Date:_____

Time for Completion:

Honours QM HW #6

- 1. Time-independent non-degenerate perturbation theory in a spin system. Suppose one has an electron in a magnetic field with $\boldsymbol{B} = B_0 \hat{i} + B \hat{k}$. Compute the first and second order corrections to the energy levels and the first order correction to the wavefunctions for $B_0 \ll B$. For those of you who feel a little weak on the theory of spin, some further optional work might be useful:
 - (a) Let's calculate ourselves the wavefunctions of spin. First recall that the fundamental commutation relation for the spin operators is

$$[S_i, S_j] = i \epsilon_{ijk} S_k. \tag{1}$$

Note that the Pauli spin matrices $\sigma_i/2$ satisfy these commutation relations (show this explicitly for $[\sigma_1, \sigma_2]$). Therefore the Pauli spin matrices are a representation of the spin operators on the two dimensional vector space \mathbb{C}^2 ; their eigenvalues are the eigenvalues of their corresponding spin operators, and their eigenvectors correspond to the eigenvectors of the abstract operators. Compute the eigenvalues and eigenvectors of σ_i for i = 1, 2, 3. Note that the eigenvectors form a CON basis for \mathbb{C}^2 for each i as they must (why?). What is the overlap of $|+, z\rangle$ with $|-, x\rangle$; $|-, y\rangle$ with $|+, x\rangle$? What is the probability of observing an electron polarized in the positive z direction as polarized in the negative x direction; negative y in the positive x direction?

Bonus: Compute the exact energy eigenvalues and eigenvectors for B. Expand your exact solutions for the energy levels and wavefunctions to the same order in B_0/B as you found using perturbation theory and show they are the same.

2. Consider a simple harmonic oscillator in two dimensions,

$$\hat{H} = -\frac{1}{2m}(\hat{p}_x^2 + \hat{p}_y^2) + \frac{1}{2}m\omega^2(\hat{x}^2 + \hat{y}^2).$$
(2)

Show that energy levels are given by $E = (n_x + n_y + 1)\omega$; what are the state vectors and wavefunctions in terms of the known 1D SHO solutions? What are the degeneracies of the $E = \omega$, 2ω , 3ω energy levels? Suppose we add a perturbation $\hat{H}_1 = \lambda m \omega^2 xy$. What are the first order energy corrections and zeroth order state vectors and wavefunctions for the $E = \omega$ and 2ω energy levels? Bonus: Compute the first order energy corrections and zeroth order state vectors for the $E = 3\omega$ energy level. Solve the problem exactly (hint: change coordinates to X = (x+y)/2 and Y = (y-x)/2) and compare to your perturbative results for $E = \omega$, 2ω , 3ω .

- 3. Using $\phi(a, x) = \exp(-ax^2)$ as your trial wavefunction use the Ritz Variational Method for the simple harmonic oscillator, $\hat{H} = \hat{p}^2/2m + m\omega^2 \hat{x}^2/2$; i.e., find a_0 and its corresponding ground state energy $E(a_0)$ and compare your results to the exact answer.
- 4. Suppose that one suddenly expands (or contracts) the size of an infinite potential well of length L by a factor of α ; i.e., the new length of the infinite potential well is αL . For $\alpha > 1$, what is the probability that the system will be measured in the ground state should it have started in the ground state? Optional: What is the probability that a state vector in the n^{th} eigenstate of the original Hamiltonian will be found in the m^{th} eigenstate of the final Hamiltonian? If one starts off in the ground state, what is the probability of remaining in the ground state for an expansion (contraction)?
- 5. Suppose that a particle is entangled in the first three energy levels with equal probability and the potential in a 1D SHO potential of characteristic length $x_0 = (m \omega)^{-1/2}$. What is the expectation value for the measured energy? Suppose the harmonic oscillator potential is very slowly changed to an infinite potential well of width x_0 . What is the expectation value for the measured energy now?