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Honours QM HW #3

1. Find the differential equation for the time evolution operator ÛĤ(t, t0) using
the Schrödinger equation and the definition of the time evolution operator,
|ψ(t)〉 = ÛĤ(t, t0)|ψ(t0)〉. Show that if

(a) Ĥ is independent of time then ÛĤ(t, t0) = exp
(
− iĤ(t − t0)

)
solves

the DE you found for ÛĤ(t, t0)

(b) Ĥ(t) is time dependent but [Ĥ(t1), Ĥ(t2)] = 0 then ÛĤ(t, t0) =

exp
(
− i
∫ t
t0
dt′ Ĥ(t′)

)
solves the DE you found for ÛĤ(t, t0)

(c) Ĥ(t) is time dependent but [Ĥ(t1), Ĥ(t2)] 6= 0 then ÛĤ(t, t0) =

T←− exp
(
− i
∫ t
t0
dt′ Ĥ(t′)

)
, where, in general, the time-ordered exponen-

tial is defined as the Dyson series

T←− exp

(∫ t

t0

dt′ Â(t′)

)
≡ 1̂ +

∫ t

t0

dt1 Â(t1) +

∫ t

t0

dt1

∫ t1

t0

dt2 Â(t1) Â(t2)

+

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 Â(t1) Â(t2) Â(t3) + . . . , (1)

solves the DE you found for ÛĤ(t, t0).

Note: you might find the Leibniz Rule helpful: for

I(α) =

∫ b(α)

a(α)

f(x, α) dx, (2)

we have that

d

dα
I(α) =

db(α)

dα
f
(
b(α), α

)
− da(α)

dα
f
(
a(α), α

)
+

∫ b(α)

a(α)

∂f(x, α)

∂α
dx. (3)

2. Prove Ehrenfest’s Theorem, that the expectation values of operators evolve
as one would expect classically; i.e., show that the expectation values of
operators follow Newton’s Equation:

d

dt
〈p̂〉 = −〈∇V 〉 (4)

when

Ĥ(t) =
p̂2

2m
+ V (x̂). (5)
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Show this first using the Heisenberg picture and then again using the Schrö-
dinger picture. Hint: in HW#1 you showed that [x̂, f(p̂)] = i∇p̂f(p̂) holds
as an operator equation; you may find it useful to assume that, similarly,
[p̂, g(x̂)] = −i∇x̂ g(x̂)

3. The time dependence of the simple harmonic oscillator in the Heisenberg pic-
ture. Taking t0 = 0 for simplicity, find aH(t) and a†H(t) using the definition

of the Heisenberg operator, X̂H(t) ≡ Û †
Ĥ

(t)X̂H(0)ÛĤ(t) = Û †
Ĥ

(t)X̂SÛĤ(t),

and using the Baker-Hausdorff lemma. Recall that Ĥ = ω(N̂ + 1/2), where
N̂ = a†H(t)aH(t) = a†SaS = a†a (note that I was able to drop the sub-

scripts in the equation for N̂ and Ĥ because Ĥ is time independent for the
SHO, so the equation holds both when the raising and lowering operators
are both taken as in the Heisenberg picture or when both are taken to be in
the Schrödinger picture), and

[N̂ , â] = −â (6)

[N̂ , â†] = â†. (7)

Now find aH(t) and a†H(t) using the Heisenberg equations of motion. Re-
calling that

x̂S =
1

2mω

(
âS + â†S

)
(8)

p̂S =
mω

2

(
−âS + â†S

)
, (9)

find x̂H(t) and p̂H(t) in terms of x̂H(0) = x̂S and p̂H(0) = p̂S.

4. In the last homework set we found 〈Ŝ〉(t) for an electron polarized along
the positive x direction at t = 0 in a constant, time-independent magnetic
field B = Bẑ (where the hat on the z refers to a unit vector and not an
operator), in the Schrödinger picture. Now let’s do the same calculation
again in the Heisenberg picture. There are three very nice ways to do this
calculation.

(a) First, use the Baker-Hausdorff lemma to find ŜH(t).

(b) Second, use the Heisenberg equations of motion. When you use the
HEOM, you should find that

d

dt
Ŝx,H(t) = −ω Ŝy,H(t)

d

dt
Ŝy,H(t) = ω Ŝx,H(t) (10)

d

dt
Ŝz,H(t) = 0,

where Ĥ = −ω̃Ŝ · B and ω = −ω̃B as we had from the last time.
This is a coupled set of first order ordinary differential equations. The
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general way to solve a set of coupled first order differential equations,
as we know from our extensive manipulations of Lie groups, is to write
the equations in matrix form and exponentiate. To wit,

d

dt
ŜH(t) = ωM · ŜH(t) = ω

(
0 −1
1 0

)
ŜH(t), (11)

where

Ŝ ≡
(
Ŝx
Ŝy

)
(12)

(the equation for Sz,H(t) is trivial). So now exponentiate M , and
we formally have the solution. We are able to make some additional
progress by then Taylor expanding the exponential. Notice something
clever about the matrix M (i.e. notice that M 2 = −1), then no-
tice something clever about the remaining infinite sums (they should
be reminiscent of something you just found using Baker-Hausdorff. . .).
Finally, write down your expressions for ŜH(t).

(c) For the third and final method (for this HW set, that is), return to
Eq. (10). The previous method, that of exponentiating the matrix, is
completely general. However we might be clever at an earlier step than
from all those manipulations of Taylor expansions. In particular, we
might notice that while our HEOM give us a set of coupled, first order
ordinary differential equations, if we take the derivative of both sides
of the equations in Eq. (10), we find two uncoupled secord order ordi-
nary differential equations (the z equation remains trivial). Find these
equations, note the boundary conditions (how many do you need?),
and solve them. What is ŜH(t)?

Using your expression for ŜH(t), find 〈Ŝ〉(t) given the above initial condi-
tions and compare it to the quantity found in the previous homework set.

3


