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1 Hilbert space

1.1 Introduction

The mathematical foundation of Quantum Mechanics (QM) is Functional Analysis
(FA), which is based on the unification of Complex Analysis with Linear Algebra.
QM and FA were developed concurrently, between 1925 and 1935, in a fruitful col-
laboration between physicists and mathematicians. The first consistent formulation of
QM as a fundamental theory was published by Werner Heisenberg in 1925.

QM differs from other fundamental theories, like Classical Mechanics (CM), Classi-
cal Electrodynamics (CE), Statistical Mechanics (SM), Special Relativity (SR) and
General Relativity (GR) in mainly two respects:

(i) Complex numbers play a fundamental role in QM. In fact, the imaginary unit
i = v/—1 enters Heisenberg’s and Schrédinger’s equations of motion, as well as
the Born-Jordan quantization condition, while, e.g. Newton’s 2nd law, Maxwell’s
and Einstein’s equations involve only real quantities. Thus, complex numbers
are of fundamental importance in QM, rather than merely being a convenient
calculational tool, as in CM (e.g. in the case of coupled oscillations), in CE
(e.g. in the case of electromagnetic waves or AC-circuits) or in SR (e.g. in the
pseudo-Euclidean metric of Minkowski space My).

(ii) QM is not deterministic, as the concept of probability enters QM fundamentally in
the measurement process. This is in marked contrast to SM, where probability is
merely introduced as a convenient tool to tackle the statistics of ~ 1024 interacting
particles, while the microscopic processes are still considered to be deterministic.
This is one of the reasons why Albert Einstein did not accept QM as a complete
and fundamental theory until his death in 1955.

1.2 Vectors

The Hilbert space # is an infinite-dimensional vector space over the field of the complex
numbers C. The state of a quantum system is completely determined by a “ket” vector
in this fictitious space H which is characterized by an infinite column of complex
numbers,

The ¢; € C(i = 1,2, - - - ) are the components or Fourier coefficients of |4). The vectors
|¥) € H must have finite norm

oo

M _Os._m < 0

=1

I 1l=

def

A necessary, but not sufficient condition for this to happen is

lim ¢,=0.
n— o0

This suggests that the components of ¢, with n > N may be neglected for a
sufficiently large V.

1.3 Addition of vectors
The sum of two vectors |p) and [¢) € H is defined as

b1+ ¢
o) 1) = o= | B2t
def .

by

. —p=| b
with o) = ¢

If || ¢ [[< 0o and || ¥ ||< oo, then also || ¢ + ¢ ||< o0, as we prove in tut 1(b).
This means that |p) + [¢)) € H, as well.
e properties:
(which follow directly from the definition of the sum of two vectors)

[9) +1e) = lo) + 1)

commutative law

(o) + 1)) +1x) = [¥) + (o) +|x)) associative law
[4) +10) =10) + [) = [4) 3 null vector
0
R
[¥)+]—=%) = |—)+|¢)=1]0) I negative vector
e
I~ ==y = |

def

Thus, H forms a commutative group with respect to the addition of vectors.



1.4 Multiplication of a vector with a scalar

o definition:

The product of a vector with a complex number is defined as

acy

aly) =ap=| a2 [ gec ) e H .

def

As aly) has finite norm, i.e.

ey IP= 3" lalled? = o 3" fesf? < oo |
=1 =1

———
<oo
it is contained in 7, i.e. afyh) € .
® properties:
(which follow directly from the definition)
a(l¥) +19) = aly) + alp)
(@+0)ld) = aly)+bjy) | .
linearity laws
(@b)le) = a(bly))
Lig) = [¢)

o definition:

N vectors [1;), [a), - [¥n) are linearly independent, if the linear relation
ety independent

2lh) + 2 le) + -+ zy|gn) = 0)

only holds for z; = 2 = -+ = 2y = 0. Otherwise the N vectors are

-

linearly dependent. Similarly, in Euclidean space &3, if @ and b point in differ-

ent directions, A\@ + tw =0 can only be fulfilled for \ = ©n=0.

1.5 Scalar product

o definition:

To every ordered pair of vectors l¢) and |) € H, we can associate a complex
number through the Dirac (brajket), introduced by P.A.M. Dirac in 1927, i.e.
C

(&} 00
(el) i ply = (b1, 05,--) ¢ | = M bici € C , b} being the complex
¢ : i=1 conjugate of b;.

m.w“ga by + a, by +a, b,
Euclidean scalar product

Similarly, we have in Es:

The Dirac “bra” vector is characterized by an infinite sequence of complex

numbers (o] = of = (65,03, -) e 1t ,
ef
where 71 is the dual Hilbert space. Thus (y| fulfils the same linearity laws as |¢).
The scalar product (lv) is finite if the norms of both |¢) and [4), are finite. See
tut 1(a).
® properties:

(which follow directly from the definition)

(Plb+x) = (o) + (plx) L
linearity

(blay) = a(ply)
(Ply) = (ylp)* conjugation
{(elo)y > 0 positivity

unless o) = |0)

¢ consequences:
e+l = (olx) + (wlx)

(agly) = a*(ply) .

The norm of the vector [¥) can now be written as

I ll= V&) = | el .
i=]1



o definition:

lp) and |¢) are orthogonal to each other

iff (pl$) = D bie;=0 and both ||y ||#0 and [[¢[I#0 .
The following nequalities hold:
e Schwarz’s inequality:
Kel) < Ilell ¢l (see tut 1(a))
Similarly, in £3:  |@-b| = |&]|B || cos | < |a] 15|

v = the smaller angle between @ and b

e Minkowski’s inequality:

ey ll<liell+1¢]l (see tut 1(b))

similarly, in &3:

s triangular inequality:

o —ell<l¥—xl+Ile—xIl (seetut 1(c))

Similarly, in &5: |&—b| < |a@l+ b clear!

-
-

replace @ —>d—¢c;b—=b-¢

> jg-e-(-9|<la-ad+lb-4 .
—_———

|a - 8]
e conclusion:

The scalar product can be used to measure “distances” and “angles”
in H. It is, therefore, the metric of H.

1.6 Basis vectors

o definition:

A convenient set of vectors, spanning up the Hilbert space H, is

1 0
0 1
1) = ¢ =lo] > [2) = b2 =0 )
e properties:
This allows us to write

[e.0] o0 GH
= = ).y = s — Ca

W) =1 = WQ,E M@ .

for all |4) € H, i.e. the set of vectors |¢f;) =¢; (i=1,2, ---) forma
basis of H.

Similarly, in £3: every vector @ can be expanded as

Gy
= 0,6, +ay€y+a.€;,=| ay ,
a;
1 0 0
inwhich é={ 0], =1 ]and &= 0
0 0 1
form a basis of &3.
orthonormality:
The N vectors |¢1), |¥2) , -+, [¢¥n) are obviously linearly independent
and orthonormal ( = orthogonal and normalized), i.e.
Aﬁ\g_%:v”%r.ﬁzﬂ%ﬂ:z Aiﬁznf -, N)

Similarly, in £3:
é;-€ =65 (i,j==2,y,2) are orthonormal.

dimension of #:
As N can be arbitrarily large, the dimension of # is infinite, i.e.

dim H = oo, while the dimension of £3 is dim &3 = 3.



1.7 Completeness

* Let [4) (i=1.2 -..), with Wilr) =6 (iyk = 1,2, ---), be a different
set of orthonormal vectors in . This set of vectors is complete in H (i.e. it is a
basis of #), if every vector [¥) € H can be expanded as

[¥) = MU&TRV = Muns._@s.v = invariant.
i=1 =1

In general ¢ #¢; and [V # ) (0= 1,2, -.-).

Similarly, we can expand every vector & ¢ &3 in a different set of orthonormal
=1 el

basis vectors &7 - €, =0 (Lk=uzx,y, z), i.e.
nd - 1 = 1 =/ — — — . .
a=a,e€e, + ay, €, +a, €, =a,e, + ayey + a.€e, = invariant.

In general a! #a;, and €iF# &, (i=u,y,2).

The c; are the complex components or Fourier coefficients of [¥) in the complete
and orthonormal set ) (=12, ) of H, i.e.

W chw)
oo k=1

= ek @l =

ik
= = Wil =ity e C |

(¥ily)

Similarly, in &  we have a;=ad-€ cR (i =uz,y,2).

o Let [¢)) (i=1,2, ---)  be an arbitrary complete and orthonorma] set of
vectors in 7. The Fourier expansions of the vectors ) and 1) € A in this
basis are

lo) = > iyl and ) ="yl
=1 =1

with the Fourier coefficients

G =(il¥) €C and b = (yllp) e C

The scalar product is thus

oo oo
Dol S
i=1 k=1
(o) oo o0
D vt (lyt) = PIACAS D be; = invariant .
i,k=1 s
ik

i

()

Il

i=1 i=1

This is valid for every complete and orthonormal set [4}).
Now inserting the Fourier coefficients, we have

As_&uMgs*Aﬁ_@vuMAsﬁvﬁ_s?mmim equation.
=1 =1
Similarly, in & we have

-

ab a.%@.?a.&ﬁ.?a.@@.v

= ay b, +a by +al b, = azb, + ayby +a.b, = invariant.

® special case:

For o) =), we have

I91F=@lw) = 3 (@i iy = D W) Bessel’s equation
i=1 i=1

o0 [es}
= M_&_m = M_mlw = invariant.
i=1

i=1

Thus, if the set [¢!) (i = 1,2,---) is incomplete in that e.g. |v)) with £ = 37
missing, one could not represent vectors [t)) having a component in the (45
direction.

Similarly, in & we have

Qd = (@-&) 4@ &)+ (@ d)

I

= a?+tq +a=a24+a2+42 = invariant
- ] Yy z T g Yy z = .



2 Operators
2.1 Definition

e The dynamical variables (i.e. momentum, position vector, angular momentum,
energy, etc.) of a quantum system are operators. An operator F' maps a general
vector |1} € H onto another vector |p) € H

) = Fly) = |Fy) € M

As |F1) € H, it must have finite norm, i.e. || F9 || < oo. Similarly, in E3:
The relation between the w:mﬁ_mn momentum J, the moment of inertia tensor 6,
and the angular velocity & of an arbitrarily shaped rotating rigid body is given
by J =63 or

Iz Oz m&@ 0 Wy
Jy | =] by Oyy Oy Wy )
Jz 0.2 %N@ 0. Wy

where J and & point in different directions, in general.

T

——
centre-of-mass w

2.2 Matrix representation of operators
e Linear operators satisfy the linearity law
F(alp) +bly)) = aFle) + bF ) a,beC;  |p),[¢) €
We henceforth restrict ourselves to linear operators.

e Let |¢r) (k=1,2, ---) be a complete and orthonormal set of vectors of H.

0 = > beh)
k=1 Fourier
lp) and [y) € = iy expansions
0 =S el
k=1
with the Fourier coefficients
b = (Yrlp) and cp = (Yely)  br,cr €C

Inserting the Fourier expansions for |¢) and |¢) into |¢) = |F), we obtain, using
the linearity law,

D belvr) = F Y cxle)
k=1 k=1

Taking the scalar product from the left with (1;]

Mgn A M gs_hﬂ@wv )
k=1

.IJ\.I\

= cklFi)

k=1

k=1

Oik Fi, € Q
we arrive at 0

b = MU»J;Q

k=1
H
e, Fi = (il Fype) €€
def

are the (finite) matrix elements of the linear operator F' in the complete and or-
thonormal set 1) of H. In matrix notation the defining equation for an operator
is therefore,
by Fi1, Fiz, -+ a
be | = For, Fo2, - &)

or = .Nﬂﬁb or F. = M.ﬁ%n\e

k=1

with b; = (bilo) = ¥, ¢ = (Wily) = ¥l and Fy = (| Fop) = 9] Fapy

def def def

Thus linear operators can be represented by infinite square matrices.

2.3 Sum and differences of operators

(GEF)l¥) = Gly) £ Fly)
= |Gy) £ |Fy)
= (G F))

o definition:

valid for every |¢) € H

Applying this to a complete and orthonormal set of vectors |¢;), and taking the
scalar product with (¢;| from the left, we have

(Wil(G £ F)ig) (¥i|Gr) £ (i F'ore)

= (GxF)y = Gyt Fy; matrix addition and subtraction law.



2.4 Product of operators

o definition:

GRIY) = G(FW) =Gly)
with o) = Fl) =|F¢) and |o),|v) € A .
Writing these equations in matrix form, we have Q\h
00 oo ) 00 (=) - V«I-\.II :V
MUAQ@J:O cp = MQ: b = MUQ: MU@;Q = MU Ga Fii ¢, - | Y 7= Fe# .
k=1 =1 =1 k=1 k=1 .
——
: o
p’ -

As ¢y is arbitrary in this equation, we may choose e.g. ¢ = 6z

= (GF)in=) _ GuFy

=1

This matrix multiplication law, already known in Linear Algebra, was rediscovered
by W. Heisenberg in 1925, when he was a postdoctoral fellow with M. Born .
(Gottingen). As in general, GF # FG for matrices, this also holds for operators. ® properties:

(which follow from the definition)
¢ special matrices:

D (FF) ) = F'(Fl) = Flg) = [p)
al = 0 0 a witha € C , - valid for every |¢) € H
thus F71F =1
: - (FF)le) = F(Fg) = Fly) = |y)
al commutes with every matrix F. For a = 1 this is the unit matrix 1. .
valid for every |¢) € H
2.5 Inverse operator thus FF~1 =171
o definition: Let |p) = F|y) = |F)). We now define the truncated matrix and, therefore,
-1 _ -1 _
F: - By P =F'1'F=1]
Fyn = : : . = F and F~! commute
Evy o Fyn @THVL = F (see tut 2)
If - lim Fyt = F~' exists, the inverse F~! is uniquely defined and F is (FG)™' = G ! F~ (see tut 2).
—>00 €
invertible. A necessary, but not sufficient condition for this to happen is The quotient F/G  has no meaning, unless [F,G™1] =0.
det Fy #£ 0 for N > Np. Qﬂ_ﬁumvlﬁ — H-1G-! -1 (see tut 2).



2.6 Powers and functions of operators
e definition: F° = 7T

Frtl = FF* (n=0,1,2, ---) defined recursively.

If F~! defined, then
.ﬁ.|:lw — Nulsﬁmﬂlﬂ

is also defined recursively. Thus all positive and negative powers of
F are defined. We can now represent functions of an operator in
terms of a Laurent series, i.e.

oo

gF) = > an F", an€C ,
n=—k

AZHHVM“ ..‘V

or a Taylor series, i.e.

def £~ nl
. . 01
e example: exp (iwo,) with o, = 1 0 (see tut 3 and also tut 12).
2.7 Adjoint operator
e definition: F1 is the adjoint operator of F
i (GlFg) = (Floly) for

def
every () , ) € H

® consequence:

Let |¢;) (i =1,2,---) be a complete and orthonormal set of vectors € H
(Yn|Frpm) = Qﬂ.ﬁz_ﬁﬁv = AQS_NH,%:V*
S (), = i
F' is the transposed and complex conjugate matrix F.

e special case: An operator A is Hermitean iff A = At.

remark: Hermitean operators describe dynamical variables,
because their eigenvalues are real, as we will see later.

e properties: (see tut 4)
Fit = F
(fF+gGa)t = fFl4+g*Gl fgeC
(FG)t = GiFt
(FGH)t = HYG'Ft
F+ F' is Hermitean
i(F — F1) is Hermitean

if At = A, B = B (Hermitean) and r € R, then
(A+B) = A+B
(rA)t = r4 also
(AB+ BA)YY = AB+ BA Hermitean.

[i (AB—BA)]' = i(AB— BA)

e definition: [F,G] = FG-GF commutator
AﬁﬁQw = FG+GF

anticommutator

2.8 Basis operators
Let [|¢;) be a complete and orthonormal set of vectors of #.
e theorem: F can be represented as

F=" Fulg)hl ,

=1

where |9;)(¢1| is a basis matrix, having the matrix element 1 in the k-th column

and j-th sequence, and all other matrix elements vanishing, i.e.

{-th column
{
0 o0
[l =] -~ 1 .- | « 7™ sequence (j,1=1,2, ---).
0 0

=1; ® §4 direct product

proof:  Show that the matrix elements of F' come out correctly




(i) apply F to |ig):

Flye) = |Fyw) =Y Fuly) (Whulibn)
d,
Lk

Jil=1

= > Filey)
j=1

(ii) take scalar product with (t;|:

(Wil Fop) = Mm.? (Yily;) = Fu,  qed.
é
ij

=1

special case:

The completeness relation can be written as

e theorem: I= M [¥0n) (¥n]

n=1
00

proof: apply I to [¢) €H = Tl) =D |tn) (ulth) = [1))

S——

n=1 Cn

valid for every |¢) q.e.d.

2.9 Expectation values

definition:

properties:

The expectation value F of an operator
Fin a state |¢), normalized as

0 = () =Pl = |es* =1 , is given by
=1

ﬂnﬂ WIFY) = > el (GilF ) ek = Y i Fucp = iRy .
ik=1 i k=1

F' depends on the state vector |¢) , of course.
(for proof see tut 5)

fF+4¢G fF+9G

Ft F

FIF > 0

Il

3 Eigenvalues, eigenvectors and
axioms of measurement

3.1 Eigenvalue problem
Consider the eigenvalue equation for a Hermitean operator A = At

A ) =aly) a€el
[v) €M,

i.e. we are looking for non-trivial (||¢|| # 0) solutions [¢) , with A |v) “parallel”
to |¢) . The eigenvalue equation can be rewritten as

(A—al) [¢) =|0) ,
or in matrix form as
Al —a,  App, Ais, c1 0
A2, Az —a, Aszs, e e | _ | O

\wwuﬁ .\wwmu \www —-a, s C3 n 0

A sensible approach towards solving this infinite system of coupled complex linear
algebraic equations, is to truncate the Hilbert space after the first N dimensions,
calculating the eigenvalues and eigenvectors, and then investigating the limit N — oco.
We may then identify those eigenvalues and eigenvectors which become numerically
stable as N — co.

