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Honours QM HW #8

1. Convince yourself that

G0R(x, x′; E = k2/2m) = − 2m

4π

eikr

r
, (1)

where r = |x−x′|, is the Green’s function for the Helmholtz wave equation

(∆x + k2)G0R(x, x′; E) = 2mδn(x− x′) (2)

in 3 spatial dimensions. To do so, first take x′ = 0 and check that for r 6= 0
∆ exp(ikr)/r = −k2 exp(ikr)/r (Mathematica is a quite useful tool here;
include a printout if you do all the steps within the software). Next show
that the volume integral of an epsilon ball centered around r = 0 yields
the correct normalization for the delta functions on the LHS and RHS of
Eq. (2).

Bonus: show that in n dimensions the retarded Green’s function of the
Helmholtz wave equation is

G0R(x, x′;E) =
i3m

2

(
πk

2r

)n
2
−1

H
(1)
n
2
−1(kr), (3)

where r = |x − x′|. To do this, start with Eq. (2) and take x′ = 0. In
spherical coordinates in n dimensions the Laplacian is

∆ =
1

rn−1
∂r
(
rn−1∂r

)
+

1

r2
∆Sn−1 , (4)

where ∆Sn−1 is the Laplace (or Laplace-Beltrami) operator on the n − 1
dimensional sphere; i.e. ∆Sn−1 takes care of the angular derivatives of the
Laplacian in spherical coordinates. However, notice the spherical symmetry
that the original equation displays: we are searching for a G0R over all space
with a δ-function at the origin. Therefore G0R(x; E) = G0R(r; E) and all
the angular derivatives in the problem drop out. For r 6= 0 the equation we
wish to solve is (

1

rn−1
∂r
(
rn−1∂r

)
+ k2

)
G(r) = 0 (5)

⇒ G′′(r) +
n− 1

r
G′(r) + k2G(r) = 0 (6)
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where I’ve temporarily dropped some of the notation on G for convenience.
Notice that this looks very similar to Bessel’s Equation,

x2y′′ + xy′ + (x2 − a2)y = 0, (7)

which implies that y(x) is a Bessel function of order a. The difference is
that Eq. (6) is not dimensionless and there is an n − 1 multiplying the
second term. It is generally a good idea to make your differential equations
dimensionless; we will do so here by defining a new variable, ρ = k r,
and function, P (ρ) ≡ G(r). Show that Eq. (6) is equivalent, then, to the
differential equation

ρ2P ′′ + (n− 1)ρP ′ + ρ2P = 0 (8)

for P . Now let’s take care of that pesky n − 1 by defining a final function
P (ρ) ≡ ραR(ρ). Show that by taking α = (2− n)/2 R(ρ) is a solution to
Bessel’s Equation.

For the physical problem we are interested in, we seek solutions that, at
large r, are outgoing waves; i.e. G0R ∼ exp(ir). The asymptotic form of the
Hankel function of the first kind, a solution of Bessel’s Equation, is

H(1)
ν (z) ∼

√
2

π z
ei(z−

1
2
νπ− 1

4
π), (9)

is exactly of this type (see, e.g., Abramowitz and Stegun)1. Therefore we
have that

G0R(r; E) ∝ (kr)1−n
2H

(1)
n
2
−1(kr). (11)

In order to set the proportionality constant, integrate an ε ball centered
around the origin (see, e.g., Abramowitz and Stegun for the small z expan-
sion of the Hankel function of the first kind).

2. The Yukawa potential describes a physical setup in which a normal Coulomb
charge is screened, such as in a plasma, or when a force is transmitted by
a massive scalar particle (such as the pion). Suppose that one scatters
particles off of scattering centers described by a Yukawa potential,

V (x) =
e−µ|x|

|x|
=
e−µ r

r
. (12)

1Solutions of the form ∼ exp(−ir) are incoming waves. One may see the incoming (−) and
outgoing (+) nature of these solutions by including the time dependence. Then these solutions
look like exp

(
i(±r−Et)

)
. A point of constant amplitude on the wave requires that the argument

of the exponential is constant, ±r−Et = const., implies that for the + solution r increases with
increasing t whereas for the − solution r decreases with increasing t. Note that the asymptotic
expansion of the Hankel function of the second kind is

H(2)
ν (z) ∼

√
2
π z

e−i(z−
1
2νπ−

1
4π), (10)

which, therefore, corresponds to incoming spherical waves.
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Depending on the physics, the factor µ in the Yukawa potential is interpreted
as the mass of the scalar particle or 1/µ as the characteristic screening
distance for the Coulomb charge. Let’s compute the differential cross section
for this very important potential in the First Born Approximation. Recall
that we need to compute f(x, k′), which, to leading order, is related to the
Fourier transform of the potential,

f(k, k′) = − 2m

4π
Ṽ (q), (13)

where q = k − k′ and

Ṽ (q) =

∫
d3x′ eix

′·qV (x′). (14)

In order to evaluate the Fourier transform, we employ a common trick used
when integrating an exponential exp(ix′ · q) over a dummy variable over
all space: since we are integrating over all space a dummy variable we can
choose the orientation of the dummy variable coordinate system however we
want. In particular, we can choose a smart coordinate system in which the
z′ direction of the x′ system is oriented along the z direction of the q vector.
In this case x′ ·q = r′q cos(θ′). Integrating over spherical coordinates in the
{x′} = (r′, θ′, φ′) system, we can evaluate the integrals analytically if we
do the θ′ integral then the r′ integral (the φ′ integral is trivial). Show that

Ṽ (q) =
4π

q2 + µ2
, (15)

where, as usual, q = |q|. If we take our incoming particles to be along the
z direction, then the k′ vector will make an angle θ with respect to the k
vector. Show that in this coordinate system

|k − k′| =
√

2k2
(
1− cos(θ)

)
. (16)

Putting the pieces together, then, show that the differential cross section for
the Yukawa potential in 3D is

dσ

dΩ
=

4m2[
k2
(
1− cos(θ)

)
+ µ2

]2 . (17)
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