Date:_____

Time for Completion:_____

Honours QM HW #2

- 1. Using Dirac notation show that the trace of operators is cyclic; i.e. $\operatorname{Tr}(\hat{A}\hat{B}\hat{C}) = \operatorname{Tr}(\hat{B}\hat{C}\hat{A})$. Again, using Dirac notation, prove what $\sum_{n} \psi_{n}^{*}(\boldsymbol{x}') \psi_{n}(\boldsymbol{x}) = \delta(\boldsymbol{x} \boldsymbol{x}')$, where $\psi_{n}(\boldsymbol{x}) = \langle \boldsymbol{x} | \psi_{n} \rangle$ in a CON basis $|\psi_{n}\rangle$.
- 2. Prove that the determinant of a unitary operator is in general a complex number of unit modulus. NB: $\det(\hat{A}\hat{B}) = \det(\hat{A}) \det(\hat{B})$. You may do this in a vector space in which your operator can be explicitly represented by a matrix. In that case it is useful to recall that for a matrix $M \det M^T =$ $\det M$, where M^T is the transpose of M.
- 3. Prove that $\text{Tr}(\hat{A})$ and $\det(\hat{A})$ is independent of the basis used to represent \hat{A} . Hint the determinant is cyclic, and these first few problems have a lot to do with unitary matrices...
- 4. Prove that if \hat{A} is diagonalizable in some basis $|a_n\rangle$ then $\operatorname{Tr}(\hat{A}) = \sum_n a_n$, where a_n are the eigenvalues of \hat{A} . Show also that $\det(\hat{A}) = \prod_n a_n$ and

$$\det(\hat{A}) = \exp\left(\operatorname{Tr}\left(\log(\hat{A})\right)\right).$$
(1)

Hint: for the last part first examine $\log \left(\det(\hat{A}) \right)$.

5. Remember Problem 3 from HW Set 0? We're not done with it just yet. Suppose we have a linear combination of two stationary states at t = 0,

$$|\psi(\theta, t=0)\rangle = c_1|n_1\rangle + c_2|n_2\rangle, \qquad n_1 \neq n_2, \tag{2}$$

and where we have chosen to represent the orthonormal stationary states by

$$\langle \theta | n_i \rangle = \frac{1}{\sqrt{2\pi R}} e^{i n_i \theta}, \qquad n_i \in \mathbb{Z}.$$
 (3)

What is $|\psi(t)\rangle$? What are $P(n = n_1, t)$ and $P(n = n_2, t)$, the probabilities of measuring $n = n_1$ and $n = n_2$ as a function of time, respectively? Suppose for the moment that $c_1 = 0$; what is $\langle \hat{\theta} \rangle(t)$? Similarly for $c_2 = 0$. Compute $\langle \hat{\theta} \rangle$ for general c_i and see that a nontrivial t dependence emerges (make sure your answer for general c_i reduces to the results you found when an individual $c_i = 0$). 6. Demonstrating the acausality of the non-relativistic Schrödinger Equation. Suppose you have a free particle of mass m whose wavefunction is localized at t = 0 such that

$$\psi(x, t = 0) = \frac{1}{\sqrt{a}} \theta \left(\frac{a}{2} - x \right) \theta \left(\frac{a}{2} + x \right).$$
(4)

(Note #1 (interesting but not necessarily useful for solving the problem): notice that $\theta(x) = \int_{-\infty}^{x} dx' \delta(x')$.)

(Note #2: we could have done something more "realistic" in this problem like starting with the particle in an infinite square well for t < 0 and then suddenly removing the potential at t = 0. In the end, one finds again acausality, but the results are much more messy mathematically than what we will find below.)

(a) Show that, assuming $x \gg a$,

$$\psi(x, t) \simeq \sqrt{\frac{t}{\pi a m}} \frac{1-i}{x} \sin\left(\frac{m a x}{2t}\right) e^{i m x^2/2t}.$$
 (5)

Find $|\psi(xt)|^2$ for this approximation. Clearly for any t > 0 there is a nonzero probability of finding the particle for in any interval x + dx!

Note that if you find yourself with an intermediate expression that looks like

$$\psi(x, t) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} dp \, e^{-i\frac{p^2}{2m}t} \, e^{i\,p(x-x')} \frac{\sin(a\,p/2)}{p},\tag{6}$$

then you may be in possession of a correction expression but one that might not lead you to the answer most easily...