The truncated system of N coupled complex linear algebraic equations has non-trivial
solutions [V}, with ||1™V]] # 0, only for

Py(a) = det(Ay —aln) =0 (see tut 6).
€
The N eigenvalues a} (n=1,2,--- N) are obtained from the zero’s of the character-
istic polynomial Py(a) of degree N.
One gets the corresponding N eigenvectors |9Y) (n = 1,2, ---) from the solution
of the system of complex coupled linear algebraic equations (see tut 6).

(Av —alIn) |') = |0) n=1,---,N.

The normalization of the eigenvectors is arbitrary. Due to the symmetries of A, some of
the eigenvalues may be identical, corresponding to a multiple zero of the characteristic
polynomial. The maximal number g of linearly independent eigenstates, having the
same eigenvalue ay = a is called the degeneracy of the eigenvalue ay,.



3.2 Orthogonality of the eigenvectors of A = Af e example: 6 x 6 matrix I, = (Ynlthm) # dnm
. Here the v, are, in general, not an orthonormal set of vectors.
e theorem: for A = Al Hermitean

(i) the eigenvalues are real

. . o . x 0 0 0 0 O
(ii) the eigenvectors to different eigenvalues are orthogonal. 0 x x 0 0 0
proof: 4 ] I 0 x x 0 0 0 trix el ¢
= = X = men
write down A} = omlthm) () 0 0 0 x x Xx in general e
[AYn) = anltpn) (i) 0 0 0 x x X
, 0 0 0 x x x
apply ASS__UO (i) = A\S:_\w Ym) = am Aﬁb:_ﬁgv va eq.(1)
and (Ymlto (i) = (YmlAYn) = an(¥m|Pn) GG\
take complex
conjugate of (i)’ Wm|AUn)* = at(m|n)* ()" corresponding to the eigenvalue spectrum:
interchange
arguments (Aplhm) = ab(Wnltbm) ()" a
of (ii)*
i 1 d ei tors
use definition of At (Al ) = @ () (i) eigenvalues egeneracy eigenvector
use Hermiticity of A (U] A V) = aX(Pn|pm)  (i)* eq.(2) as=as=as F glay) =3 [v4), [¥5), |16) ap: eigenvalue
g(ay): degeneracy of the
subtract eq.(2) from eq.(1) az=as F gla) =2  [|h2),[13) eigenvalue ay
= 0= (am —a},) ¥nltm) ar t gla) =1 i)

foom=n: (an—ay) (Ynln) = 0,
as ||¢n|| # O per definition

= a, = a’, i.e. all eigenvalues are real
n? ===

foram #an: = (am —an) (Ynlhm) =0
g(ag) is the maximal number of linearly independent eigenvectors that have the same

0 . . .
= (@ ﬂv y=0 eigenvalue a;. These eigenvectors are orthogonal to all eigenvectors having different
n mi . . . .
i.e. eigenvectors to different eigenvalues are orthogonal eigenvalues. However, they are not necessarily orthogonal to eigenvectors having the
(see tut 7) same eigenvalues.

remark: If a, =a, with m#n, (¥n|n) may well be non-zero.

Thus the matrix of the scalar products I}, = (Yn|thm) has,
e

in general, box-diagonal form.



3.3 Orthonormalization of eigenvectors After this Gram-Schmidt orthonormalization procedure, all eigenvectors of

— 4. . . .
We are thus faced with the general problem of orthonormalizing g A = A7 are mutually orthonormal. If all eigenvectors are included, they thus provide

oo
linearly independent eigenvectors |¢1), |p2),- -, |@,), having the same us with a complete MU [¥i)(1i] =1 ) and orthonormal ((¢;]¢;) = &;;) set of vec-
eigenvalue a . This can be done using the Gram-Schmidt algorithm. im1
The orthonormalized vectors will also be eigenvectors of A, with the tors of H.

eigenvalue a, because every linear combination of eigenvectors with the
eigenvalue a has the same eigenvalue, as well.

e definitions: 3.4 Expectation values again
Ix1) = lo1) Let |¢) be normalized as ||4]|?> = (¥|¢p) = ) = 1. We want to express the
¢ expectation value of a dynamical variable A (= Hermitean operator) of a quantum
[x2) dof ca1lx1) + lp2) system in the state |¢)) (= vector) in terms of the Fourier coefficients of |) and
th trix el tsof A.
[xs) n_Hm es1]x1) + cs2lx2) + |@3) e matrix elements o
€ e general case:
) _ If the |¢x) (k=1,2, ---) form an arbitrary complete and orthonormal set of
Ixo) def CorlX1) + coalxa) + -+ cgglxg-1) +lpg) - vectors of H , the expectation value is
[ee)
e A = @A) = > < {WilAyx) cx
(i) every [xk) k=1, ---, g is a linear combination of |p1), -+, |py) oo hESL
(i) every |yr) k=1, ---, g isalinear combination of |x1), ---, |xg) - = M ¢ Air ck =¢T Ay € R with
i,k=1
o orthogonalization: A = (¢;]Athy) matrix element
(xalx2) = callxall®+ (xale2) =0 and ¢ = (Yr|yp) Fourier coefficient.
= c¢g = _bale) e special case:
! Ixall? If the |¢) (k=1,2, ---) are the complete and orthonormal(ized) set of the
; f A=Af h AJyL) [¢}) A= At th
_ 5 _ eigenvectors o = AT, wit e) = ar|Yy), and ap € R as A = AT, the
Galxs) = calxall® + (ales) =0 expectation value in the state [1)) is simply
o0
5 oy = -tale) A = (Wl = Y o WilAvy) ¢,
[l i,k=1
o0 (e}
(xz2lxs) = eaalixall® + (xalws) =0 = D Wlaide, = > e ax (Wilv) ¢
i,k=1 ik=1 >
_ ' Oik
= (€32 = - IIAXM_SWV co.oete. . = 112
el | = S)efa € R |
=1

e normalization:
Here, the ¢; = (3{[4) € C are the Fourier coefficients in the orthonormal(ized)

[r) = ) k=1, ---, g orthonormal vectors (see tut 8). basis of the eigenvectors [¢]) of A = A, and a; are the corresponding (real)
[l eigenvalues.
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We can now interpret

Di nwm _Om_m >0 )

with S pi = Sl = Jwll = 1,
=1 7=1

as the probability for finding the quantum system in the eigenstate |¢}), with
[e0] >

M pi a; 1is the weighted average of
=1

the eigenvalues or expectation value of the dynamical variable in the state |)
with ||3]| = 1. This probabilistic interpretation of the state vector |¢) was first
proposed by M. Born (Gottingen) in 1926, and it has subsequently been adopted
in the “Copenhagen interpretation” of the state vector [¢) of N. Bohr and W.
Heisenberg in 1927.

eigenvalue a;. Thus A = M ct|?a; =
€
i=1

3.5 Axioms of measurement

(i)

(if)

(i)

The measurement of a dynamical variable 4 = At of a quantum system that is
initially in the state |+), with norm [[¢|| = 1, yields one of its (real) eigenvalues,
say ar = a, which may have a degeneracy g, = g.

The probability for measuring this eigenvalue ay = a is

Do ldlP= > KW

kiar=a kiar=a

p(a) =

Thus, the measurement process is not deterministic. In fact, QM prevents us
from knowing more than the probability of the various possible outcomes of the
measurement.

Measuring the eigenvalue a;, = a, the system will “instantly” collapse into a state
[") of the g(a)-dimensional subspace of H with eigenvalue a;, = a,

> v

k;ar=a

") =

This state |1") must have unit probability, i.e.

vl = > lgPP=1,

kiar=a

if the probability is to be conserved during the measurement process.

11

remarks:

(i)

(i)

In nature, nothing happens “instantly”. However, so far, nobody has been able

to measure the time scale of the collapse process of the state vector. In any case,
this collapse time must be very short. The time scale must definitely be shorter
than the electromagnetic time scale of ~ 10718 sec, but it could be between the
nuclear time scale of ~ 10723 sec and the Planck time scale of ~ 1073 sec.

In order to pinpoint the exact [¢") in the subspace of H, one would need to
measure further complementary dynamical operators A', A", These must
commute with each other and A, i.e.

(A A] = [A", A] = [A, A" = - =0

so that they would not transcend the subspace of H created by the previous
measurement(s) (see tut 7).

example:
?wu hL =0
hw_%m::v = U+ 1)Yim,)
L AYim,) = my|Yim,) (see tut 11).



4 Quantization of a classical theory

Suppose we have a classical theory: how do we find the corresponding
quantum theory? There are two possible methods:

(i) canonical quantization (P.A.M. Dirac, 1927)

(ii) path integral quantization (R.P. Feynman, 1948).
Involves new mathematics, i.e. path integrals.

We rely here on canonical quantization.

4.1 Canonical quantization

We proceed in five steps:

Step 1: Take a classical Lagrange function: e.g. one-dimensional motion of a
particle with mass m in a time-independent potential energy V (q)

L=1L{g,q) = 3m¢ V() .

kinetic

energy

potential
energy

L.V. de Lagrange (Frenchman, 1736-1813, ~ 1755).
L. Euler (Swiss, 1707-1783, ~ 1745).

Determine the momentum p that is canonically conjugate to the generalized
coordinate ¢ oL

dot 9

Set up the Euler-Lagrange equation of motion

d oL L L
W Wln = W]Q WIQ = F generalized force
oL .
3q = p generalized momentum
= p=mj= iWI< = F Newton’s second law:
q

one differential equation second order in time for ¢(t).
I. Newton (Englishman, 1643-1727), work done ~ 1666, but not published until
1687 in the Principia.
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Evaluate the Hamilton function

H(p,q) %%ui?&

Step 2:

theorem:
Hamilton function does not depend explicitly on ¢

proof:

0 oL

a5 HPa) = =0

_ oL _ ed.
54 ae

(keeping p and ¢ fixed)

consequence:

One has to express the Hamilton function completely in terms of the canonically con-
jugate variables, p and g, replacing ¢ with p/m, i.e.

9

Hpg)=Lp—2m (2) +vigt = 2-+V()

2 m 2m
example:
. . Bm 1 2 92
harmonic oscillator H(p,q) = o + MSEl q
2
p 1 2
= — 4 =
2m 2 fa

The Hamilton function

me Qv Q“mm Qmu - NAQva

obeys two coupled differential equations of first order in time for p(t) and q(t)

oH .
ap q Hamilton’s
equations

m|~.m - IMWHIWWWHI@ of motion
Oq dq dt dq

W.R. Hamilton (Irishman, 1805-1865, ~ 1834).

example:

P 1

For the harmonic oscillator H = 5 + MSEN% we have

OH _p _, OH _ .o

ap “m q , dq = q=-—p

or m§ = —mw’q=—Fq Newton’s second law

p = md definition of momentum



Step 3:

Following M. Born and P. Jordan, we replace the canonically conjugate variables, p and
g, by non-commuting linear operators p and ¢, satisfying the canonical quantization
relations (in this section we use hats again to distinguish operators from numbers).

Quantization

One degree of freedom:

[p,4] =ik I
)
first appearance of
i: imaginary unit
A: Planck’s constant
in the combination 7

Born-Jordan quantization condition: M. Born, P. Jordan (1924)

Generalization to N degrees of freedom:
(1, Gr] = —ih du
(1, Pr] =0

[Gi,Gx] =0 .

Lk=1,2 - N

In 1928, P.A.M. Dirac, W. Heisenberg and W. Pauli applied these canonical quanti-
zation conditions to Quantum Electrodynamics (QED), the relativistic quantum field
theory that describes the electromagnetic interactions of the electrons, positrons and
photons.

The quantization conditions can be fulfilled with

(W. Heisenberg, 1925)
(E. Schrédinger, 1926)
(P.AM. Dirac, 1927).

(a) infinite matrices =  matrix mechanics

(b) differential operators =  wave mechanics

(c) abstract linear operators =  Dirac’s method

The equivalence of the first two approaches was shown by W. Pauli in 1926.
P.A.M. Dirac showed, in 1927, that any linear mathematical objects, p and g,
which obey the Born-Jordan commutation relations, will do the job.
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Step 4: Replace Hamilton function by Hamilton operator

H(p,q) = H(p,q)

This recipe may be ambiguous, as the order of the operators,
e.g. pG§ or §p matters in QM, in contrast to CM. However,
this is not a problem in our example:

caution:

.
2m
mmw
o +V(q)

H(p,q) +V{(q) Hamilton function

i

= Hpq§ = Hamilton operator .

Step 5: Formulate the equations of motion.

The dynamical equation of motion of QM is most conveniently formulated in
the so-called Schrédinger picture, in which the operators p and ¢ are time-
independent, whereas the state vectors |[i¢(t)) are time dependent. Be-
tween two measurements, |1 (t)) evolves deterministically according to the time-
dependent Schrédinger equation

w D oo = G, 0) (0

second appearance of ifi.

remark:

Canonical quantization is not manifestly Lorentz invariant, simply because it
treats ¢ as an operator, while ¢ is merely a real parameter. However, when this
procedure is applied to a Hamilton function describing a classical relativistic
theory, it invariably produces a fully Lorentz invariant quantum theory. In
fact, QM is not in conflict with Special Relativity (SR), but it is incompatible
with General Relativity (GR). This is one of the reasons why an acceptable
theory of Quantum Gravity has yet to be found.



5 Pictures

5.1 Unitary transformations

¢ Unitary transformations of vectors and operators in # play an important role in
the formulation of the dynamical equations of motion of QM. These are similar to
orthogonal transformations of vectors and tensors in £3. Vectors transform under
unitary transformations as

') = Ulp) ,

where U is a unitary operator U! = U~!. Unitary transformations in 7{ are

similar to orthogonal transformations in &3, because they also keep the scalar

product invariant, i.e.
('l¥) (UeplUy) = (p|UTU)

= {plUT'UY) = (p|I¥) = (plt)) -

Thus the “lengths” of vectors and the “angles” between vectors, in short: the
geometry in H will not change under unitary transformation.

The transformation properties of operators can be obtained by requiring that the
defining equation for operators,

lo) = Flip)  |¢) = F'l9')

be the same in the original and the transformed systems.

In the transformed system we have J¢') = F'|[¢') .
Substituting  |¢') = U |p) and [¥') =Uly), we obtain
Uly) = F' Uy) .
Applying U~! from the left, we arrive at
Ul = U FU )
or ! o) = UTF Ulp) , valid for every [¢p) € H.

As in the original system |p) = F [¢) is also valid for every |¢) € H,

we must have F = UTFU.

The corresponding inverse transformation is easily obtained, sandwiching F' be-
tween U and U ™!
UFU'=UU'F UU'=F
—— S——
I I
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e summary: The transformation properties for vectors and operators are
transformation inverse transformation
vectors: [v") = Ul) [) = U~ y")
operators: F=UFU! F=U'FU
(see tut 7(f)).
5.2 Schrodinger and Heisenberg pictures

o There is quite some freedom in choosing the time-dependence of the operators,
p(t), q(t) and the state vector |¢(¢)). Such a consistent choice is called a picture.
This is similar to the choice one has in Euler’s classical dynamics of rotating
rigid bodies, where one may prefer to formulate the equations of motion in the
rotating, body-fixed system, rather than an inertial system, in order to have a
constant moment of inertia. Of course, one has to pay a penalty in that the
equations of motion in the body-fixed system will be different from those in an
inertial system, because of the centrifugal and Coriolis forces.

We now focus again on the Hamilton operator description of one-dimensional
motion of a particle of mass m moving in a time-independent potential energy

Via), ,
= M|§ +Vig) -

In CM, H(p, q) is a constant of motion. We will show later that this remains valid
in QM. There are two special choices of pictures:

E. Schrodinger (1926)

H(p,q)

Schrodinger picture: pg,gs, [¥s(t))

Heisenberg picture: pg(t), qu(t), |¥r) W. Heisenberg (1925)

remark: It is not surprising that the Heisenberg picture was found first, because
it is closest to the classical description with time-dependent variables p(t) and

q(t).

¢ Schrodinger picture:

We start with the Schrédinger picture, because we all became acquainted with it
first. The time-dependence of the state vector |1s(t)) is given by

lbs(®)) = U@)9s(0)) ,

where U (t) = exp (—Ht) is the time-evolution operator.

