{\lambda}[(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}(\bar{e}^{\lambda}c^{\lambda}) + \bar{e}^{\lambda}$$

"If you want to know how the molecules that make up your body stick together in the way they do; how the sun shines; why the sky is blue; why water is a liquid at the temperatures found on Earth or even why you don't fall through the floor when your atoms are mostly empty space — the answers are contained within the equations of the Standard Model."

- Dr. Brian Cox

(BBC: Wonders of the Solar System)

The Higgs Gives Mass

How did we get here?

Quantum Mechanics

Relativity 1905

$$E^2 = m^2 c^4 + p^2 c^2$$

- speed of light is constant for all observers
- the laws of physics don't depend on your frame of reference

electron volt (eV) is a unit of energy eV/c^2 is a unit of mass

Anti-Matter 1932

 predicted by P. Dirac in 1928 based on

$$E=\pm\sqrt{m^2c^4+p^2c^2}$$

• every particle type has an anti-matter partner

Quantum Electrodynamics

- A <u>photon</u> goes from one place and time to another place and time.
- An <u>electron</u> goes from one place and time to another place and time.
- An electron emits or absorbs a photon at a certain place and time.

the first "quantum field theory"

The Particle Zoo 1950's and 60's

 dozens of 'fundamental' particles discovered

$$\pi^{+}, \pi^{-}, \pi^{0}, K^{0}, \Lambda^{0}, \Delta^{0}, \Sigma^{+}, \Sigma^{-},$$
$$\bar{p}, \nu_{e}, \bar{n}, \Sigma^{0}, \bar{\Lambda}^{0}, \Xi^{0}, \rho, \omega, \eta,$$
$$K^{*}, \nu_{\mu}, \phi, f, \alpha_{2}, \eta', \Omega^{-}$$

The Quarks 1962

• particles made of quarks are called "hadrons"

Electroweak Unification 1967

forces are unified in one mathematical description

Spontaneous Symmetry Braking 1964

- the 'Lagrangian' must be symmetric
- breaking the symmetry creates the Higgs boson and gives mass to the W and Z particles

The W & Z Bosons 1983

 using the 'Super Proton Synchrotron' (SPS) the W and Z bosons were discovered

How do you "see" an infinitely small particle?

Large Hadron Collider

Large Hadron Collider

Large Hadron Collider

The ATLAS Detector

The ATLAS Detector

Examine trillions of proton collisions

Look for 'bumps'.

 $m^2 c^4 = E^2 - p^2 c^2$

Is there a particle? YES!

but is it the Higgs?

Thanks to

