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Honours QM HW #1

1. Problem 4 (e) from HW#0.

2. Using the properties of an inner product discussed in class, show that 〈α vj+
β vk|vi〉 = α∗〈vj|vi〉+ β∗〈vk|vi〉.

3. Show that in a finite or countably infinite dimensional vector space that
〈vi|vj〉 ≡

∑
n a

i∗
n a

j
n, where |vi〉 =

∑
n a

i
n|en〉, is an inner product. Show

that for the square-integrable (possibly complex-valued) functions on the
real line 〈fi|fj〉 =

∫∞
−∞ dx f

∗
i (x) fj(x) is an inner product.

4. Delta “function”s are common and extremely useful. I put function in quo-
tation marks because rigorously the delta is a distribution; it only makes
rigorous mathematical sense when integrated over a suitably well-behaved
function (i.e. a function that has a Taylor expansion at the point where the
delta distribution is infinite). One can find delta distributions as the limit
of a sequence of true functions δ(x; a), δ(x) = limε→0 δ(x; ε). Show that if

(a) limε→0 δ(x; ε) = 0 for x 6= 0 (technically for x 6= 0 almost every-
where), and

(b) limε→0

∫∞
−∞ dx δ(x; ε) = 1

then
∫∞
−∞ dx δ(x; ε) f(x) = f(0). One approach is to use a physicist’s proof

and make an argument based on dimensionality; i.e. what dimensionful
quantity do you have left after integrating over x, and therefore what must∫∞
−∞ dx δ(x; ε)xn be proportional to? What are the dimensions of a delta

distribution? Show that

δ(x; a) ≡ 1

a
θ(a/2− x)θ(a/2 + x), (1)

where θ(x− a) is the Heaviside step function,

θ(x− a) =

{
0, x < a
1, x > a

, (2)

converges to a delta distribution. One can also define the derivative of a delta
distribution. Using integration by parts (IBP), show that

∫∞
−∞ dx δ

′(x) f(x) =
−f ′(0). Show by a change of variables that if there is one solution x0 such
that g(x0) = 0 then∫ ∞

−∞
dx δ

(
g(x)

)
f(x) = f(x0)

/∣∣∣∣∂g∂x
∣∣∣∣
x=x0

. (3)
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Note that in general if g(x) = 0 has multiple solutions xi then∫ ∞
−∞

dx δ
(
g(x)

)
f(x) =

∑
i

f(xi)∣∣ ∂g
∂x

∣∣
x=xi

. (4)

Finally, show that limε→0 δ(x; ε) = δ(x) for

δ(x; ε) =
1

2π

∫ ∞
−∞

dk ei k x−|k| ε. (5)

Hint: evaluate the k integral first then check to see if your result satisfies
the above conditions. (Note that adding a small imaginary part to make
integrals converge is a common technique.) Use this result to set the normal-
ization to the stationary wavefunction solutions of the free particle on the in-
finite line (remember that we want 〈p|p′〉 = δ(p−p′) and 〈x|x′〉 = δ(x−x′);
judicious insertion of 1 is useful). Write down the stationary wavefunction
solutions in n dimensions.

5. The representation of x̂ in the p basis.

(a) Show that [Â, B̂Ĉ] = [Â, B̂] Ĉ + B̂ [Â, Ĉ].

(b) Show that [p̂, x̂n] = −i n x̂n−1.

(c) Show that
p̂ ei x̂·l |p〉 = (p + l) ei x̂·l |p〉; (6)

therefore ei x̂·l |p〉 = |p + l〉. Use this to show that

〈p| ei x̂·l |ψ〉 = ψ(p− l) = e−∇p·l ψ(p), (7)

and, therefore, 〈p|x̂|ψ〉 = i∇p ψ(p).

(d) Show that [x̂, f(p̂)] = i∇pf(p) holds as an operator equation; i.e.
show that 〈p| [x̂, f(p̂)] |ψ〉 = ψ(p) i∇pf(p).

Bonus

6. Remember Problem 3 from HW Set 0? We’re not done with it just yet.
Suppose we have a linear combination of two stationary states at t = 0,

|ψ(θ, t = 0)〉 = c1|n1〉+ c2|n2〉, n1 6= n2, (8)

and where we have chosen to represent the orthonormal stationary states by

〈θ|ni〉 =
1√
2πR

ei ni θ, ni ∈ Z. (9)

What is |ψ(t)〉? What are P (n = n1, t) and P (n = n2, t), the probabilities
of measuring n = n1 and n = n2 as a function of time, respectively?
Suppose for the moment that c1 = 0; what is 〈θ̂〉(t)? Similarly for c2 = 0.
Compute 〈θ̂〉 for general ci and see that a nontrivial t dependence emerges
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(make sure your answer for general ci reduces to the results you found when
an individual ci = 0). Compute also

〈∆̂θ
2
〉 = 〈

(
θ̂ − 〈θ̂〉

)2

〉 = 〈θ̂2〉 − 〈θ̂〉2, (10)

and do the same for 〈∆̂p
2

θ〉. Does 〈∆̂θ
2
〉〈∆̂p

2

θ〉 satisfy the uncertainty princi-
ple? What values of n1 and n2 minimize the uncertainty? Note that you will
have to compute integrals of the form Ij(m) ≡

∫ 2π

0
dθ θj exp(im θ) where j

and m are integers. Ordinarily you could simply quote the result of these
definite integrals from canned software. However a nice way of shortcutting
the painstaking integration by parts necessary should one do these ana-
lytically is through the use of Feynman’s trick of differentiating under the
integral sign. Feynman’s trick is a useful tool to know, and you are required
to use it here, at least for the 〈∆̂θ〉 case. Define a general

Ij(α) ≡
∫ 2π

0

dθ θj ei α θ. (11)

Then one sees that
Ij(α) = (−i)j∂jαI0(α). (12)

Then our desired integral is

Ij(m) = (−i)j∂jαI0(α)
∣∣
α=m

. (13)

Note that it is only at the end of the calculation that we set α = m ∈ Z.

Analytically evaluate
∫ 1

0
dt (ta − tb)/ log(t), where a, b ∈ R. Hint: do the

opposite of Feynman’s Trick and integrate under the integral.
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