In the Schrédinger picture, the operators ps and ¢g, and every operator func-
tion F'(ps,qs), are time-independent. In particular, the Hamilton operator
H(ps,qs) = H = const.



theorem: |¢s(t)) satisfies the time-dependent Schrédinger equation with the initial conditions

proof: d d d
L sy = mlu szaazvu@m.|®x@Allsxv_@mss p(0) = ps
. |w. i qu(0) = gs
= ih m\m exp b: [¥s(0)) .
A ~ and F(pn(0),qa(0)) = F(ps,qs)
[¥s(t))
example:

Here we have expanded the exponent in powers of H, differentiated and resummed
the voémnm term by term again. Hp,q) = ﬁ +V(g) Hamilton operator

3 — _ﬁmsv = H|s(t)) is indeed the time-dependent Schrédinger 2m

mnamﬁo:. g.e.d. U'(t) H(ps,qs) U(t) = U'(1) A + <€mvv U(t)

o Heisenberg picture:

Dc~+ﬁ:am+§@w+

We may choose the Heisenberg picture to coincide with the Schrédinger

picture at ¢ = 0. In this case, we have Inserting U(t) U™1(t) = I wherever appropriate, we obtain
i =0. i , we hav

|[Ye) = |¥s(0)) for the state vectors, 1 \LJ
U'(t) H(ps,qs) U(t) = o U~ (t) ps U) UH(t) ps U(1)
and pg(0) = ps m
qu(0) = g¢s for the operators. +ag UM TU() +ar UH(t) gs U(t)+
F(pr(0),qu(0)) = F(ps,qs) tay U-Y(t) g5 U@ U-1() g5 U() +
We can then write IN\|\
s (1)) 1 0
_ _ = P2 (t) +ao I+ ay qu(t) + as ¢4 (t
a) = UL OUOs(0) = U~ Ols(0) g PO+ 0 T ¥y anl) o2 a
— Viga(t)
. = H(pu(t),qu(t))
i . . .
where U(t) = exp Alm m“v is the time-evolution operator. Here we have used py(t) = U~1(t) ps U(t) and qg(t) = U~1(t) g5 U(L).
We have shown in section 5.1 that remark: This also works for negative powers, e.g.
if ) = U™1]Y') holds for state vectors, U@)™! QWH Ut) = AQ.SL gs QQVVL = qu ()"
then F = U~'F'U must hold for operators. theorem: H (pr(t), gur (1)) = const
thus: . ;
if ) = UTN(0)ps () proof: qgv%ﬂmx@AlmM:v“”mﬁoﬂxmmgﬁegm:v
then pu(t) = U-L()ps U() |
i
and an(t) = U™(t) a5 U() S WO Hs,05) = [ (~LH Gs.as)t) Hips,a9)| = 0
and in general F(pu(t),qu(t)) = L(t) F(ps,qs) U(t)
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Thus, as

U='t) H(ps,qs) U(t) = U'(t) U(t) H(ps,qs) = H(ps,qs) = H

and

U™'(t) H (ps,gs) U(?)

we conclude that

I

I

H(pu(t),qu () ,

H (pu(t), qu(t)) = H(ps,qs) = H = const q.ed.

e Heisenberg equation of motion

Abbreviating F(¢)

= F (p(t),q(t)) , i.e. time-dependence of F(¢) is implicit
€

through p(t) and ¢(¢) only, we can write

h

F@t)=U"Yt) F(0) U(t) with U =exp A;m Ev

The time-derivative is therefore

-1
] FO)U@)+U(t) F(0) mm%

d

Stls ot e

St .

dt

H U-\(t) F(0) Ut) + U~ () F0) U(®) Aww mv
7o) 7o)

H F(t) — w F(t) H

[H, F(&)] = = [F(0), H]

We thus obtain Heisenberg’s equation of motion

d

5 F (pu(t), qm (1))

- m F (prr(t), qrr (1)) , H]

third appearance
of ik

W. Heisenberg (1925)

& consequence:

The following four statements are causally connected:

() < F (pre(t), 0 (1)) = 0

(i) [F,H]=0
(iii) F and H have common eigenvectors (see tut 7)

(iv) F is a symmetry of H

special case:

summary:

Schrédinger picture Ps, Qs = const

F(ps,qs) = const

SW ls(t)) = Hl|ps(t))

Schrédinger equation

Heisenberg picture pe(t), qu (), [Y) = const

d

ih — Fr(t) = [F (t), H]

Heisenberg’s equation of motion

Later we will introduce the

EUASVQUQY ‘@D@vv
F(pp(t),qp(t))
see tut 29 and chapter 15

Dirac or interaction picture



5.3 Matrix elements in the Heisenberg
and Schrodinger pictures

o In the Schrddinger picture the state vector evolves as

[¢s(t))

with H

Let |v)
of H,ie.

The initial state vector |¢s(0)) can thus be expanded in terms of the |¢),) as

= U®)lps(0)) = e #7 3h5(0))

2
= H(ps,qs) = W|M~ + V(gs) = const.

def

(k=1,2,---) be a complete and orthonormal(ized) set of eigenvectors

(o o]

95(0)) = > ¢n(0) [thn) = [tbm)

with Fourier coefficients ¢,,(0) = (¥|¢s(0)). For the time-evolution of |¢5(t)) we

obtain

[Ys(t)) =

with cn(t) =

The relation between the Fourier coeflicients in the Schrédinger and Heisenberg

pictures is thus given by

cnlt) = (Wst)gn) = e 7B (Yylp) = e FFE ¢, (0)

¢ In the Heisenberg picture, an operator depending on time only through the canon-

n=1

e FHE N " ¢, (0) [¢hn)
n=1

[ee] oo

> en(0) e B ) =3 cp(0)eTFE i)

—_————
n=1
cn(t)

n=1

o0

> eal®) i)

n=1

i

cn(0) e"%Ent time-dependent

Fourier coefficients.

ically conjugate variables p(t) and ¢(t), evolves as

Fy(t) = U (t) Fy(0) U(t) = et Fpr(0) e wHt
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The matrix elements of F(t), in terms of the eigenvectors (i) of H, are

therefore

(3| Frr (t)4n)

(Wilen 1t Fyr(0) e HE o)
(e~ " Hiey, | Frr (0) e #HL o)
(e Bityy| Fyr (0) e~ Bxt o)

e (FiPL) (4 P (0) he) -

The relation between matrix elements in the Heisenberg and Schrédinger

pictures is thus given by

Fr)y = (ilFua(t)r)

def

as Fy(0) = Fs per definition.

HmwAmw.lmkvw (i Fs ) = mwAm«(mxX (Fs)

def

ik

b



6 Heisenberg’s uncertainty principle

This principle, discovered by W. Heisenberg in 1927, is arguably the most
innovative and central piece of QM. It is due to the non-commutativity of two opera-
tors. Here we derive it for two abstract operators & la Dirac.

Let A and B be non-commuting Hermitean operators A = Af, B = B! with
[A, B] #0.

theorem: 5

)’ > (548

proof: Let us study the function f(\) of a real variable A defined as

N = (A+iXB) (A +iAB) = (AT —iABY) (A + iAB)

= (A—i\B) (A+iXB) = A2+ X2 B2 +i)[A, B]
f(X\) must be real and non-negative, simply because it can also be written in the form

fO) = (@|FIFy) with F = A+iAB .
Indeed, we have shown in tut 5 that (|FTFy) = (Fy|Fp) = ||Fe||* > 0. Thus the
polynomial of second degree in A, f(\) = a A* +b A + ¢, must be non-negative for all
real values of A.

The coefficients are

c = A2 = (P|A%) = (AlY|Ay) = (Ap|Ay) > 0

def

and ¢ = B220
def =

b = i[A, B] must also be real, as f(A\) = a A> + b A + ¢ is real, but it can be positive,
zero or negative. We are thus faced with the possible contradiction that f()), as a

real, non-negative polynomial of a real variable A, might be negative for some values
of A. The zero’s of f(A) are at

A\ —b+Vb% —4ac
H N = —— .
’ 2a

There are three possibilities shown here:

The shadowed area is unacceptable, because f(A) < 0 for A\; < A < Asg.

The only way to avoid the contradiction ||F4]|? < 0 is to require that the discriminant
be b2 — 4ac £ 0, or 4ac > b2, which results in

442 BT >i[4,B] .
This inequality also holds for operators shifted by a real number,

A" = A—AJ and B=B-BIT,
def

because A’ and B’ are also Hermitean. Interestingly, the commutator does not change
if we replace A — A’ and B— B'as [A—AI , B—BI| =[A,B].
We thus conclude

[4, B]

SIS

or  (AA? - (AB)? > | 1[4, B]

Here we have defined the uncertainties in A and B squared as

(A4 = (A-AD?and (AB) = (B-BI)? .



example: 7 Linear harmonic oscillator
[p,gl = —ih I
7.1 Abstract linear operators : Dirac’s method

Born-Jordan quantization condition (1924) e P.A.M. Dirac (1927): Consider the harmonic oscillator

2

2
B 2 2 H =2 Hamilton operator
> @ 00 =G50 TPz (jnn) = (3) =2 377 P
f = mw? spring constant
Thus the uncertainty in p and gq is
pl =p and q' = q are abstract linear Hermitean operators
Ap Ag > m W. Heisenberg (1927) which obey the canonical commutation relation
= M .
lusi [p,q] = —iRI Born-Jordan quantization condition
conclusion:
One cannot measure p and ¢ simultaneously with arbitrary precision. e Dirac’s brilliant idea: introduce step operators
Bt Ay ﬁ d L raising
e citations attributed to famous physicists: of V2 VW
“You can look at the world with the p-eye or with the g-eye. B = L — v L lowering
But, if you want to look at it with both eyes you get crazy.” V2h VW
W. Pauli
e consequences:
“Nobody understands Quantum Mechanics”
1 1
R.P. Feynman BB = TE% +— p? —igp+ %L
“God does not throw dice” A. Finstein mew
1 1 . .
BB = Ts% + —p’ —ipg + EL
difference:
[B,B'] = BB m:wulw%& A ih) I
= [B,Bl]|=1 comimutator
sum:
1
B. Bt i tp —
Amvammm._..mm mm...mg

anti-commutator
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proof: BB - BB =1

e Hamilton operator:

= BiB=BBt -7

2
S SN P t i
H = o + 5 MW =5 fw {B,B'}  anti-commutator
t = T
= W. hw (BB'+ B'B) = w hw (B'B+1+ B'B) B'B Blyy) = (BB'—I)Bly»)
— (BB'B-BDlg)
H = h (BIB+1I
( 1) = B(B'B-D) =B 1))
(i) B'B Hermitean => eigenvalues are real, eigenvectors to different , = (A—1) Bl ge.d.
eigenvalues are orthogonal (see section 3.2)
(i) (W1B'By) = (By|BY) = |[BYI’ > 0 "R
eigenvalues are non-negative (see tut 5) B'B (BY'|lyn) = (A+n) (BN |¢n)
o Let [1)) be eigenvector of B'B with eigenvalue A B'B Bt|yy) = (A+1) B |4y)
B'Blyy) = Aly) BiB  |¥)) = AlYa) discussed
assumptions: BB Bld) = (A=1)Bl)
BB B™ ) = (A—n)B"[¢)

(1) A not degenerate

(i) [ha) € H with (Walthr) = |2 e normalization:

non-trivial and normalizable, i.e. 0 < ||¢,]| < 00 .

(B"p|BTB B™ 1)) (A =n) (B™ 9x|B™px)

e theorem: Bf|¢,) is eigenvector of BYB with eigenvalue A+ 1 = (A=n) 1B
proof: = (BB ) = [|[B"T,||?
recursion relation
B,BY] = BB'-BiB=1
BB = I+B'B 1B alP = A =n) A =n+1) - A=D1 |l
N~
B'B Bll¢») = BUI+B'B)[g) !
= BU(1+))|¢) e problem:
= (A+1) Bfjy) g.e.d. For mzmm.ﬁmbaw large n, we will end up with __@._w:+:\&/__M M 0. However, negative
probability or “ghost” states are unacceptable in H, as ||¢||* > 0 for every |¢) € H.
) L. ; o The only way round this contradiction, is to set A = n, yielding ||B"1¢,||?> = 0.
o theorem: Bli,) is eigenvector of B'B with eigenvalue A —1 We then have BIB|t) = nfthn) and [|BH |2 = [|B* 24| = --- = 0.
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e definition: The state with lowest eigenvalue and unit norm is called the
groundstate

_ B"|yn) . _
[0 ) axt TB"0nll with [[4o|| = 1

e properties:

. Blg) | B
i B =B = =
® Vo) = B {5l = Bl )

because ||[B"ip,| =0

=  “B annihilates the ground state |)”
(if) B'Blyyo) = B'|0) = [0) = 0l¢o)
= |ah) is an eigenvector of BB to the eigenvalue zero.

(iii) The excited states are given by |¥,) = ¢n AmJ: 2]

e We now determine the normalization constant ¢,. We want ||¢,|| =1 for n > 1.
So let us first evaluate

Il (B)"wol? = ((BY)" ol (B')" o)

def
= ((I+B'B) (BY)" vol (B")" o)
n—1 n—1
= (14+n-1((B")" ol (BT)" o)
n—1 n—2
= all (BN ol = n(n~1) | (BY)"™ 4ol
= nn=1) - 1 o]’ = n!
~——
=1
Thus leall® = leal?ll (BY)" oll® = leaf*nt = 1
= el =
1 . .
Cn = Wi exp (ion) @n : arbitrary phase.
Here we have the freedom of fixing this phase ¢, for every excited state differ-
ently. However, the simplest phase conventionis ¢, =0 = ¢, = 1
Vn!
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e summary:
(i) The normalized excited states are given by

_in% (BY) [o)  neN .

(ii) The groundstate is defined as Blyo) =10) with |[[gho|| =1 .

(iii) The eigenvalues and eigenvectors of H are given by

H [tn)

hw (BTB + 3I) |¢n)
@:_ﬁzv = NEAS.T WV_S:V > n€Ny

(iv) The zero-point energy Eo = thw is a consequence of the uncertainty prin-
ciple, as the uncertainties Ap and Ag must obey Ap-Ag > h/2, even in
the ground state of the harmonic oscillator (see tut 15).

(v) theorem:

Blyn) = /nlgn1)  lowering

ladder or step operators

.Wﬁ_s\\:v = <§+H_€:+Hv raising
proof: 1

Bll¢n) = Bt T (BY)" [¢bo)

_ vn+1 Fynl
N CE] (BT o)

= mjgzv = <3+Z@:+Hv

BBU,) = vAT1Blgnn)
Am;,m._.d_,%:v = Vn+1Blnt1)
(n+Dln) = vVn+1Bl¢nt)

m_@.ﬂjﬁv = <3+H_€:v

replace n by n—1

= B |¢n) = Vnlthn_1) q.e.d.



7.2 Matrices in the Schrodinger and Heisenberg pictures

o Schrédinger picture:

0 0 00
We can now get a matrix representation for B and B! and, therefore, also for p
and ¢, in terms of the complete and orthonormal set of the eigenvectors of B B. vi 0 00
Bf = 0 v2 0 0
AW*‘WVE = Aﬁw_m+m€hv /\I
0 0 V3 0
= NA@\@_QNV = Nﬂmmi QA\.QN”OVHnMuwQ v T
note: The matrix and vector indices start here with zero for convenience.
0000 0 vi 00
01 00
Bp_| 0020 0 0 V20
000 3 B=B"=10 0 03
0 0 00
The eigenvectors of BB are
o The matrices for p and ¢ can be obtained from
1 0 1 :
0 1 B - L T|§é+ i L
lvo) = | o =1 o s def /2R Vmw
: : 1 ?
Bt = — T\SE - a
V2h T Uma ”
s We now would like to find matrix representations for Bt and B
1 = e (B'4+B)
ﬁwJE e (Y _mﬁsv = (¥lthi1) VI+1 yielding
ef — ——_————
Vit 1) Skt p o= i EWE (B - B)
= %\PTPH/\M QﬁNHOuH,M“ v
remarks:
examples: ; ; (i) p and ¢ are Hermitean.
k=1,1=0 = Tw v KT Am VS = Vi (i) p and g satisfy the Born-Jordan quantization condition.
k=21=1 = ANJE = AmJE =V2
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¢ Heisenberg picture:
As B,Bf,p and ¢ are time-independent, these matrices are given in the
Schrodinger picture. The time-dependent matrices, expressed in the Heisenberg
picture, can be obtained through the transformations

B(t) = U '(t) BU(t) withU(t)=exp (—LHt)
Bi(t) = U-Yt)BtU(®)
p(t) = U () pU®)

gty = UTN() qU®)
(W BE)n) = ($mleFHt B e 7,
= (e B e H )
= er(En=E)t (4| Byy)

— on(Bm—En)t NCX —— er(—hw)t N X —

— @I&En /\m «m\s,ﬁlw
m=0, n=1=1e ¥t
m=1, n=2=2e

0 v/1 0 0
0 0 V2 0 .
.va — 0 0 0 /\w mlsEﬁ
0 0 0 0
0 0 0 0
viI 0 0 0
m+ va — 0 /\.M: 0 0 msEn
0 0 V3 0
Fiw Fiw A .
= p(t) =i/ (BN - B() =i T (Bt e - Be)

0 —/1e~iwt 0 0

/\M@,FR 0 |/\wml&8w 0
_ mhAw ,
=1 ||IM 0 /\M@?& 0 |/\w.®l?;
0 0 V/3eiwt c.
q(t) = N (B'(t) + B(t)) = _h (Bt et + B emivt)
2mw 2w
0 Vet 0 0
m\ /\|H|®&€» O /\M©|s.c; O
~Vomw 0 V2eiwt 0 Vet
0 0 /\w%.ﬁ o.

remark: ps = p(0), pu(t) =p(t), gs = ¢(0), gu(t) = q(t), compare with section 5.3.