(b) Now solve the problem exactly, finding that

$$\psi(x,t) - \frac{1}{2\sqrt{a}} \left[\operatorname{erf}\left(\frac{1-i}{4}\sqrt{\frac{t}{m}}(a-2x)\right) + \operatorname{erf}\left(\frac{1-i}{4}\sqrt{\frac{t}{m}}(a+2x)\right) \right],\tag{7}$$

where $\operatorname{erf}(x)$ is the error function, the integral of the Gaussian distribution,

$$\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_0^x dt \, e^{-t^2}.$$
(8)

Remember that once you have a solution in terms of a definite integral you are free to quote the result of canned software (so long as you cite your source!).

(c) Using your favorite mathematical software, plot $|\psi(x, t)|^2$ from Eq. (7) for a = m = 1 and t = 0.001. Note the rapid oscillations that peak near a/2 = 1/2. This oscillatory peaking is a general result in expanding in a complete Fourier basis known as Gibbs' Phenomenon. Now make a new graph and plot both $|\psi(x, t)|^2$ from Eq. (5) and Eq. (7) keeping a = m = 1; make one graph for t = 0.1 (with x out to 5) and one for t = 1 (with x out to 20).

- 7. Suppose that we construct a system such that we have a static, constant magnetic field $\mathbf{B} = B\hat{\mathbf{z}}$ (where here the hat represents a unit vector as opposed to an operator), and at t = 0 we measure the electron to be polarized along the positive x-axis. What is the expectation value for the spin of the electron as a function of time for t > 0? I.e., what is $\langle \hat{\mathbf{S}} \rangle(t)$? The following might be useful:
 - (a) The Hamiltonian for the coupling of spin to a magnetic field is

$$\hat{H} = -\tilde{\omega}\hat{\boldsymbol{S}}\cdot\boldsymbol{B},\tag{9}$$

where $\tilde{\omega} = e/m_e$ in natural units.

(b) The expansion of the state polarized along the positive x-axis in the basis of states polarized along the z-axis is

$$|+, x\rangle = \frac{1}{\sqrt{2}}|+, z\rangle + \frac{1}{\sqrt{2}}|-, z\rangle.$$
 (10)

(c) In the basis of spinors aligned along the z-axis, $\{|+, z\rangle, |-, z\rangle\} \hat{S} = \sigma/2$, where the σ_i are the Pauli matrices; i.e.,

$$\langle i, z | \hat{S}_j | k, z \rangle = \frac{1}{2} (\sigma_j)_{i,k}.$$
 (11)

You should find that

$$\langle \hat{\boldsymbol{S}} \rangle(t) = \left\langle \begin{pmatrix} \hat{S}_x \\ \hat{S}_y \\ \hat{S}_z \end{pmatrix} \right\rangle(t) = \begin{pmatrix} \frac{1}{2} \cos \omega t \\ \frac{1}{2} \sin \omega t \\ 0 \end{pmatrix}$$
(12)

Bonus

1. Let's investigate the Gibbs Phenomenon for the free particle on a circle. Suppose that

$$\psi(\theta) = \frac{1}{\sqrt{aR}} \theta(a/2 + \theta) \theta(a/2 - \theta), \tag{13}$$

and we choose as our basis states $|n, j\rangle$ where

$$\langle \theta | n, j \rangle = \frac{1}{\sqrt{\pi R}} \cos\left(n \theta - j \frac{\pi}{2}\right) \left[1 - \frac{1 + \sqrt{2}}{2} \delta_{n,0}\right],\tag{14}$$

 $n \in \mathbb{N}$ and j = 0 or 1. Expand $\psi(\theta)$ in the above basis. Define $\psi_m(\theta)$ as the function given by the series expansion of $\psi(\theta)$, Eq. (13), truncated after m+1 terms. Plot on one graph for $\theta \in [-\pi, \pi]$ your results for the original $\psi(\theta)$, Eq. (13), and your $\psi_m(\theta)$ when you take m = 0, 1, 5, 50.

2. Explicitly evaluate the sum you found in the previous problem to recover the original wavefunction.