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Honours QM HW #4

1. We’ve spent a lot of effort evaluating time evolution problems in homework
in which the Hamiltonian is constant in time. Let’s examine the results
when the Hamiltonian is time dependent.

(a) In the last HW set you found 〈Ŝ〉(t) for an electron initially polarized
along the positive x direction exposed to a constant, time-independent
magnetic field B = B0ẑ, where, as usual, the ẑ is a direction and not
an operator. What is the probability of measuring the electron to be
aligned in the positive x direction as a function of time?

(b) Compute 〈Ŝ〉(t) for an electron initially polarized along the positive x
direction exposed to a constant, time-dependent magnetic field B =
B0 cos(ω′t)ẑ. Does your result agree with that which you found in the
previous homeworks for ω′t � 1? What is the probability of measuring
the electron to be aligned in the positive x direction as a function of
time?

(c) Compute 〈Ŝ〉(t) to leading order in ω/ω′ for an electron initially po-
larized along the positive x direction exposed to a constant, time-
dependent magnetic field B = B0

(
cos(ω′t)ẑ + sin(ω′t)ŷ

)
, where, as

usual, hats indicate a direction and not an operator. What is the lead-
ing order in ω/ω′ probability of measuring the electron to be aligned
in the positive x direction as a function of time? Bonus: compute
the next-to-leading order correction to the expectation value and prob-
ability. Double bonus: solve the expectation value problem to all or-
ders (which then of course automatically solves the original expectation
value problem and the first bonus expectation value, too). Do so by
finding that in the Heisenberg picture

ŜH(t) = M(t) ŜH(0), (1)

where

M(t) =


cω(t) −c(t) sω(t) s(t) sω(t)

c(t) sω(t) s2(t) + c2(t) cω(t) s(t) c(t)
(
1− cω(t)

)
−s(t) sω(t) s(t) c(t)

(
1− cω(t)

)
c2(t) + s2(t) cω(t)

 ,

(2)
and

s(t) ≡ sin(
ω′t

2
) sω(t) ≡ sin

(
2
ω

ω′
sin(

ω′t

2
)
)

c(t) ≡ cos(
ω′t

2
) cω(t) ≡ cos

(
2
ω

ω′
sin(

ω′t

2
)
) (3)
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2. Let’s do a problem that illustrates the power of Green’s functions. We’ll
first derive the differential equation and boundary conditions we’d like for
G(x, x′) such that the problem is readily solved, then we’ll use our Green’s
function to find some particular solutions. Consider the problem of the
displacement function u(x) of a taut string with fixed endpoints placed under
a load f(x). The differential equation that governs this process is

d2u(x)

dx2
= f(x) (4)

for x ∈ (0, 1), and u(0) = u(1) = 0. Show that if G(x, x′) satisfies the
usual Green’s function differential equation, in this case for our operator
d2/dx2,

d2G(x, x′)

dx2
= δ(x− x′) (5)

and has the boundary conditions G(0, x′) = G(1, x′) = 0, then

u(x) =

∫ 1

0

dx′G(x, x′) f(x′). (6)

OK, let’s solve for G(x, x′) now. Note that 0 < x′ < 1 plays the role of
a parameter throughout, so that we have to solve

d2G1(x, x
′)

dx2
= 0 for 0 < x < x′, (7)

d2G2(x, x
′)

dx2
= 0 for x′ < x < 1 (8)

subject to the boundary conditions G1(0, x
′) = G2(1, x

′) = 0, G1(x
′, x′) =

G2(x
′, x′) and there’s a discontinuity in the first derivative between G1 and

G2 whose normalization is given by Eq. (5) (remember to integrate over an
epsilon ball!). Find that the Green’s function is

G(x, x′) =

{
G1(x, x

′) for x < x′

G2(x, x
′) for x > x′

=

{
x (x′ − 1) for x < x′

x′ (x− 1) for x > x′
(9)

Using this Green’s function, solve the catenary problem: what is u(x) for
f(x) = g (i.e. what is the shape of a taut string bent under its own weight
due to gravity)? What is u(x) if I pull a massless string down with a force f0

at a point x0? Draw a figure of the latter. With the Green’s function finding
u(x) for any ’ole load f(x) is easy. Just for fun, find u(x) for a massless
string when f(x) = f0 sin(nπx), n ∈ N.

Note that one often uses the notation x< and x> (see, e.g. Jackson)
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where

x< ≡

{
x for x < x′

x′ for x′ < x
(10)

x> ≡

{
x for x > x′

x′ for x′ > x.
(11)

With this notation we see that G(x, x′) = x< (x> − 1).

3. Let’s get comfortable with propagators by computing some examples.

(a) What is the retarded propagator KR(θ, t; θ0, t0) for a point particle on
a circle? You are free to use results you have obtained from previous
homework sets. Don’t forget the θ(t− t0)!

(b) What is the propagator K(x, t; x0, t0) for a point particle in an infinite
potential well of size L?

(c) Calculate the propagator K(x, t; x0) for a particle of mass m under
the influence of a constant gravitational field, V (x) = mgx (or, equiv-
alently, a charged particle in a constant electric field; I’ve taken t0 = 0
for simplicity). Show that

K(x, t; x0) =
( m

2πit

)1/2

exp

{
i

2

(m
t

(x− x0)
2

−mgt(x+ x0)−
1

12
mg2t3

)}
(12)

Suggestion: insert complete sets of states 1̂ =
∫
dp |p〉〈p| and 1̂ =∫

dE|E〉〈E| into the definition of the propagator; you will find that
you need to compute 〈p|E〉. One could insert another complete set of
states and go into the position basis, but then one would be dealing with
Airy functions. I would suggest sticking it out and computing the mo-
mentum representations of the energy eigenstates, H(p, id/dp)φE(p) =
EφE(p), where Ĥ(p̂, x̂) = p̂2/2m+mgx̂.

4. What is the partition function for a particle in a 1D infinite potential well of
size L? Bonus: explicitly evaluate the sum for an n dimensional well. You
might find the Abel-Plana summation formula useful:

∞∑
0

f(n) =

∫ ∞

0

f(x) dx+
1

2
f(0) + i

∫ ∞

0

f(iy)− f(−iy)

e2πy − 1
dy. (13)

Notice that the Abel-Plana formula tells you the difference between the
sum of a function and the integral of the function. Neat! Now compare
the sum you have found with the usual partition function that one finds in
Statistical Mechanics classes, where the sum is approximated by an integral
over a density of states. (In 3D Baierlein gives Z = (2πmT )3/2L3 in formula
5.32.)
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