7.3 Wave functions in coordinate and momentum space

e If we decide to represent p and § by differential operators, we still have a
further choice (in this section we again use hats to distinguish operators from
numbers) for the representation of the operators in

coordinate space: or momentum space:
see tut 9
. ., 0 .
p— —th — p—p
0q
N .., 0
q—4q G — ih —
Op

o The differential operators are supposed to act on complex wave functions

coordinate space: momentum space:

o0

alp, ) with \ la(p,t)? dp = 1

¥(g,t) with \. W O dg = 1 )
B (see tut 9)



interpretation:

() dg la(p, 1)|? dp

probability for finding particle probability for finding particle
in the coordinate interval dg in the momentum interval dp
around ¢ around p (see tut 9)

e The Born-Jordan quantization conditions are satisfied in both representations

coordinate space:

2 2
a0 = i | g a vl = (i (5 = o )blat) =0 w(a.t)
[4,419(e,t) = la.d¥(a.1) = (¢ —¢*)¥(g,t) = 0-4(g,1)
. 3} 0 0
@000 = =] o] w(a.t) = =in] & (@(a,0) - 4 bla, )]

= —ihi¢(g,t) qed.

momentum space (see tut 9):

Tﬁmﬂ Qm»p 3 = FL&_ D\Qﬁ wv = A@m I%MV @Qﬁ Mv =0- Q.Qf nv

2 2
G4 alpt) = (iR’ Tw %L @;3%@ £ wv%auo.%e

I

bd alp,t) = i T %_ alp, 1) = if T o alp,t) - 5 (2l i
= —iha(p,t) qe.d.

e For the harmonic oscillator problem, we can easily get the wave function,
e.g. in coordinate space representation, introducing Dirac’s step operators

g — p — ih W
q q, D g
1 7 0
B Q‘M». I‘lew _H)\ mw q + ‘IISE Alsm @l@Vg
1 i 15}
= |/ _ —ih —
B def /2R ﬁ i v A ih mnz

4

e The groundstate in the coordinate representation is defined as

Blin) 7 —= Vw4t 2| dola) -

Twei mL Yo(q) =

mw

= §§ . Yo(q)

solution:  to(q) = ii qu wv

normalization:

\MH [po(g))’dg =1 = A= 1 w:ﬂ (see tut 15)

e The normalized wave functions of the excited states are therefore

1

(@) = = (B vo(a)

which generate the wave functions v,(g) (see tut 15). One can get the wave
functions of the groundstate and excited states in momentum space a,(p) in a
similar fashion.

& summary:

There are many ways of writing the time-dependent Schrddinger equation and its
most general solution. We have shown in the case of abstract linear operators and
state vectors that

f

Hp, d)lo(0) TI VG L v =in % )

2m

(o8]

MU Calthn) €

n=1

with H(p, ) ltn) = Enltn)-

| (8))



We can translate this result to infinite square and column matrices

24 vi@]ve =i v

o0

> ot e KO

n=1

H(p, q)i(t)

"

¥(t)

with  H(p,q) Yn = E, ¥, , and to differential operators and wave functions in

coordinate space
0
—_ —_ t =
mA i v ¥(g,)

with the solution ¥(q, t)

¥(g,t)

R 92 7]
ot

A <£ blat) = in 2

o .
D cnthn (q) e KB
n=1

and the time-independent Schrédinger equation

H Aim Wv@v Yn(q) = Entpn(q)

Finally, in terms of differential operators and wave functions in momentum space,
the time-dependent Schrédinger equation is given by

p? 1o} 0
3] a(p,t) = |+<. 3% @Gyvlsmmw a(p
8 d \?
%@v ag + a1 sm\.%mnTDM As@%ﬁv +

The most general solution of the time-dependent Schrédinger equation is

t)

with V A

[ee]
a(p,t) = M Cn an (P) emwEE
n=1
where a,(p) fulfils the time-independent Schrédinger equation

mA 3 %IL tn (p) = En an (D)

One usually prefers the coordinate space representation over the
momentum space representation, 952% in order to avoid differ-
ential equations of infinite order in ﬁ for a general potential.
However, in the case of the harmonic oscillator, both representa-
tions are equally acceptable.

remark:
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7.4 Dictionary of the mathematical tools
of Quantum Mechanics

As a variety of mathematical tools describe the same quantum physics, there must be
a one-to-one correspondence linking these basic tools:
C1

W) ¢ Y@ @ =] @

e vectors

e normalization of vectors

o0 o0
W= [ W@Pda =3 feal =94 < oo
- n=1
The square integrable complex wave function 4(q) is the analogue
of the square summable complex Fourier coefficient c,,, the only
difference being that the index ¢ € R is continuous, while the
index n € N is discrete.

remark:

e sum of two vectors

lo) + 1) & @lg) +d(q) « o+

o+l <oo if ol <oo  and (|| < oo

o multiplication with a complex number
alp) < ay(q) < ay
llag[] < oo if [[¥]| < oo

o linear independence: If the equations

21l) + -+ znlyn) = |0)

z(g) + -+ zv¢n(g) =0 (valid for allg € R)
At 4 ey =

only hold for z; = = zn = 0, the set of N state vectors, wave functions and
column matrices are linearly independent.

e scalar product
(el = |

Here again, we observe the analogy between the product of the wave functions
integrated over ¢€R, with the product of Fourier coefficients summed over neN.

0(g)* b(q) dg = b cn =o'y
n=1

remark:



orthogonality e completeness

(pl) = \ w(g)" ¥(q) dg = M by, cn = ol =0 M [Un) (Wl =1 M ¥n(q) ¥i(q') = 6(g — ¢') Dirac’s delta function
n=1 n=1

o n=1

with [l £0 and ||l #0.

orthonormality of a set of vectors

1), [h2), -+ & ¥1(9);92(9)s -0 © Vi, 92,

[e0}
“ MU Yn ® ¢l =1. Here ¢, ® ], is the direct product matrix.
n=1

e linear operators

o 0
orthonormal iff F(p,q < F Alsm mlmv Qv © Fp,q)
o e matrix elements
Wilge) = [ Wi (0) vi(e) dg = ¢ i = ba 00 8
’ \.g ' e Fuo = (il F(6,)e) = \ ¥ig) F T.m 5 QV () dg
Fourier expansion _ ﬁ, Fp, q) v
[y = M Cn [tn) ¢ ¥(q) = M en Yn(q) & = MU Cn Un - e Hermiticity of an operator
n=1 n=1 n=1

(plF(B,d)y) = (F(B,4q) ¢lb)
Fourier coefficients

© d o0 d *
oo . —if — = —ih — d
n={alt) = [ 43(0) ¥l dg =l 0 [ e@r(mng ) voa = [ (i gy ) et0)] vio a
consequence: ot F(p,q)p = (F(p, Sﬁv.ﬂ Y
o
© ©  roo h . —ih— is Hermit
W) = Sentnle) = . \. ¥2(¢")(q" ) dq ¥ (q) theotem - g, I Moo
:Iwo o0 = proof:  through partial integration \ - ©*(q) Alﬁm %Iv ¥(q) dg
= [ S vnlaine) (a) dd' = 9(a) - = ‘
et o0 8 o0 .0
5q—q) = \‘ Al.m Mv o (Q)¥(q) %x\. ¥(q) Almwmv ©"(9)dq
Here we have introduced Dirac’s delta function, ) ® oo ;. *
- = e @ew| +f || v aed
|-t g v e
— 0 e 0

(o]

L . . Thus, proving the Hermiticity of differential operators always involves partial
which is the continuous analogue of the discrete Kronecker delta M Omn an def am integration and the boundary conditions of wave functions at infinity.

n=1



o cigenvalues of a Hermitean operator A(p,q)

(46, @) = an 1) lpn) = 0
A\A Al\«.m%&“ Qv - Q.:v [¥n(g)) = 0O
(Alp,g) —an I) ¢ = 0

Finding the eigenvalues of differential operators also requires boundary conditions
of the wave functions at infinity which in turn guarantees the square integrability
of the wave function.

7.5 Link between Quantum Mechanics
and Classical Mechanics

This link is most conveniently established in the Heisenberg picture.

e Quantum Mechanics

The time-derivative of an operator F (5(t),3(t)) in the
Heisenberg picture is given by

£ F(6(0,400) = = [F (6(0), 4(6)), H (5(), 4(6)]

e (lassical Mechanics
theorem:

= F (p(t),a(0) = (F (o0 ) H (p(0), 1)) Yoot

definition:
OF OH OF OH

aﬂ ®|Q lmw — m‘@ 1®M Poisson bracket

proof: dF _oF . OF
it ag 1T 5t

Amﬂ mwwommmon

but
" . oH
q = O
W T Hamilton’s equations of motion
p = ~ e as derived in section 4.1
q
theref
O GF  8F oH  OF oH
& T B Op  Bp B aer o HIpoisson G0
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Applying the definition of the Poisson’s bracket to p and ¢, we have, sub-
stituting ' = p and H = ¢,

ﬁﬁnﬁwwommmo: =4 a5 T 3. 5. =-1

Thus the transition from CM to QM means the substitution of the Poisson

bracket with the commutator of the corresponding variables, i.e. divided by
ih

m.mﬁ mruommmo: — Twu MN_ \smM
Tuq Qruommmos — Tmu & \sm\ :

remarks: This substitution rule only holds in the Heisenberg picture.

W. Heisenberg has been guided by this analogy in his quest for the
formulation of the equation of motion for the operators in the Heisenberg
picture in 1925.

Classical Mechanics Quantum Mechanics
W.R. Hamilton (1834) W. Heisenberg (1925)
1 R
{p, vaommmoc =-1 ik [p,ql=—-1
M. Born, P. Jordan (1924)
dgq OH dg 1 (. .1 OH
gt = (0 poisson = 2 = 1] p
dp OH dp 1 71, - OH
dt m@u ?uo_wmoz @Q dt ih ﬁ ’ H_ %Q
Hamilton’s equations of motion Heisenberg’s equations of motion

We have not yet shown the last equality in the Heisenberg’s
equations of motion.

- .. OH
e theorem: TLL = i —
op
proof: choose momentum space representation
p— j — il 0
i —



- |, 0 4
a8 atp) = [in 28] aot
L 0 /- s 0
= iR o Amaﬁy ﬁvv — Hih o a(p,t)
. OH .. = Oa(p,t) . - Oa(p,t)
= ik e LA e
i o a(p,t) +ih H op ik B
valid for any a(p, t)
J . OH
= TLﬁL = ih % g.ed.
e _OH
e theorem: T m_ = —1ih mlm
proof:  choose coordinate space representation
. . 0 .
p = —ith4, qg—q
dq

S
l
| - )
©=
=
2
&
Il
| —— |
4
>t
| ®
L
<
=
o
A

_ @ . 3 @GAQ“MV . ] QGA.N“ wv
= —ih 34 ¥(q,t) —ih H “Bq +ih H 3
valid for any (g, t)

= —ih — qed.

. oH
] %

& summary:

The operators in the Heisenberg picture obey the classical equations of motion
in operator form. However, in tut 18 we show that the expectation values
satisfy the classical equations of motion only under certain conditions. Thus,
in general, there will be quantum corrections to the classical theory.

8 Rotation group

Physics happens in 3-dimensional Euclidean space £3. We thus need some
insight into the properties of &;.

8.1 Vectors and scalars in &;

e &3 is a vector space over the field of the real numbers R. Thus we have

vectors:
Qg
a= Qay €&
a.
az,0y,0; € R being the Cartesian components of @,
and scalars: A€ R

e dimé&; = 3:  Every vector d € &3 is represented by

Qg
@ =a,€; +ay€y+ae;, = | ay
Az
with the basis vectors
1 0 0
ez=1 0 ey =11 , é&=10
0 0 1

8.2 Scalar product of two vectors

—

For every pair of vectors @, b € &3, the scalar product is defined as

@b = @0 = agby +ayby +azb, ,

with  a¥ = (az,ay,a;) € E7 , being the transposed vector of the dual space £7 .
(3)

* properties: m.?mi@ — Ai-b+ud-¢ linearity
@b = b-@ symmetry

a-a > 0 positive
definiteness

except for aT (0,0,0)



o definition: The group properties are the same as those of finite groups:

ldl = Va-da= /a2 + a +a? absolute value of @ (i) The composition law of two elements R and S is defined by the
def matrix product RS. Indeed, if R” = R~! and §T = S-! (or R, S
® consequences: € 0 (3, R) ), then
- T ..
€t €5 = €& mu.”%@. AS“QH&QQ“NV ) T _ oTpT
bt (RS)" = STR (RS)T = (RS)™
i.e. the basis vectors are orthonormal. =
remarks (RS)™!' = §-1R1 = §TRT or RS € O(3,R)
marks:
(i) Schwarz’s, Minkowski’s and triangular inequalities must hold. (i) R(ST) = (RS)T is due to the associativity of the matrix product.

(ii) The scalar product can be used to measure lengths of vectors and angles

between vectors, i.e. the geometry of & is governed by an Euclidean metric.
(ili) There exists a unit element I3 with R I; = Is R=R.

8.3 Orthogonal transformations I3 € O(3,R), because I} = I;" is also orthogonal.

» Consider a homogeneous linear transformation R of a vector & ¢ &s (iv) To every R there exists an inverse R~! ¢ 0O(3,R), as

TNIJH = AmﬂvﬂHm = lepvlp orthogonal.

!
a, Nwés .WSQ mw&n Qg
- I — I — — -
a =1 a |=| Ry Ry R, Ay = Ra remarks:
i
@N .ana mu@ NNNN a;

(i) In general RS # SR, i.e. the group is non-commutative or
non-Abelian.

and similarly for b= mmv with b € &3. We require R to leave the Euclidean scalar

product invariant, i.e. (ii) There are two disjoint classes of orthogonal transformations,
. Le. classes of R, which cannot be joined by varying the real
a'-b'=@)y'=a"R"TRb=aTb=a-b , matrix elements Ry, with R = R™1, continuously: (det R)? = 1 =
valid for every pair @ and b € & det R = 1: proper orthogonal transformations = rotations.
= R is restricted to RTR = I3 = det RT det R = (det mvm =1. det B = —1: improper orthogonal transformations = reflections.
e consequence: (iii) While the rotations are exact symmetries, the reflections are only approximate

symmetries of the laws of Nature. On a macroscopic scale, we can easily rotate
) . . r our bodies without a problem, but we cannot transform ourselves into our own
RTR=RR' =L = R'=RT reflection images.

det R is either +1 or —1. As det R is non-zero, it is invertible, i.e.

definition: A matrix satisfying R~! = RT is an orthogonal matrix.
e properties:

The infinite set of orthogonal matrices forms the Lie group O(3,R) with respect
to matrix multiplication (Sophus Lie, ~ 1865). The group elements are described
by continuous real parameters. O stands for orthogonal, 3 for 3-dimensional, and
R for real matrices.



examples:

(a) rotation about z-axis:
For a rotation in the complex w-plane we have

w =z'+iy = e%w = (cosp+ising)(z+iy)
or ' +1iy' = (zcosy—ysing) +i(ycosy + zsinp)

Equating real and mimmgmﬁ% parts, we arrive at

z' cosyp —sing 0 z

y' = sing cose 0 y

z' 0 0 1 z
R:(¥)

remarks:

(i) Similarly, we can describe rotations around the z- and y-axes.

(ii) The subset of all rotations forms a (Lie) subgroup SO(3,R) €
O(3,R) because, if det R =1 and det S = 1, then
det RS = det Rdet S = 1.
S for special or unimodular, i.e. det R =1
O for orthogonal
3  for 3-dimensional
R for real matrices

(b) total space reflection:

P
' -1 0 0 \ T x T
y' = 0 -1 0 y =Pl y =—1 9
z 0 0 -1 z ) 9t z z

with det P = —1.
remark:

Under P transformation vectors, axial vectors, scalars and pseudoscalars trans-
form as follows:
vectors: B = —7,—p
axial vectors: Nnﬁxmly AQJXAIBHWXWHN
scalars: Fep— (=) (-p) =77
. -

-L

|
i

pseudoscalars: 7 L

(c) some simple questions:

* Is P an orthogonal matrix?

P?2=]; = P = p-! = pl=pT
orthogonal
P = PT = yes

* Do the reflections form a subgroup of O(3,R) 7?7
(i) det I3y =1 = unit element I3 is not a reflection = no

(i) PP=P?=1; product of two parity transformations
is not a reflection = no

* Is X an orthogonal matrix?

-1 0 0
X = 0 -1 0
0 0 1
-1 0 0 -1 0 0
= XT = 0 -1 0 ),x1!= 0 -1 0 |asX'X=1I
0 0 1 0 0 1

= XT =X"! orthogonal = yes



* Is X a reflection or a rotation? 8.4 Infinitesimal rotations

det X = 1 —> rotation e Sophus Lie’s brilliant idea (~ 1865, Norwegian).
All you need to specify the rotation group are the infinitesimal
indeed, X =R,(n) with rotations in the vicinity of the unit transformation.

