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Honours QM HW #5

1. Let’s put together a number of techniques that we’ve learned, and also
learn a few more, in order to completely solve Poisson’s Equation in an
arbitrary, not even necessarily integral, number of dimensions when the
problem demonstrates rotational symmetry. Recall Poisson’s Equation,

∆Φ = ρ, (1)

where ∆ = ~∇ · ~∇. In spherical coordinates in n dimensions the Laplacian
is

∆ = r1−n∂r
(
rn−1∂r

)
+

1

r2
∆Sn−1 , (2)

where ∆Sn−1 is the Laplace-Beltrami operator on the n − 1 sphere, which
can be thought of as the angular momentum operator in n dimensions.

Derive the GF φ(r), where ∆φ(r) = −δ(r), for PE for spherically symmetric
problems in n dimensions. Follow the usual procedure whereby you solve
∆φ = 0 for r 6= 0 first, then set the normalization by integrating over an ε
ball centered at the origin. The Divergence Theorem, whereby one converts
volume integrals of divergences into surface integrals of fluxes,∫

Ω

dnx∆φ =

∫
Ω

dnx ~∇ · ~∇φ =

∫
∂Ω

dn−1x n̂ · ~∇φ (3)

might prove useful. When the dust settles you should find that

φ(r) =
1

n− 2

1

Ωn

(
1

rn−2
− 1

Rn−2

)
, (4)

where Ωn is the solid angle in n dimensions and R is the radial distance at
which we choose to take the potential to be 0 (for n > 2 we may safely take
R→∞).

One may find Ωn by exploiting the knowledge of Gaussian integrals. First,
derive the result for a single Gaussian:

∫∞
−∞ dx exp(−x2) =

√
π. One may

do this by defining an integral I =
∫∞
−∞ dx exp(−x2) and then computing

I2 by going into polar coordinates. Next, see that if we have n Gaussian
integrals, compare the result by direct evaluation in Cartesian coordinates
and the result when in spherical coordinates. You should find that

Ωn =
2 πn/2

Γ(n/2)
, (5)
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where

Γ(z) =

∫ ∞
0

dt tz−1 e−t (6)

is the Gamma function. Show that this formula for arbitrary (not necessarily
integer) n > 0 yields the usual solid angle in 2 and 3 dimensions. What
is Ω1 and Ω4? Note that you can determine Γ(1/2) by relating Eq. (6) to
a known Gaussian integral; also note that from Eq. (6) one can find that
Γ(z + 1) = zΓ(z).

Putting the pieces together, what is the spherically symmetric GF for the
PE in 3D; i.e., what is the potential for a point charge in 3D? What about
for 4D? 1D? The formula may also be used to find the GF in 2D. The
technique we will employ is commonly used in dimensional regularization in
field theory. Let n = 2 + ε and take the limit as ε→ 0. For instance

π−n/2 = π−1−ε =
1

π
e−ε log π =

1

π

(
1− ε log π

)
+O(ε2). (7)

You should find that

φ(r) = − 1

2π
log
(
r/R

)
. (8)

Note that this is the same result as the potential of an infinite line of charge
in 3D, as it must be by symmetry.

2. The propagator for the simple harmonic oscillator, Ĥ = p̂2

2m
+ mω2x̂2

2
. First,

write down an expression for the propagator K(x, t; x0, t0) in terms of the
energy eigenstates in the position basis,

〈x|n〉 = ψn(x) =
1√

(2nn!)(πx̃)
Hn(x/x̃)e−

1
2

(
x
x̃

)2

, (9)

where x̃ = (mω)−1/2; you do not have to evaluate the integral or sum.
Now let’s evaluate the propagator using the Van-Vleck formula. First, show
that there are initial and final positions and times, x0 and t0 and x and t,
such that there is a unique classical path, no path, and more than one path
(note that this is contrary to what Sakurai writes on p116). Show that for
a unique classical path the classical action for reaching x at t from x0 at t0
is

S(x, t; x0, t0) =
1

2x̃2 sinω∆t

[(
x2 + x2

0

)
cosω∆t− 2x x0

]
, (10)

where ∆t = t−t0. Compute, as done in class, the spectrum of eigenvalues of
the second variation operator Ŝ2. Show that for t < π/ω all the eigenvalues
are positive and the classical path minimizes the action. Then show that for
general t the number of negative eigenvalues is the largest integer smaller
than ωt/π. Thus for t > π/ω there is at least one negative eigenvalue and
the classical path is a saddle point of the action, not a minimum (note that
this is contrary to Sakurai’s claims on p117 that the classical path minimizes
the action; rather, Hamilton’s principle is that the classical path extremizes
the action). As an aside, show that a condition in terms of ωt such that the
action for a particle that is in a SHO potential well but is forced to move
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at constant velocity is smaller than a particle that moves along the usual
oscillatory path is (taking x0 = t0 = 0 for simplicity)

1 +
(ωt)2

3
< (ωt) cot(ωt). (11)

Continuing the aside, plot separately (on the same graph) the LHS and
RHS of the above and compute these two actions explicitly for ωt = 7π/6
(give an answer to two decimal places; which is larger?). Back on track, put
the pieces together and write down the propagator for the simple harmonic
oscillator (you might want to work towards a known answer, such as Eq.
2.5.18 in Sakurai, which is correct for small times). Now recall that we
showed that, via the resolvent, through K we have obtained the full solution
to the quantum mechanical problem. Let’s show this explicitly by using K to
find the first few energy levels and position-basis eigenfunctions for the SHO.
We will skip the complex analysis since for a time independent Hamiltonian
we may write the time evolution operator as

e−iĤt =
∑
n

e−iEnt|En〉〈En| (12)

⇒ K(x, x0; t) =
∑
n

e−iEntψn(x)ψ∗n(x0). (13)

Now take your small time expression for the propagator (i.e. one in which all
the eigenvalues of the second variation of the action are positive) and expand
K out to the first two terms in powers of exp(iωt) (again taking t0 = 0 for
simplicity); show that you reproduce En = (n+1/2)ω for n = 1, 2 and that
you reproduce the first two energy eigen-wavefunctions (see, e.g., Sakurai Eq.
2.3.32 for the generating function for ψn(x)). Finally, analytically continue
the propagator into the complex plane take t = −iβ = −i/T , x = x0, and
integrate over x0 to find the partition function Z(β) for the simple harmonic
oscillator.

3. Compute the propagator for a particle in a constant gravitational field using
the Van Vleck formula. Don’t forget to check how many negative eigenvalues
you have!
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