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1. Using Dirac notation show that the trace of operators is cyclic; i.e. Tr (ABC) =
Tr (BCA). Again, using Dirac notation, prove what ) % (x') ¥,(x) =
d(z — '), where ¢, (x) = (x|t),) in a CON basis |i,).

2. Prove that the determinant of a unitary operator is in general a complex
number of unit modulus. NB: det(AB) = det(A) det(B). You may do this
in a vector space in which your operator can be explicitly represented by a
matrix. In that case it is useful to recall that for a matrix M det M1 =
det M, where M7 is the transpose of M.

~

3. Prove that Tr (A) and det(A) is independent of the basis used to represent
A. Hint the determinant is cyclic, and these first few problems have a lot to
do with unitary matrices. ..

4. Prove that if A is diagonalizable in some basis |a,) then Tr(A) = 3 a,,
where a,, are the eigenvalues of A. Show also that det(A) = [], a, and

det(A) = exp (Tr (log(A))). (1)

Hint: for the last part first examine log (det(fl)).

5. Remember Problem 3 from HW Set 07 We’re not done with it just yet.
Suppose we have a linear combination of two stationary states at t = 0,

(0, t =0)) = c1ln1) + calnz), 1 # n, (2)
and where we have chosen to represent the orthonormal stationary states by

1 )
<9|7’L1> = %eznlﬂj n; € 7. (3)

What is [¢(t))? What are P(n = ny, t) and P(n = na, t), the probabilities
of measuring n = n; and n = ny as a function of time, respectively?
Suppose for the moment that ¢; = 0; what is (6)(¢)? Similarly for ¢, = 0.
Compute (0) for general ¢; and see that a nontrivial ¢ dependence emerges
(make sure your answer for general ¢; reduces to the results you found when

an individual ¢; = 0).



6. Demonstrating the acausality of the non-relativistic Schroodinger Equation.
Suppose you have a free particle of mass m whose wavefunction is localized
at ¢ = 0 such that

t=20 !
77D(ZE ’ - ) - \/a

(Note #1 (interesting but not necessarily useful for solving the problem):

notice that 0(z) = [*_ da'0(a’).)

(Note #2: we could have done something more “realistic” in this problem

like starting with the particle in an infinite square well for ¢ < 0 and then

suddenly removing the potential at ¢t = 0. In the end, one finds again
acausality, but the results are much more messy mathematically than what
we will find below.)

0(a/2—12)0(a/2+x). (4)

(a) Show that, assuming =z > a,

t 1—1 max\ ;. .2
1) o~ : ( > imzx /2t‘ 5
(@, ?) Tam St 2t © (5)

Find [¢(x t)|* for this approximation. Clearly for any ¢ > 0 there is a
nonzero probability of finding the particle for in any interval x + dax!

Note that if you find yourself with an intermediate expression that

looks like
U(z, t) = L /oo dp ikt eip(w—x’)Sin(ap/Q) (6)
b \/a - p ,

then you may be in possession of a correction expression but one that
might not lead you to the answer most easily. . .

(b) Now solve the problem exactly, finding that

U(x, t) — ﬁ lerf(lii\/%(a— 2x)> +erf<% %(a—l—l%’))] ,
(7)

where erf(z) is the error function, the integral of the Gaussian distri-
bution,

2 v 2
erf(r)= — [ dte". (8)

T Jo
Remember that once you have a solution in terms of a definite integral
you are free to quote the result of canned software (so long as you cite
your source!).

(c) Using your favorite mathematical software, plot [¢(z, t)|* from Eq. (7)
fora = m = 1 and t = 0.001. Note the rapid oscillations that
peak near a/2 = 1/2. This oscillatory peaking is a general result in
expanding in a complete Fourier basis known as Gibbs’ Phenomenon.
Now make a new graph and plot both [¢(z, t)|? from Eq. (5) and Eq. (7)
keeping a = m = 1; make one graph for t = 0.1 (with = out to 5)
and one for t = 1 (with x out to 20).
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http://en.wikipedia.org/wiki/Gibbs_phenomenon

7. Suppose that we construct a system such that we have a static, constant
magnetic field B = Bz (where here the hat represents a unit vector as
opposed to an operator), and at ¢ = 0 we measure the electron to be
polarized along the positive x-axis. What is the expectation value for the
spin of the electron as a function of time for ¢ > 07 Le., what is (S)(¢)?
The following might be useful:

(a) The Hamiltonian for the coupling of spin to a magnetic field is
H = -%S - B, (9)

where @ = e/m, in natural units.

(b) The expansion of the state polarized along the positive z-axis in the
basis of states polarized along the z-axis is

4 a) = | z>+i2\—, 2. (10)

2 V2

(¢) In the basis of spinors aligned along the z-axis, {|+, z), |—, 2)} S =
o /2, where the o; are the Pauli matrices; i.e.,

. A 1
<27 Z|S]|k7 Z> = §(Oj)i,]g' (11)

You should find that

(S)(t) = <

>

= coswt

> (t) = %sinwt (12)
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Bonus

1. Let’s investigate the Gibbs Phenomenon for the free particle on a circle.
Suppose that

b(0) = \/;_Rﬁ(a/2 +0)0(a/2 — ), (13)

and we choose as our basis states |n, j) where

)[1_1+\/2

5 On,0], (14)

cos (nﬁ—jz

(0ln, ) = .

1
VTR
n € Nand j = 0 or 1. Expand () in the above basis. Define 1,,(6) as
the function given by the series expansion of 1(6), Eq. (13), truncated after

m+1 terms. Plot on one graph for § € [—m, 7| your results for the original
¥(0), Eq. (13), and your ¢,,(#) when you take m = 0, 1, 5, 50.

2. Explicitly evaluate the sum you found in the previous problem to recover
the original wavefunction.