. example: expanding the rotation matrix around z-axis in powers of ¢
cosp —sing 0 -

R.(p) = sing cosy 0 cosp —singp O 1 —p O
0 0 1 R.(p) = sing cosp 0 =1 ¢ 1 0 |+0(?
0 0 1 0 0 1
* Is Y a reflection or a rotation?
0 -1 0
10 O = L+ |1 0 0| p+0(¥?
Yy={01 0 = det Y = ~1 = reflection 0 0 0
("IJ\|\
O o IH ﬂ.N
r, is called the generator of the rotation (counter-clockwise) around z-axis.
+ How is Y related to the total reflection? in general: ,
R =7 A
take a look at £(0) + e+ 0¢7)
-1 0 0 -1 0 0 1 0 0 AR
XP=| 0 -1 0 0 -1 0 |=(01 0 |=v ry = GEx(p) k=
0 0 1 0 0 -1 00 -1 def dp |, _,
generator for rotations (counter-clockwise) around k-axis
= R,(m)P = PR,(n) =Y
00 0 0 0 1 0 -1 0
remark: all reflections can be represented by the product of a re={ 0 0 -1 » Ty = 0 00 ,r=| 1 0 0
rotation and a total reflection. 01 0 -1 00 0 0 0

Here we have assumed a right-handed coordinate system, and we have gen-
erated r, and ry through cyclic permutations of the matrix elements (r.)

Ty
and (r),,, Le.
(rz),. = -1 (ry),, = —1 = -1
?evé = 1 (ry)e, = 1 = 1
note: r{ = —r; antisymmetric
cyclic

permutation




e commutation relations: [rg,r,] =7

o
coo oo
co
coo
|
- com
Il [l
coo oro

subtract

SO = OO0

S oo oo o

[ra,ry) =rgry =Ty Ty =

—
o)
OO O
|
oo O
OO~

=T,

[e=Jen R ]

By cyclic permutation we arrive at

e Lie algebra of SO(3,R) (in Mathematics):

[ra,ry] = 72
[ry,rz] = 712
Tf ﬁL = Ty

(= el an)

This looks almost like [L,,L,] =i L, + cyclic permutations, i.e. the
angular momentum commutation relations. However, the L, are Her-
mitean, i.e. hw =L, (k = z,y,z), while the JNJ = —r are real and

antisymmetric. To get Hermitean generators, we multiply by 4

ire = Ji, = J!=J, Hermitean and purely imaginary

def

9

0 6 0O 0 0 ¢ 0 —-i 0
Jo=1 0 0 —i Jy = 0 0 0 J. = i 0 0
0 72 0 -1 0 0 0 0 O
The commutation relations transform into
[ra,ry] =12 = [irg,ir,] = —r, = i(ir,)
[Je,Jy] = @2
We thus arrive at the
Lie algebra of SO(3,R) (in Physics):
Jo, Iyl =1 J; ;
ﬁ d X ; .v\ cyclic
[Jy, J] =1 T, K permutation
[V, Jo] =1 Jy >

important observation:

These are the same commutation relations which the Cartesian components of

the angular momentum L = 7 x p/h, i.e. Ly, Ly, L, fulfil, and which have been

derived using the generalized Born-Jordan quantization conditions (see tut 11).

eigenvalues of J,, Jy, J, and J?

0 —¢ 0
We have shown, in tut 6, that the 3 x 3 matrix J, = i 0 O has the
0 0 0
eigenvalues 1, 0, —1. This is also true for J, and J,. We can easily evaluate
0 0 0 1 00 1 00
JP=10 10 Jo=100 0 JP=[0 10
0 01 0 0 1 0 0 0

Thus

=T+ I+ T =2I,

Il
O O e
o N o
o oo



The eigenvalues of J2? are given by the zeros of the characteristic polynomial.
Thus

P;(a) = det 0 =(2- va =

= J? has the threefold degenerate eigenvalue 2.

[J%,J.] =0 , because J? Is

e eigenvalues of S,, S, S, and S?

The 2 x 2 Pauli matrices

S HW@ =2 5 =%

b o [0 1 (0 — (1 0
V=1 0 ) w=,; o ) 0= 0 -1

W. Pauli (1925)
W.R. Hamilton (1843)

Pauli matrices:
quaternions:

are Hermitean and fulfil [S,, Syl =14 S, (+ cyclic permutations), as ém: Ammm tut
13). However, S, ,Sy and S, each have only two eigenvalues, namely 1 3, —1. The
2 X 2 matrix

§? =52+ 52462 =

has the twofold degenerate eigenvalue 2. As S? « I,, we have [s%,8 g = 0. Later
we will see that J2,J, describe a spin H while S2,.S, describe a spin m particle.

8.5 Finite rotations again

¢ The functional equation of Ry (yp) is
Ri(p+ ) = Ri(¢) Ri(N) = Ry(\) Ri(e)

These rotations commute, because they have the same rotation axis.

strategy: We would like to derive a differential equation for Ry, (p)

dRr(p) lim EE(e +A) = Re(p)
dp def A0 )
— g F6(0) Be(A) - Ri(p)
A—0 A
= Ri(y) lim Twi\/w IKJ
= i BB p

We obtained in section 8.4 Re(A) = I+ X1y, + 0(02).

Inserting Ry (\) in the derivatives, we have

d Ry,
LB~ R re = BGy)
= ®
Nw\m ADV = .N.w
This is a first-order differential equation for Rg(yp) with the initial condition
R,(0)=1I5 .
lution: .
solution Ri(0) = exp (or) = exp (—ip Jy)
with 7y, = —1Jy .
For J, we have shown in tut 12
Cosy —sing 0
Ri(p) = exp (—ip J,) = sing cosp 0
0 0 1
e theorem: R.(p) 1is orthogonal
proof:
cosy sing 0
(Bo(0)" = | ~sing cosp 0 | = Ry(—yp)
0 0 1
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eq.(1) 9 Matrix representation of the Lie
algebra of SO(3,R)

9.1 Motivation
We have found two linear representations of the Lie algebra of SO(3,R)

I
3
&
s

= R.(-yp)

But R.(¢) R:(-¢)

I
&
T
&
&
I

= R.(—¢) = (R.(0))™" eq.(2) e 3 x 3 matrices
0 0 O 0 0 =2 0 — O
= 0 0 —i Jy = 0 00 J.=1 ¢ 0 0
Comparing egs.(1) and (2) we conclude 0 ¢ 0 -1 0 0 0 00
(R.(0))T = (R.(¢))™"  orthogonalor R.(p) € O(3,R) q.e.d. The eigenvalues of J,, Jy, J, are 1, 0, —1 and those of J? = J2 + J7 + J? are 2.
e 2 x 2 matrices
g _1(01 g _L1(0 —i g _l(1 0
e theorem: R.(y) is unimodular 79\ 1 0 Y7o\ 4 0 279400 -1
proof:
The eigenvalues of S, Sy, S, are ,—1 and those of S? = 52 + S2 + 57 are 3.
_ cosg  —sme 0 As the eigenvalues of Sy, and J; differ, these are inequivalent representations of
det R(p) = m:mﬁ oow 4 m the same Lie algebra.

e question: Are there more such inequivalent complex n X n matrices with n =
2,3, --- satisfying the Lie-algebra of SO(3,R)?

) -y strategy: We first find the eigenvectors and eigenvalues of J? and J, using the

= cos"p+sinp=1 Lie-algebra in terms of abstract operators. We then calculate the matrix elements

of J;, Jy, J:, in the basis of the eigenvectors of J? and J,.

cosy —sing
sing  cose

Thus R.(¢) € SO(3,R) g.ed.
9.2 FEigenvalues and eigenvectors of J2 and J,

The Casimir operator of SO(3,R)
I = 4T+
commutes with all the generators of SO(3,R) (see tut 11(b)), i.e.
(72, 7] = [J%,J,) = [J%,J:] =0 .
Thus J? and e.g. J, have common eigenvectors (see tut 7(a))
Plim) = Ajlthjm)
Jl¥im) = m|Yjm)



The index j labels the different eigenvalues of J2. If A = A! (Hermitean), o Let T im) = Aj|jm)
then obviously Jm i 1¥im

Je|im) = mYjm)
(Y| A%y) = (Y|ATA ) = (Ap|Ag) 20 .

This is valid also for a sum of two square terms with A" = 4 and B = B, i.e. theorem: J|thjm) are also eigenvectors of J* and J, with

2 2 _ t T _

(YI(A* + B*)) = (Y|AT AY) + (| BT By) = (A|Ap) + (Bp|By) > 0. T (Jelhim)) = N (Jelthim)), same eigenvalue
Choosing A = J; and B = J,, we have I (J£lim)) = (mE1)Jx|jm), eigenvalue shifted by + 1
(Yim!| (T2 + J3) Yim) = Wim| (T2 = I2) Yjm) = (A =m?) @jm|thjm) = Xj —m* 2 0.

—— proof:
1 -0
i i = At B=RBt =t —
Finally, for a sum of three square terms with A = A", B = B and C = (", we have J2( Tilbim)) = A JoJ? + ﬁ 72, .hL v )
A?2 4+ B? 4 C? = At AY) + (| BT By) + (¥|CTC :
Wl ( JU) = (AT A%) + (4B BY) + (ICTCY) s
= (AyY|AY) + (BY|By) + (Cp|Cep) 2 0 . +Jy
. ——
Choosing A = J,, B=J, and C =J; we have J.(Ji|$im)) = AMH,NN +1Js, ,DLV_AF.SV
(Djm| (2 + T2+ I2) bjm) = Xj (Djm|thim)
T = Jx(J: £ 1) |¢hjm)
= A 20. = (m=E1)Jy|Yim) q.e.d.
We now define step or ladder operators Jy = Jy£4iJ, or
def . raising
1 = Ji [Yim) = cx(f,m) [¥jm+1) ) step operators
Jy = 3 (Jy +J-) lowering
1 . .
J, = 5 (Je—J) , with ct(j,m) € C
and The values of m for given A; are limited by
n
1
.wwnkm+kw+.~w =35 (Jp J-+J- T+ T2, see tut 11(c) Aj—m?>0, )\ >0, as shown earlier.
The Lie algebra of SO(3,R) in the Cartan form is thus = for every value of A; there exists a largest acceptable m-value mmpma, and a
smallest acceptable m-value M in
—Mf ,NHL = +Ji
v .
_”,N.Tv,ng = 2J,, Mmaz = Mmin
with

[/2,Js] =0 and [J% 1] =0.
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Acting with Ji on [|1)jm) repeatedly, we will increase (decrease) m beyond the
bound \; —m? > 0. The only way to avoid this contradiction is for these sequences
to terminate at both ends, i.e.

T [¥jmpa.) = 0
J- _AF.SS..av =0
J? = L(Jp o+ T T+ J;
Jz = 3 Upd = J-J4) add or subtract
J2xJ, = JuJe+J?

= JyJz=J*—J, (J. ¥I) mathematical identity

J I Wjmme.) = 0 = A — Minaz (Mmaz + D] Wimmesy = 0

~

N

0
0 = C{ - SB&SASSQ‘: - H: _A\uu.ﬁiﬂ.:v =0

~

~

0

= A= Mmaz(Mmaz + 1) = 53&30\:\3&: -1)

theorem: ASS@S + SSQSVASSsDa — Mmin + ”_,v =0

proof:

2 2 .
Munin Mmaz — Mipin T Mmin + Mz = MmazMmin + Mgz =0

= Sw:na + Mmez = Sws.z — Mmin
= Mmaz (Mmaz + 1) = Mmin(Mmin — 1)=2; qed.
e conclusion:
One of the factors in the product
(Mmin + Mmaz) (Mmaz — Mmin + 1)=0
must be zero. It can only be
Minin + Mmaz =0,

becatse Mmaz = Mmin » and thus Mmaez — Mmin + 1> 0 always.
Thus =

Mmin = —Mmaz

We know that successive values of m differ by 1

= Mimaz — Mmin =N ﬁnoq.._.uwv...
but Mpmaz = —Mmin = 2 Moz =N

n
Mmaz — M Mmin = —

n
2

e definition:

1.3
= &”OVM»H,Mu o

.
[=%
el
[

= m=—j,—j+1, - ,+] (27 + 1) values of m
= v(. = Mmaz AS\SD,\B + Hv = Mmin ?33:: - Hv = .QC + Hv
aﬂw_ﬁ.?:v = QC + C_\%‘.Bv Jj= 0, WLJ Wq :

KN_,N\&.SV = ST\\GSV m = lu.ql.w. + H“ q+n.

(25 + 1) values of m

e summary: What went into this result?

(i) Jz,Jy,J. Hermitean
(i) [Je,Jyl =1 J.  + cyclic permutations, Lie group SO(3,R).
=  Casimir operator J?=JZ+ JZ + JZ
commutes with all J,,J, and J,,eg.
T 2 HL — (0 = we can choose simultaneous eigenvectors of J?,J,.
(iii) non-negativity of the expectation values

@(J2+ T2+ T2P) 20 5 @2+ 7)) 2 0.

¢ The surprising consequence of these simple considerations is:

Half-integer eigenvalues for J, are allowed. This important fact was known to W.
Pauli already in early 1925, ahead of the discovery of the electron’s spin by S.A.
Goudsmit and G.E. Uhlenbeck in mid 1925.



9.3 Ladder operators acting on normalized eigenvectors

e So far we know Jui|thjm) = ¢+ (4, m)|9jm+1), where c+(j,m) € C may be deter-

mined fixing [[¥jm|l = [1¥5,mall = 1.

e strategy:

Calculate c+(j,m) using the mathematical identity
Jr J+ = J? —J, (J, £ 1I), which we have derived in section 9.2.

e Calculate the norm squared of Ji|jm)

etimll* = (Je¥imlT£Pim)

= (cx£(j,m) Yjmr1lcL(F,m) ¥jme1)

lex (7, m) 1> (¥jmx1|¥j,m1)
e —

1 per definition

e« Wenowuse JL = (J, i) = (T FiJ})=(LFily)=J%

= J, and J_ are adjoints of each other

lex(Gm)2 = Tatiml® = (T Yiml|J£im) = Pim|JxJ2Pim)

=

ie. we chose the simplest phase convention ¢ la Condon and Shortley, ie.

SHQ“SV =0

= Wm| (J* = J(J: £ 1)) vjm) from section 9.2

= (G+1)-—mm=£1)) Wjmljm)
1 per definition

lee(G,m)]> = j(G+1)—m(m+£1)
= (GFm)GEm+1)
= ca(jm) = JEFm)(@GEm+1) eio£(im)

=1

= ,NH_H_A\QSV = /\C + SVC tm+ Hv_ﬁvu:ﬁ.nﬁwv

3

9.4 Generating all the normalized angular
momentum eigenstates

strategy:

For a given j, we start with the eigenstate having the smallest magnetic quantum
number, i.e. |¢;_;) , which is defined as

J_|pj—j) =0 with |5l =1.

We may then obtain all further normalized eigenstates [¢jm) , with
m=—j+1,-j+2, -+, +j,by applying Jy upto 2j times on [1h5,—57-

e theorem: (j '
j—m)! j+
P i) -

[Yjm) = G+ m)!

proof by induction:

(i) We show first that the theorem is valid for m = —J

[45,—5) =

(i) Assuming that the theorem is valid for m, we show that it is valid for m +1,
as well. Using

Jilbim) = VG -m)([§ +m+1) [)me1)

1

we have _\%u.s.:v = /\Q = SVC e Hv Jy _Quﬁv

Inserting the theorem for |t);m), we obtain

(G —m)!
(29)!(G +m)!

1

E&S‘IV = Ji

JEmo
JG-mG rmt D e

_ (j —m—1)! itmtl
S V@Gemen )

This is indeed the original theorem, with m replaced by m + 1. q.e.d.



9.5 Matrix elements of

e We now calculate the matrix elements of J. and J, in the orthonormal basis
of the eigenstates of J? and J,. The only non-zero matrix elements of Ji are

off-diagonal, i.e.

Js, J, and J,

) marm = (Wimt1lJethjm)

VEFm)G Em+1) (4)mar|¥smer)

—_— '
1

The only non-zero matrix elements of J, are diagonal.i.e.

A&LSVS = Yjm|Jz¥jm) = m (Yjm|j.m)

e We may also get the matrix

Je=Jy£ilJ,

= AFNSVﬂnn_nH.S =

AK@VSHH,S

~———
1

elements of J, and J, through

I, = w (Jo + J_)
< 1
..N,c = M TN._. - anv
sl Tothgm) = 5 (s ma | Taym)
NVGFMGEm D)
+1

(Vjma1lJyjm) = 5 (jmt1| T+ Vim)

+1 - -
o9 GFm)(GEm+1)

MR

9.6

Examples
i=3%
O/ P S /9 !
i = k=1zy,2
A,NSIWJW Aobnvlwu!w
So_ (02 1 Ao Hv .
50 2\1 0 2
7 = 0 W N WAO Is.v B oy
’ -5 0 2\i o0 2
S 3 0 oy,
o 0o -1 2\ g 2
2
remark:

The Pauli matrices 0,,0y,,0, were introduced in early 1925. Pauli seemed to
be unaware that William Rowan Hamilton (Irishman, 1805-1865) had introduced
similar matrices in 1843, in order to generalize the number concept from Leonhard
Euler’s complex numbers to William Hamilton’s non-commuting hypercomplex
numbers or quaternions, represented in 4-dimensional space.

The normalized eigenvectors of J? and J, are for j = w

The eigenvalue equations are

Py m) = MEM m)

|
D] =

1
\N_@W,SV = S_ﬁw,gv SHMV



summary:

c =1 iy Uk (k)i ) - . S
o A general spin state vector describing the spin j of a particle is given by
Jp = ASLPH A,Navo_o A,Fvo_lH k==z,y,2
Cjj
(e)oip Uk)ao (B) 54 g Cjj-1
)= > Cimltim) =
m=—j
new representation: old Cartesian representation: Cj,—i
with (27 + 1) components ¢j,, € C.
1
. 0 m)\m . 0 . 0 0 o. Here, |c;jm|? is the probability for finding the particle with a spin projection m in
Jo = mz\w 0 mz\m Jo=1{0 o - the z-direction, if the spin state vector is normalized as
0 v2 o 0 i 0
J
517 = Wilws) = D lejml* =1
0 —igv2 0 0 0 3 m=—j
Jy=11i3v2 0 —-i 3v2 Jy=1 0 00
0 i V2 0 - 0 0 9.7 Rotation matrices
e The transformation property of spin state vector |4;), under rotation around the
10 0 0 —i 0 k-axis (k = z,y, z) counter clockwise with angle ¢, is given by
J,=1 0 0 0 Ji=114% 0 0 ) ) e
00 -1 0 0 0 [95) = D" (0) |¢5) = 7 7% [ahy), k=uzy,z

diagonal non-diagonal

Here, k.»@. ) are the angular momentum matrices describing spin j and Um ) () the
rotation matrix around the k-axis with angle ¢ counter clockwise.

Thus the normalized eigenvectors of J2 and J, in the new representation are

examples:
1 0 0
) 0o/ [¥1.0) 0 > ) 1 e rotation of a j = % spin state vector around the z-axis counter clockwise with
angle ¢

The eigenvalue equations are

,NM_QH.SV = .w@ + HV_QHMEV - M_s\\w,s,pv

ANN_@HMSV = S_ﬁu?gv Swﬁw m = HVOv |“_. . i
. L . O e 2 0

with  D;*(p) = exp Alﬁu|v = i and Y1) =
0 ez

)

=

93 = D2 () ly) = exp (i JEB) fy) = exp (<ip ) Iy

remark: 3

Similar spin matrices may be obtained for j = 2,2, -+ -, etc.
(see tuts 3 and 23)

an



e rotation of a j = 1 spin state vector around the z-axis counter clockwise with an
angle ¢

[91) = DD () [adr) = e |apy)

e”¥ 0 0 C1,1
DM (p) = eI = 0o 1 0 and [th) = | cio
0 0 et 1,1

with

This is similar to the rotation matrix of a vector around the z-axis counter clock-
wise with an angle ¢ (see tuts 22 and 23)

7' = Ry(p)0 = e 7
cosp —sing 0 Vg
with  R,(p)=e %= = | sing cosp 0 | and 0= | vy
0 0 1 v,

(see tuts 12 and 23)

remark:

The complex rotation matrix p® () is related to the real rotation matrix R (¢)
via a unitary transformation

U DM (p) U™t = Ra(p)

with Ut = U~ = const for all ¢ (see tuts 22 and 23).

10 Spherical harmonics

10.1 Angular momentum operators in spherical coordinates

z

rsin 6 cos @
rsin fsin @
rcosf

we define the angular momentum

I..Hlv lm\
ha&sXﬁ\

as a dimensionless quantity.

e theorem: L,=—1 .W
Op
.0 . .
proof:  Apply —i M.m to an arbitrary function F(z,y,2)
0D gy g OE 0E_OF Oy OF 0
Oy - W2 =" 8 Be Oy By 0z Oy
@ = —rsinfsing =~y
dp T
9y :
m'ﬁ = rsinfcosp==x
0z
9 0
.0 . OF . OF
lwﬁmﬁaé,& = Higg Vi, C




AFwiiu%e* O ietol

e theorem: 50 %ﬁ

proof: Apply these differential operators to an arbitrary function

F(z,y,z) = F (rsin 6 cos ¢, r sin 8 sin ¢, r cos §)

; a 7]
tip ;
e Tu % +1 cot 6 mﬁL F(z,y,2)

or oF oF

= 4t ﬁ|ﬂ. cos 8 cos o+ —— r cos fsiny — —— sin 4

oz dy 0z

: 0 oF
+ oFiv &8 IIﬁm.Emmgﬁ.Tm[m.ﬂmEmo%ﬁ
oz oy

sin 6
OF .,
= —eTr cos @ (Fcos ¢ —i sin @)

ox

mﬁ
Ay
m'm‘
Oz
m'mu OF OF
oz

+ et 1 cos @ (£sin @ +1i cos @)

AH et p gin 3

Jy Oz

_ L, OF_dar or . oF
N m&ﬂ dz dy Yo,
— —_—

*iLy F L, F

10.2 Casimir operator L? in spherical coordinates

We now want to calculate L? using the mathematical identity

1
HmHMAF+;h&APﬁ;h@ + WAFI&FvT§+s$v+hW

L L_ L_L,

We first calculate

Lil_

) 15} 0 . 0 0
(1% ; —ip JE— ) PR
e ﬁ]mer@oo#\mmLm — @%LlooﬁmmL

) 15} 0 . 0 0
_aiv | _ Y Y ot | 2 il
e ﬁ s®m+oo:wmﬁ_m T@%.Toonm@ﬁ

|

|

rcose + ¢ —rcosf + —— [F (cos p=Lisin ) rsin 6]

q.e.d.

Using the operator identity
5 e = 7 [ —i+ 9 )
A Ay

one can shift e * to the left and obtain
) ) 1o} o 0
LiL_=—e¥e™™ Als. 9 + cot 6 Al@. + lvv As = +cot § lv ,

a9 Jp o0 Oy
or
5 9 .4 g .0 0 .0 .
h+h\ll—mm|w+noﬁ mAIT_,wM\mV %Is%ooﬁm%+oonw AITTMMv i =
Using the operator identity
0 1 0
% cot 8 = Imwsum.rooﬂmww ,
we obtain
H? 5 , 07 . 9. 0 .18 . a 0
.N\Jrh'lﬁw% 4+ cot %®€N|s00ﬁ %&l.l@MLSM%&lsOOﬁ%%%
0 . g 0
+ooﬁm% +@noﬁm%mﬁL
8?2 1—cos?8 O 3] . . 07
- == | o t 6 — 2
L+l ﬁmmw.fs 28 bp Ot g T ot ? @sw_
2.0 ¢) 5 o 07
h+h|!|—w%+s%+60ﬁ%%+00ﬂ %%‘ﬁwg
Similarly, we arrive at
o? %) 0 , . 0%
L. Ly=—|=——i— t 6 — ‘0 —
+ T% smﬁ._.oo mmm._.ooﬁ mmﬁL
The final result is thus
b? 0 52
2= - — + (1+cot® 8
L T%;.ooﬁm%.,.ﬁ + cot® 6) QGL
or
L = - L o wwbm@l + Lo
N sinf 90 \ 06 sin? § 9p?



10.3 Orbital angular momentum wave mcboemosm,

. MQmma on the canonical commutation relations, we have shown in tut 11 that
L =7 x pjh fulfils the Lie algebra of SO(3,R), i.e. [L,, Ly] =iL,, and cyclic per-
mutations thereof. From chapter 9, we know that the eigenvalues and eigenvectors

of [2 =12+ L + L2 and L, must obey

LYim) = U+ 1)[Yim)

.N\N_M\msv = S_M\:);v
with m = —[,-I[+1, -, 4] (21 + 1) values
and I = 0,%,1,2,2, --- in principle.

From sections 10.1 and 10.2, we know that L., Ly, L, can be written in spherical
coordinates in terms of 6, ¢ and their partial derivatives %“ %m only. Thus one
must be able to interpret the eigenfunctions in terms of 8 and ¢ only, defined on

the unit sphere.

f = 7/r = {sin 6 cos ¢, sin @ sin ¢, cos 6}
unit vector in 7-direction

= [Yim) =Yim(8,¢)

We have shown in chapter 9 and section 10.2

.0
L.Yim(6,0) = ~i5, Yim (0, 0)=m Yim (6, ¢) eq.(1)

1 6 (. 0 1 82
B Ti 36 Am_i %v Ry mlsL Yim(8,0)  eq.(2)

I(1+1) Yim (6, )

LY (8, )

I

The most general solution to eq.(1) is Yi (8, p) = Ay (8) €™, There are two
possible periodicity conditions for ¥, (6, ¢) consistent with the Lie algebra of

SO(3,R):
“bosonic” periodicity

Yim (8,0 +27) = Vi (6, ©)

= eim (p+2m) — eime

mwﬁ?: —

m=0,+1,+2, -
1=0,1,2, -

Single-valued with
Yim(0,¢) = Yim(8, ¢ + 2).

Because it reaches the same
value after a rotation around
z-axis with an angle 27, it

1s uniquely defined on the
unit sphere.

conclusion:

“fermionic” periodicity

M\Msﬁmvﬁ + Mﬁ.v == NSA%vﬁv

etm (p+2m) _ —eimy

mmﬂ&s = -1

m=x1 43 .

=13,

Double-valued with

Yim(0,0) = =Yin (0, ¢ + 27) and
Yim (0,0 + 47) = Yinm (6, ¢).
Because it reaches the same
value only after a rotation
around z-axis with an angle

4, it is double valued on the
unit sphere.

If we insist that ¥im (8, ) should be uniquely defined on the unit sphere for all

0<f<mand 0< @ < 2m,thenl=0,1,2, --

-and m =0,+1,%2, --- , %! are

the only possible values for I and m. However, if we admit double-valued
functions, then half-integer values of I and m are allowed, as well.

10.4 Construction of the spherical harmonics

e eigenfunction with lowest m-value for given {

We start with the eigenfunction with the smallest m-eigenvalue for a given I, which

is defined as

L_Y,—1(6,0)=0 .
For m = —1 we have Y, _(8,¢) = A; _;(6) e~il¥

and L is given by

L. = Lg—iLy=e% Ai@liool@v

06 Ay



We thus arrive at the differential equation Integrating |Y; (8, ®)|? over the unit sphere, we arrive at

| 5 | . o 2 ™ drlaf? (1! 21)°
T [ - Ay _(0) +1lcot 6 A;_y(0) ) e7HP = i _ = 2 in )2+ gg = -
e A 50 ‘. 1(8) +1co 1,—1( vv e \o mEm%\% &6_5. 1(8,) 27|a] \o (sin6) do GIT 1) 1
[
d 2(11 2)2
or ¥ Ap_1(8) —lcot 6 A;,4(0) =0 (20 +1)!
1 d 1 20+ 1)!
— — Ay () =1 cot O . = =—
or A —i(9) db ) 0 a Var 21!
solution: In 4;_4(6) =1 In siné + const eq.(3) remark:
Here, we have chosen the arbitrary phase of a to be zero, yielding
proot  d In 4, () = L0 d (I In sin6 + const) A6
- 0 A = A0 - @ cons ) rwr;v .
cosd _ 1 @i+t
= 12 =lcot 6 qed. = Y, 09) = T g o) e

Taking the exponent on both sides of eq.(3) yields e building up higher m-quantum numbers for a given [ value:

We have obtained in section 9.3

A;_1(8) = (sin 8)" %018t — 4(sin g)! .

I —m)! m
Yin(®:0) = \| Gy K YirtC) - cald)
¢ normalization of ¥;,_;(0, ¢): ; :
Let A(6) be an arbitrary function of 6
_ oz il . ) )
S,LAPGV =a (sinf)" e™"? Ly TEB mt:sv = ¥ W +icot mm TK& my:ev
o0 Oy
e calculation of the normalization constant: from mmo;wﬂob 101
) d
= e~ii-)¢ |
e Te +Nooﬁ& A(6)
The surface of the unit sphere is theorem:
—3
- d 1 d .
,M').\u T 27 ki —H&IQ. ..TNOO»U %g \:%v = g MW _HAmHH_. QVN \VAQVH_
\ sin 6 df \ dp = 27(—cosf)
v\ 0 0 o proof:
= 27(1+1)=4n . 1 d o 1 N o dA
g % :mzpmv \»A%; = g —HN Amhﬁ%v cos@ \M.A%v + Amuﬁ%v .mm

d
= _HN cot 8 + m& A(8) q.e.d.




1 d

‘ 4 ical . h ”
= L, (A(0) ei9) = g-ili-1e e TmESN AQL (iii) The spherical harmonics are orthonormal

2 g
AM\MS_M\%S\V a”m \ dp \ sin @ df e (0, ©) Yy (8, ©) = oy Omm: and
e 0 0

) 1 d
= _ea—i(l-1)p s 14
= e - ——— |(sin®)" A(9)] |,
(sin8)'=* dcosf (omé) 4@ (iv) complete:
h h d dcosf = — i
where we have used d cos sin 6 df Any function T'(6, ), defined on the unit sphere, e.g. the temperature of the
e Applying this trick n times, we have microwave background radiation, can be expanded as
L} (A(9) of&sv = (=1)" e~ill-n)e 1 _a " [(sin )! A(0)] eq.(5) 10, ¢) = w Yim (0, ¢)
+ Amwﬁmilz dcos@ ’ P |~ - Cim Yim\U,
e Setting n=1I+m and using eqs.(4), (5) and . _ [ . . Fourier
with ¢ = (Vi [T) l\o &ﬁ\o sin® df Y5, (8,¢) T(9, ) coefficient.
V(2 !
A) = A,(8) = EENRVAC ; *+1) (sin@)t | (v) The eigenvalue equations are
Vam 2 1 9 8 1 &
. 2 9 = —|— 2 (s 2
e obtain Plintn) = ~ |5 2 (a0 5) 4 L 523 Tin(®.9)
Y (0 (= forgd (i —m)!
Lm(0,0) = 2 i i\ T3 = U+1) Yiu(0,9) 1=0,1,2, ---
I+m = ,%»
aime Ammﬂ%vﬁ A d v (sin %vﬁ ) L, Yim(8, 0) = ? 8o M\?:Am.vﬁv
dcosf
= SM\MSA%Vﬁv SHINqunTHu.:vN

10.5 Properties of the spherical harmonics . .
(vi) The actions of the step or ladder operators on a spherical harmonic is

(i) Using Leibniz’s rule, one can derive the conjugation property of the spherical 5 5
harmonics, i.e. L Yin(0p) = etiv T 55°+i00 32 ) Yin(0,6)

ols) dp
i (0:90) = (=1)™ Yi_n(0,¢) .
= /\Q + SVQ +m+ C M\M.B..: A%u ﬁv

(ii) Under space reflection

-1 0 o0 10.6 Vectors, tensors and spinors
P =7 = PF= - with P= -1 i . . . : A . )
rer " ™ with M 0 loH We have discussed an extraordinary variety of geometrical ob jects with peculiar trans-
formation properties under rotations in &3. We need to categorize their properties.
or in spherical coordinates . .
* spherical tensors and spinors
(r,0,0) = (",60', ') = (rnm=0,0+7) , A column of (25 + 1) complex numbers
the transformation property of Yim (0, ) is Cg
Cji-1
xwu\mSA%vﬁv “M\MSAﬁ.IQ“GnTﬁ.v - AIHVN M\Nsﬁ%uﬁv ”@M\NSA%VSV ) _@wv = . 5
with  p = (-=1)! the parity quantum number. ¢
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transforming under rotations, around the k-axis with an angle ¢ counter clockwise,

according to |¢;) =

bmv (¢) |¥;) with (k = z,y,2) is called a spherical tensor

or a spinor as follows:

(a) a spherical tensor

if 4§=0,1, 2, --- non-negative integer

examples:

scalar (j =0) = invariant, spherical tensor of rank 0; 1 component

spherical vector (j = 1) spherical tensor of rank 1; 3 components

spherical tensor (j =2) = spherical tensor of rank 2; 5 components

(b) a spinor if j = §, 3 --- non-negative half-integer
examples:
spinor (j = $); 2 components
spinor (j = $); 4 components
remark: Under rotations, the transformation properties of spinors differ

from those of spherical tensors. After a rotation of a spinor around
any axis with an angle 27, we will end up with the negative spinor.
Only after a rotation of the spinor by 4w do we get the original
spinor back. Spinors are thus representations of SU(2,C) rather
than SO(3,R). j = % spinors rotate at half the rate of j = 1
spherical and Cartesian vectors. However, SU(2, C) and SO(3,

R) share the same Lie-algebra.

e Cartesian tensors

A set of 37 (r€ ) real numbers, transforming under rotations as the r-fold prod-
ucts of Cartesian coordinates, is a Cartesian tensor of rank r.
examples:

scalar = invariant, or Cartesian tensor of rank r=0 (1 component),
does not transform;

Cartesian vector, or Cartesian tensor of rank r=1 (3 components),
transforms like z,y, z

Cartesian tensor of rank r=2 (9 components), transforms like the
products of two coordinates, i.e.

TT,2TY,TZ

Yyr,yy,yz
2T, 2Y, 22

e.g. moment of inertia gz, 0zy, -

remark: Cartesian tensors are representations of SO(3,R) rather than SU(2,C).

o relation between spherical and Cartesian tensors: spherical harmonics

Tt is difficult to compare the transformation properties of vectors, tensors and
spinors. But what we can do, is look at the spherical harmonics Yim (0, ), be-
cause these transform like spherical tensors, and they can also be written in terms
of Cartesian tensor components.

examples: .
z = rsinfcosy

y = rsinfdsing
z rcosf

scalar, spherical tensor of rank 0:

1
Yo.0(0,9) = -—= scalar

2Vm

Cartesian vector, spherical vector or spherical tensor of rank 1:

/\H cosf = = ,\wm

. 1 3 . 449 __ 1 3 Hn_ns@
SMHHQ}& ln_um <wﬁ mEmm ln_nmwaﬁ

Cartesian tensor or spherical tensor of rank 2:

Yi000,0) =

1 [5222 — 22 —¢?
Y2,0(0, ) /\lAwOOm 6 —sin? @) = /\‘ z a Yy
4 r
e i L (16 2(z Eiy)
Ya,41(0,0) = ﬂw oy cosf sinf e Inﬂm 5 =
= LB g i L E
Yo 40(68,0) = 1\ 3 sin fe Vo

note: Under rotations r is invariant.




11 HSO-U@&% problem

Take a classical Hamiltonian for two distinguishable interacting particles

] - 2
j4! D2 Lo
= + uw
H 3 H+m ; V(r1,72,t),

subject to a time-dependent potential energy. The transition to quantum mechanical
theory is obtained as

7= —ihVy , = —ihV;
The Hamilton operator is therefore
h? R?
H= o Ay — 2ma Ay + V (71,7, 1)
with the Laplacians
o2 o* b2 8? o? o?
DM%]&.T%ITQINW mboxand Dmmm|aw %'.cw mluwv

and the time-dependent Schrédinger equation for two interacting particles

I L0
mﬁbmﬁrﬁwvwv = sm\y A\nﬂﬂrﬂwuwv

11.1 Constants of motion

(a) energy: If V(7,72,t) = V(f1,72) is time-independent, then

(i) the Hamiltonian has time-translation symmetry
(ii) time is homogeneous
(iii) energy is conserved

(iv) space and time variables can be separated in the Schrédinger eq., i.e.

E A\um\\.&u.:n‘wuﬁv = XAQJLﬂl.‘Mv GA&V
Hop(r,7,1) = v(t) Hx(71,73)
_ iyl vme@v divide by ¢
= X\T1,T2 ot
1 .1 0ou(t)
T Hv(#.®) = ih—
ERARRAGRE) ) "ot
F(71,7%) = f@@) = E = const
function of function of conservation of en
coordinates only time only nservation ob energy

Hx (7,7) =

Eu(t)

Ex (71,72)

can be solved trivially
solutionv(t) = v(0) e~ % *

solution less trivial

time-independent Schrédinger equation for two interacting particles

(b) momentum (or centre-of-mass):

Nww

H= 2 A= Ay + V(7 7)

MSH

H x(7,72) = E x(7,7)

we introduce

new coordinates:

X =

xTr =

M =

m1Ty + Mals

m1 + ma

o —

(| b Yy =

mp + mso , m =

total mass

redu

MSN

time-independent

Schrodinger equation

miy + maya
My T M2y2 , ... centre-of-mass

my + My coordinates
Yo — Y1 , relative
myms coordinates
my + mo
ced mass

theorem: The kinetic energy term can be written as

_ A~

h? h?
2ma

Ay =

Nww mw mwm mw
“oM m%ﬁ Tavz T mwwv
NNN %w @w mww
2m A@&m * 0y? + wmv

proof: x1,z9 — X,z coordinate transformation

9
%HH
9
%HH
%m
0z}
9
@Hw
0

9y

_ox o wo
Oz, 8X Oz Oz
_ my 0 0
T mi+me 80X Oz
_ m? & 2m hw+ml
T (myp +me)? 8X2  my +mg 8X Oz Ox?
_ X0 w0
%mww mw;vm %Hm @R
_ mo 0 15}
- SH._.SNMM._.MM



F __m F . w00 o

o2 ~ (my+ma)? X2 my +my 0X Oz = Ox?
1P 1P m #2009 10
my Oz mg 022 (mi+m9)?2 X2 my +me 0X Oz ' my Oz
mo 2 2 a 0 1 8

o T ma)? X2 T+ my OX 8z | my 922

_ Lo (1 1\&
N oz?

q.e.d.
If the potential energy is a function of the relative coordinates only, i.e.
V(r1,72) = V(i1 —72) = V(z,y,2) ,
we have
(i)  actio = reactio is valid
(ii)  the Hamiltonian has space-translation symmetry
(iii) space is homogeneous
(iv) momentum (or centre-of-mass) conserved
(v) variables R and 7 can be separated in the Schrédinger eq.

‘We thus have the Hamilton operator
H = Hom + Hrel

with
R [ &8 8? 6? o
Hev = ~ 537 Amk‘m + 5y + QNNV CM kinetic energy term
I O L L & relative kinetic and
He = “om A% + dy? + %v +V(z,9,2) potential energy terms
Hx(r,™) = Ex(f1,7) time-independent Schrédinger equation
ansatz: x(71,7) = U(R)u(F) separation of CM and relative variables

Hx(71,7) = u(®)Hom U(R) + U(R) Hye u(7)

—.

= EU(R)u() divide
by x

1 1
q HemU + m Heeu = F
S—_—— N—_———’
depends on  depends on
R only 7 only
= const = const
.@Qg .@am_
R [ 8? 92 92
oM Z) = EomU(X,Y,
2M A%ﬁfwﬁfﬁwv U(X,Y,2) emU(X,Y, 2)
R*K?
with Ecm = 517
solution trivial UR) = U(0)eFKER
r? [ &2 5?2 52
Alﬁ A% * @l@m, + %v x_la\ﬂ.&.gm\quv \QAHV@“NV = mnm—ﬁﬁHv@qu

solution less trivial

conclusion: Similar to the classical two-body problem, the quantum mechanical
two-body problem can be reduced to the one-body problem, introducing centre-
of-mass and relative coordinates, the total mass M and the reduced mass m. For
this to be valid space-time, it has to be homogeneous, i.e. invariant under the
transformations

7o R =F+a i=1,2

(¢) angular momentum:

If V() = V(r) does not depend on the orientation in space, then
(1)  the Hamiltonian has rotational symmetry

(ii) space is isotropic

(iii) angular momentum is conserved

(iv) angular (9,¢) and radial (r)
variables can be separated in the Schrodinger eq.

In spherical coordinates we obtain

z = rsind cosyp
y = rsindsing
z = T cosV

Using the canonical commutation relations, we have proven in tut 22, the identity

R L*=(Fxp) (Fxp) =rp® — (7§ +ihi p.



Inserting
7 = —ihV and
g = Ismm..ﬁﬂli.:% ,
we arrive at
mww @w m.ww
A = — -
Oz? + Oy? + 022
_ 220 p
T 82 T ror 2
with
1 8 G, 1 9
2 = — — | sind —
TF% a9 Am::w mmv + sin? QEL

The time-independent Schrédinger equation thus becomes

B2 /o2 208 L?
(5 25— 30) v V) u= P

2m
Separation of the radial and angular parts yields
u(r,9,¢) = R(r)Y(d,¢) ,

and dividing by u(r, 9, ) we have

R 1 (0?R  206R 1 R2L2
“om R Awmﬁl%v VOt g g ¥ = B
r? (0°R 2 OR 2mr? 1,
R Af% ty ,Q.L T ? - 5& R
N——
F(r) = A, function of r only G(0,p) = A
function of
9, ¢ only
2R 28R 2m A
me%Lﬁﬂ?aéSv R-5R=0
N radial diff. eq., physics is in here

L’Y =Y
angular diff. eq. “geometry”

We have already found the solutions to the angular differential equation

1 mm %v| 1 %M\|Z\ A 1(l+1)

Y 55 ) ~ 5?9 oe? I o= 0,12

2 freg—
LY = sind 99

11.2 Radial differential equation

The radial differential equation to be solved is

d?R 2dR 2m Il+1)
Introducing the reduced wave function w=rR
we get
ANM NNN ﬁm ! ! ! 1
HVWS: = m:._.mm\
r r
1 2m w I+ w
N\E:.TMIM m__.ﬁla\mﬁv ﬂl. " ﬂ.“O
B2 d*w RPL(1+1)
et i S = E,
T T om @ AM\AJ * 2mer? vS o

This looks like one-dimensional quantum mechanical motion in an effective
potential in the interval r € [0, 00)

a\mmﬁﬂv = <Aﬁv + ﬁ iﬂw
-

centrifugal
potential

The boundary conditions at infinity determine whether we have a bound or
a scattering state:

o moy.ﬁlvoo_ooczmmgdmm
e forr — 0o free states



12 Special functions

12.1 The confluent hypergeometric function
We need to study the differential equation

zy"(z) + (v - 2)y'(z) —ay(z) =0
with

a,v : complex parameters
z : complex variable.

Let us try the ansatz for a solution:

o0 o0
y(z) = H»MU@:&:H M zMna,
n=0 n=0

y'(z) = MA\/ +n) g,
n=0

y'(z) = MC, +n)A+n—1)zM" 2,
n=0

o0
MU A+n)(A+n—1) ap 2" y(A4n) an 2 —(A+n) ay 2T —aan 22| = 0

n=0

coefficient with z*~1 n = 0:

\/A\/|| HvﬂoxTJ\\/Qo = 0
AQA=1D+4x = 0 fundamental equation

= A=0 or A=1-«

two linearly independent solutions! coefficient with £’ "~1 n =1, 2. .

A+n)A4+n—-1Da,+7yA+n)an—A+n—-1ap 1 —atp1 = 0
A+n)A+n—-14+7an—[(A+n—1)+a] an:

Il
o

an A+n—-14+a
an-1 A+n)A+n—147)

=

(a) A=0
an, n—14+a«a

an—1 n{n—1+7)

choose

ag = 1
Q
ai = —
Y
I a+1 o = (a+1)a
LT 2+ T 20+ 1)y
0 = a+2 4 — (a+2)(a+1a
P30+ 320+ 20+ 1)y
o0 oo
ala+1)(a+2)...(a+n—-1 o™
= only(y+1) ... (y+n-1) ol
an & a(a+1)...(a+n—1) Pochammer symbol
= 1Fi(a;v;x) well defined if v # 0,-1,-2, ...
confluent hypergeometric function
ties:

proper

(1)

(ii)

(iii)

(iv)

(vi)

convergent for every z, since

. Qnp ) Adn—-14+a
lim = lim =0
n—300 Qp_y  N—00 C,.TSVAv,Jr:IHITQV

“quotient criterion”

power series terminates if @ = —n (n =0,1,2,3,...) polynomial of
degree n
= Laguerre polynomials
X ..n
a=7=1 Fi(aaz) = M w =e’
n=0
4 Rayn) = EaFat Ly 41 )
&HH (&7, T \.V\H (& Y 7T

YiFi(asv;2) + (@ =) 1Fi(esy+ 1;2) — a1 Fi(a+ 1y + 1;z) = 0

(2 —y+2)1Fi(a;72) + (v — @)1 Fi(le — L;v;z) — a1 Fi(a+ 1;v;2) =0
there are many other relations involving three | F; functions

1tF1(a;v;2) = e® 1 Fy (v — a;7; — )

Kummer transformation



(b) A=1-1v
Qap Ad+n—-14+a .
= thi=1-
An—1 Orn)tn—1+y gl
a1 (I=—v+n)(l-y+n-1+7) (I-7+n)n
choose
ag = 1
I a—vy+1
1 = D
a—y+2 (a—v+2)(a—7+1)
as = a; =
B-m2 G-7E-)2
v = la—7+3)a-7+D(a-7+1)
_—
4=-7@-72-7)3-2
y@)=2"""1Fa—y+1;2—v;2)
conclusion:

the general solution of the confluent hypergeometric differential equation
2y @)+ (7 - )y (@) —ay(e) =0

is

Ar1FR(av2) + B g 7 iFi(a—y+ 12— 7;2)

{
singular at z = 0

y(z) =

remarks:

(i)  if v # integer both functions exist and are linearly independent

(ii) assume 7y = integer

(a)ify=1 both functions are identical
(b) if y=0,-1,-2,... only 21771 Fi (o — v + 1;2 — v; x) exists
(¢)ify=2,3,... only 1 F1(a;v; z) exists

Thus for v = 0,41,+2,... we need an additional linearly independent solution.
This problem is difficult but it can be solved. We will not discuss it further here.

N

12.2 The gamma function

There is a connection between the confluent hypergeometric and the gamma function.
definition:

o
I'(z) = \ e tt*1dt  convergent if Rez >0
OOO
I'(z+1) = \ e bt dt
0 ~ .
= —e'F| 4+ N\ et ldt
0 PJ\Ix
I(z)
Fz+1) = 2T(2) functional equation

special cases:

G) I =1

(o]
\ e tdt=1
0

(i) TCrnr+1)=n!

oS} o) o
(i) I'(1/2)= \ e '3t = 2 \ e~ du = \ e du = /7
0 0 — 0
substitution u = V¢, du= ﬁ
7 - M‘/\m
iv)

Fn+1/2) = (n-1/2)(n—3/2)...1/2I(1/2)
_1-3-5---(2n—1)
= o N3
_ Q:IS:/\M

M§

I'(z) defined in terms of integral representation only for Rez > 0. However, we can
define it everywhere using analytic continuation if we assume functional equation valid
everywhere except z =0, —1, —2,...

I(z+1) =2T(z)

indeed for |z| < e assume Taylor expansion exists around z = 1

£+ =y s (S 4 T D000

o )

+v =14 2zf(2)




f(z) holomorphic around z = 0, mmmz& oo-differentiable functional equation:
1
I(z) = IH,AN._. 1)=- +.~RNv
= z = 0 simple pole of I'(z) with residue 1.
more generally

F)=GE-DIz-1)=-1)(z-2)I(z-2)=(z~1)...(2—n)(z —n)
“n) - I(2) __ :tf@)
> TE-n) = (z=1)...(z—=n)  (2=1)...(z—n)
_ 1 f(z)
B NANI:...Awlnvlr ANIC...ANI:N
holomorphic for |z| < ¢
for |z] < e
I'(z—-n) = AM_HW:.T.QSANV

gn(z) holomorphic for |z| < ¢
=D"

... with residues r,, = _
n!

= I'(z) has simple poles at z =0, —1, —2,

further properties without proof:

() T(2)T1—2)= — =T AWV = /7 as we already know

sinmwz 2
. MMN.L
(i) T'(22) = 7= L(z)T(z+1/2)
12.3 Euler’s beta function
definition: 1 R
E— — =101 _ py—1 .. Rez >0
B(z,y) = \o t*7H (1 —t)¥™  dt convergent if Re y > 0
properties:
, _TI'=)I'y)
(i) B(z,y) = T +y)

(i) B(z,y+1) = @m@i y)

L(z)T(y+1) y Dz +1)T(y)

Dz+y+1) z Dz+y+1)
t= Y v = t dt = dv
T w1 1t T (1+w)2

proof of (ii): proof of (i): substitute

R1

te(0,1]] = wve0,00)

o0
B(z,y) = \ V14 0) TV dy
0
let us evaluate the integral
o0 [ee]
.N.AH“ w\v — 4\ GHIH dv \ mIAH.Te: &.&.TQIH dt
0 0

~ v

Nz +y)
(1+w)=ty
— * HJA& + @v z—1
= \o G+eva+ee dv

= I'(z+y)B(z,y)

if we can show that I(z,y) = I'(z) ['(y), proof complete

o0 o0
Nﬁﬁwv — \ \ L e (14v)t gaty—1 dv dt
o Jo
substitution (v,t) — (s,): vt =s, tdv = ds
0o poo z—1 d
I(z,y) = \ \ w e tms oyl ﬂm dt

= \\ ol gms 98 e te¥dt
t

= TI'(z)T(y) q.e.d.

12.4 Integral representation of the confluent
hypergeometric function

consider the integral o nym

z
2

ﬁ“o
HJAQ\V \ Nn &QIHAH o &4]QI~&N

Flayyz) = (@) T(y — a)
Wm@Vo
Re(y—a)>0

= HA@ IQVM:_ \ T AT

1
\ ﬂol.:l.w AH o wvélalu&w
0

Pla+n)D(y - a)
P(y+mn)

but B(a+n,v— a)

]




o~ 2T T(a+ ) Ty~ o)
= Fla;v1;2) = :MHW::A JT(y =) T(y+n)
SRy = (en e e arc = @,
= Flasv;2) = lewl_%”
= 1 Fi(;7;2)

asymptotic representation:

1Fi(a;7;2) = Fla;7;2) = Mo vﬂ% ) :\ \ v%:ol (1—-t)y=*"tat

two substitutions:

(1) ﬂHH|mq t € (—00,1] = u € (c0,0], P
z
. U du
(ii) HHIMv t € (—00,0] = u € (00,0], &HIM
~T(y—a)for |z > 1
H,A\%v — . ©° — ——1 U o—1
F: e e N A— Y e | d U, Y- 1— =
1Fi{a;v; 2) T T —a) e’z \o we ty A Nv

S y—a—1
+ Almvlu\ due ¥y ! AH + mv

~T(a) for |z| > 1

for |z| > 1 first term of asymptotic expansion

LG oo 4 I'(v)

1By (a3 2) ~ (o) Ty -a)

(=2)"% +.

check of the approximation:

(1) 1Fi(a;0;52) = €7, approximation gives the same.

.. Zx-wi?

i) 1F(-2;7v;2 IH+IIN+|N ~ ——

(&) ) N v(y+1)2! v(y+1)
yields only the leading term

approximation

13 The Coulomb problem
13.1 Formulation of the problem
Hydrogen-like atom: nucleus with charge Ze, one electron with charge

—e, highly ionized Ze2
V() ==

Coulomb potential
T

we discuss here only the attractive case: free and bound states
radial differential equation:

dw  2m Ze? [i+1)
w : reduced wave function R = W

T 72

+A\%+WVSIE\EHO

where om.7e?

R2
2mE

m\w

two possibilities:
(@) E<0=k?=-k?<0:
(b) E>0=k*>>0:

asymptotic behaviour:

bound states
free (scattering) states

Il+1
G r-0 = E:IA|LM.IVSHO = we~ ottt
T
(i) r—=o0 (a) bound states: £ <0
\E: _ ‘AN\E — O“ W~ mlzﬁum._iﬂ.
(b) free (scattering) states: £ >0
ikr | —ikr

W' +kw=0 w~e* e
we will treat this case later

13.2 Bound states (E < 0)

reject 7! since for » — 0 singular: not normalizable (true for { > 1, also
valid for | = 0, however one needs more careful argumentation) reject ™"

since for r — oo singular: not normalizable.
ansatz:

w(r) = e eS

well behaved function



2 2 _
d*v %A Q+:|§v+e> 2(l+ 1)« - 0
T T
substitute z = 2xr
v dv A

SO U Y Y

Il
o

compare with
zv"(z) + (v — z)v'(z) — av(z) =0
v(z) = 1F1(o;7;2) regular for z — 0
exclude the other solution
¥ = 2l+2
= A

= [+1-—
a + o

regular solution:

A
R(r) = const x ' e™*" | F} Q +1- o 20+ 2; w..ﬂav

asymptotic behaviour:

I'(7) _ I'(v) _
F e ~ z a—y _ «@
v o= 2042
A 2z = 2Kr
a = [+1-—
2K
A 2+ 2) 9% L1 A
Fi (i - —:204+2:2 ~ T p%kT "
HHA:TH P + ﬁz.ﬁv H,Q+H|%vm Amzﬁv 3
2
n L2l +2) (—2pr) i 143

T(I+1+5)

leading term goes like €7 for 7 — oo which grows faster than e—*" decreases
= contradiction with R(r) — 0 for » — co (boundary condition). The only
way to get rid of this leading term is to have

A
r(en-2)

A
l+1—— = -n,
+ 2K "

the second term will grow like a power

00 I'-function has poles at

n, =0,1,2,... radial quantum-number

n=I0{+1+n, principal quantum number

condition for eigenvalues:

2m 2m 4n?
_ R f2m\? 2%
- 2m \ k2 4n?
o2m Z2et 1 e2\* 72
m = _——_— = — — 2 —_ _
R dn? g e ?mv n?
Balmer formula:  J.J. Balmer (Swiss, 1885)
1 2 Z?
B--imearZ —13.605804 eV —
2 n? n?
n = 1,2,3,...
I = 0,1,2,...,n—1
(sincel=n—1-mn,)
m = =, -l+1,...,]
where = L fi truct tant
(8% = H’M.N%l@gg ne structure constan
m = leMA reduced mass
Me -+ ma
me = 0.51099906(15) MeV/c> mass of the electron
ma mass of the nucleus

bound state wavefunction

2r 1
u(r,9,¢) = const x ' exp (—r/an) 1 Fy AI: +1+1;20+2; HMV Yim (9, ¢)
a
S
v 2n
h 2
a = R 2 w f Bohr’s radius

mc aZ  mce2Z me2Z
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definition of Laguerre polynomials: polynomials of degree k special cases:

d* Ly(z) = 1
Li(z) = € — (zFe® eq.(1 1 0
ZQW k o | v w W Li(@) = —z+1
A J (k=n) (n) bnj Li(z) = -1
= " Leibniz’ rule
A\Qv :MHUo A: / 7 LY(z) = 2 —dz+2
E ooy 5 il Li(z) = 2z-4
1) = (1) ooy e (F) ! B - 2
"= k —n terms . LY(z) = —2°+92% -18z+6
(=)™ k! k! o Li(z) = —32+ 18z — 18
- :M:_ Qnr:v_:_ hwﬁv = —6x+18
Li(z) = -6
examples: Lo(z) = 1 3(@)
Li(z) = 1-3 normalized wavefunction:
Ly(z) = 2—4z+22 2043
= 2 3 _ ASINI.“:_ N l,—Zr ra141 WN]\\. Y. (4
thHv = 6—-182+ 92° — @isﬁﬁ 9, ﬁv = n ?3 n S;w an re N\Sll an Nssﬁ }Dv
(=k)n LRk 1) (- Etn-1) , with n o= 1,23
1R~k Lz) = Mo:_ez Mvu ooy I = 0,1,2,...n—1
" - . m o= —l—l+1,...,1
_ M (=D"k(k—1)... (k- .;+C MAIC: k! o
= n!n! = nln! (k—n)! orthonormal \:“NSAB Unttrme () A7 = S B Sy
comparison =By (ki 1ia) = ,\u ) but not complete! we also need free states. eigenvalues:
15 = k ,
2
definition of associated Laguerre polynomials: Uod\sogm& of degree k B, = IW me2 A va N’M
n
m _ a groundstate: )
m(T) = dzm Lim(z) eq.(2) u100(r, 9, ) = 1 - e e for Z=1
Ta
&3
= (b m) Sy (— (k4 m)i 1)
Maw : 13.3 Free states (E > 0)
R = M),
= (k+m)! ) 1 (=ksm + 1;2) eq. for reduced wavefunction
n™(k k —-1).. . (k+ 1)k
= QA+3V_A )" (k 4+ m)( +_3_ ). (k+1) 1F1(=k;m+ 1;2) €:+A\%+Wv SIESHO
m! k! r r2
= (-1)m™ A\a Mﬂ:v (k+m) 1 Fi(~k;m + 1; 3) eq.(1) inserted in eq.(2) y - 2mZe?
= S
dm dm . &\TTS S E
Lim(z) = dzm Litm(z) = dz™ T dghtm S ; k= MMM >0  free states
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ansatz: )
w(r) = rttl = y(7)

substitution: z = 2¢kr

&we &c .v,

confluent hypergeometric differential equation

zv"+ (y—z)v' —av=0

o(r) =1F AN +1414 %w 20+ 2; w&ﬁ;v
2mZe?
r o= S
w2 2mE _ 2m 3 mvl
o R K2
A
= ;
«Q + 141 %
v o= 2042
MYUso
=k =
h
A Ze?
T n  Coulomb parameter

R(r) = const rt e™ %" Iy (I + 1+4n; 21 + 2; 2ikr)

theorem: R(r) = R*(r) provided const* = const
proof: 1Fi(osy,2) =e® 1 Fi(y — a;y; —z) N:EES transformation
compl. conj. R*(r) = const*r!e® " Fy(1+1—in;2l+2; —2ikr)

use Kummer: R(r)

= R(r) real if const real

constrt e~ H e2kT (21 42— 1 — 1 — in; 20 + 2; —2ikr)
= constrle® B (I+1~in;2 + 2; —2ikr)

asymptotic behaviour:

= R(r)

R(r) ~ const|r!

~ const T e~ kT
I ik
~ const [r'e
ﬁ T

~ const 1!0 e

LM 2o ) (—z)-C

I(a) I'(y—a)

1Fi(a;752) ~

(2l +2)
Tl +1+1m)
(2l +2)
Fl+1-in)
. D(20+2) o(In 2kr 432 ) (—1—1447)

(I+1+14n)

wwiﬁﬁ Awiﬂ‘.v —l—1+41in

l_lv.N 0113, Alw&\ﬂﬁv|ulu|&d

+ complex conjugate expression

LRI+2) 4, —(+1D)In 2kr—nZ+iln In 2kr—(14+1) §]
L(l+1+in)

+ complex conjugate expression

DI+1+ip) = |D(U+1+in)|en
o1(n) : Coulomb phase shift

_EMGN +2) ; (2kr) ~(HD) g=nF gilkr+n I 2kr—(1+1) § ~o1()
+ 1+

+ complex conjugate expression

1 T(+2)

~ const = ——— =) (opy=(1) g% 9 gip A? + 9 ln 2kr — Nw _p §v

r DL+ 1+ 4n)]

define normalization constant

= R(r)
R(r)

Ji(kr)

const = i (2k)t e
- f (2kr)' €72 ey By (L4 1 4 im; 20 + 2; 2ikr)
~ %mg Qaﬁ.fzg m?;iﬁm...ngvv
~ % sin A\% — NWV

introduction of the concept of phase shift
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14 Charged particle in an electromagnetic field:
Abelian gauge theory

if the potential decreases faster than Coulomb, i.e. o r—(1+e) with € > 0, 14.1 Classical theory

then there is no n In 2kr term o .
e definition: Lagrange function

calculation of Coulomb phase shift: . 1 - e - =
L(7,7,t) = gmT Imﬂ+Mﬁ.$
o(n) = argl(l+1+1n)
oo T(l+1+in) = [T(+1+1m) etot(m) e: charge ¢: scalar
of the particle R potentials
m: ImMass A:  vector
P+ 1+ = (+in) (0 —in) [T+ )
= @+ (-1 +n) ... 1+ TA+an)f B = Vx4 magnetic
- ) ) ) ] ) - fields
T +in)? = TA+in)T(1—in) =inl(n) L1 —in) B o= _So- 1 94 electric
def c Ot
I(z)T1-2) = -l :
Sz e theorem: FEuler-Lagrange equation derived from L(F, 7, t) yields New-
. . ton’s equation of motion with the Lorentz force.
r(1+in)f = A [
(L + i) “ sinh 7 Amwsr ey, proof:
- momentum canonically conjugate to 7
P+1+im) = @+ (=17 +n") ... (1+7°) Alv
sinh 77 8L . e . momentum acquires
. . . . . Nw. = ——=mf7+-A4 e \M
Ll+1+in) = ((+inl—-1+in)...(1+ in)T(1 +in) def 9F c an extra term -
rate of change of momentum
!
— n d d oL L, e d o
O‘NABV - arctan — +Q.OAJV 5 = — — = P — A
WUK A dt adar T
oo(n) = argT(1+in) e/ oo - e O -
not elementary = §ﬁ+m¢.4v >+mmm>.
Here we have used
d COA, . OAr . 0Ar | 0A;
i 5 t) = Lk —
dt \ML(AH“@“NQ V z oz +y @@ +z 9z + ot A HQQUNV

or in vector notation



e definition:

generalized force

Here we have used the vector operator identity

7 x Amxb =V Aw.@r Awdv

)

which follows from the vector identity

o

@ x Amxmv =@ 25— ?.&

- -

i=rb=V,é=4 and

taking into account that V is acting on A only.

substituting

Euler-Lagrange equation

doL_oL
dt o7  OF
mia (7 9) A+ S o 9408 (7.9) A4 x (9 4)
= Sﬂﬂlmﬁﬁimw\m‘ + Mﬂxﬁﬂxx&
&.@. + MWX%

Lorentz force

We thus conclude that the chosen Lagrangean indeed describes a particle of charge

e and mass m moving in electric and magnetic fields, E and m“ g.e.d.

Hamilton function

H = #§—L with p=m#r+°A4
def C
. L1 .o
H = mi?+ 57 d- -mityep—S7.4
c 2 c
1 9
H = g mT +eg .

We recall that H is a function of the canonically conjugate variables, 7 and 7 only.
Using pg=mr + £i
c

—

to get rid of 7,

(- 24

2m

we arrive at

H = +e¢

principle of minimal substitution

In order to obtain the Hamilton function, coupling a charged massive particle
to an electromagnetic field, one needs a Hamilton function describing the non-
interacting particle.

7

T the nonrelativistic energy-momentum-
m

example: We start with H =
mass relationship.

Introduce the minimal substitution

e -
o p— - A
p—p -
H—-H-¢e¢ .
For our example, this yields e 2
(7-24)
H=->—%Lt 7 14

2m
remark:

This recipe also works for a Hamilton function describing a non-interacting rela-
tivistic particle or a matter field. In fact, all the fundamental non-gravitational
interactions of the Standard Model of Particle Physics are obtained via a gener-
alized minimal substitution principle.

14.2  Quantum mechanical theory

» The quantum mechanical theory is obtained by imposing the generalized Born-

Jordan quantization conditions
[Pk, @] = —ihidy
ok, 2] =

These can be satisfied e.g. with differential operators in the coordinate space
representation, i.e.

k1=1,2,3

T@SQL =0 .

in2

k=1,2,3
Oy,

Pk — — gk

—

or 7 — —iB Y P 7



The time-dependent Schrédinger equation, describing a massive charged particle in-
teracting with an electromagnetic field, thus becomes

mﬁu&mq,& @n&mwlﬂw
1 a2 € A2 oY
or T.N A|3<|m>v i&gla@m
h? the (= - = = e o, Oy
or ~|mm>+m|§?$+>.<v+m3%> ii v =ih S

e Gauge invariance (discovered by H. Weyl in 1927):

Directly related to the principle of minimal substitution is the invariance of the
interacting Schrédinger equation under local U(1) gauge transformations:

P = P = exp AIWM Xv P wave function

A 5 A = A-V X vector potential
10

o — & = ¢+ - ®|WA scalar potential,

where x = x (7,t) € R is an arbitrary function of space-time.
remarks:

(i) theorem: The gauge transformations

A" = A-Vy and &\H&+w.mlx
c Ot
leave E = IQ&\W@, B=VxA
def c Ot def

. - 1 8A' . 1.0 104 18 -
f: E'=-V¢ — = = - ——V=x-=-=+4+-=
proo- Ve c Ot Ve oﬂmﬂx c w+omﬁﬁx
- 184 1.0 19 - .
IIQQ|MMIM<%X+M%<XIN
E 0

o8

(ii) If, at the same time, we transform the wavefunction 3 with an Abelian
Wmm v, where the real phase
x = x(7,t) can be chosen locally, i.e. differently at every space-time point,
the interacting Schrddinger equation is invariant, i.e.
1 - -\ 2 1 - e =
s (-inV - 24) +eplw =06 |- (-inV- 24"
2m c 2m c

unitary U (1) transformation, U = exp AI

2

+ QL ' =0
(see tut 30).

(iii) The relativistic quantum field theory, describing the electroweak and strong
interactions of the leptons and quarks, is also invariant under local gauge
transformations. In this case the gauge group is non-Abelian and semi-
simple, i.e. a direct product of simple gauge groups which do not have
invariant subgroups.

Ul)y@SU2)r ® SU@B)c Y: weak hypercharge
N————— —— i .
electroweak strong T:  weak isospin (lefthanded)
interaction interaction C:  colour.

Coulomb gauge:

Because of gauge invariance, we are free to choose, e.g. the Coulomb gauge
V-A = 0. As this condition is in the form of a scalar product, it is invariant under
rotations, but not under Lorentz transformations. Under a gauge transformation,
the Coulomb gauge condition transforms as

Q.\M\HQ.A\HIQXV =V-A-V-Vy
Thus, if we want this gauge condition to be valid in any other gauge-transformed
system, i.e.

— — -

V-A=V-4'=0,
the arbitrary phase function x(7,#) must be restricted to V- Vyx = Ay = 0.

However, the space of all real functions x (7, t), satisfying the Laplace equation, is
still very large.

In the Coulomb gauge, the time-dependent Schrédinger equation simplifies to

NMM . oL 2 o
AT G rieg| p=in Y
2m mc 2mc?

because Q.Tmﬂvng @NTJHQG
=0



14.3 Homogeneous magnetic field dition V - A = 0, is now

K2 ihe - e’

e theorem: A= Iw 7x B describes a homogeneous magnetic field B = const. H = “om A+ e AV + DY) A? + e9
. = g - e - N = - — = T oo =3 2 ; 2
proof:  Using dx (bx &) =(d-8)b—(a-b) ¢ with a=V,b=7¢=DB — I1m|D - @wﬁﬂxmv@ L+ _° ANXMVM + e ¢
2m me 2 8mc?

and taking into account that V acts on 7 only, we obtain

AN @mm.?xqv +

2m 2me 8mc?
o - 2 2 2
Vxd = -1 Vx(FxB) N N © (7% B)
2 5 mSQA ir'x V) + g + e
—_—
_ 1 = P 1 ({9 . 2\ 13 - -
- MA V) 7+t (V7)) B M= f
—— 2mce
w 3
kinetic paramagnetic diamagnetic Coulomb
, energy term term term
Here, we have used term (linear in B) (quadratic in B)
o remarks:
T B,
597 = (B.2+8, 2 +B. 2 - B, |=5 . _eh
A v T ® 9z + By By + 5z v |= m.e - (i) My = e L is the magnetic moment operator associated with the orbital
z 2
motion of the massive charged particle, since classically as ém: as quantum
oL . L. mechanically, the potential mbmnmw V of the magnetic moment M in a mag-
= VxA = -1 B+3B=B8B qe.d. netic field Bis V = — M, - B
(if) The absolute value of the ratio of the electron’s orbital magnetic moment
M7, and its angular momentum L is Bohr’s magneton
o theorem: A= -1 7#x B fulfils the Coulomb gauge condition V-A =0 M i
2 pup = |—==|= el = 0.578838263 x 1078 eV /G
proof: def | [ 2mec
VoA = -}V (7xB) = 0.578838263 x 10~10 MeV//T.
_ 1 A 3 « Qv P (iii) For a proton, this ratio is called the nuclear magneton. It is substantially
2 smaller than the Bohr magneton, i.e.
g g
= -1 Am — —B Iv z + cyclic permutations v,
2 4 = M Iz
92 9 UN = |..|u = ;m_me@htmlom»me B
=90 def L et MSUG My

e The Hamilton operator for B = const, with A obeying the Coulomb gauge con-
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14.4 Magnetic moment due to the electron’s spin

In mid 1925, S.A. Goudsmit and G.E. Uhlenbeck observed the splitting of a beam
of alkali atoms entering a strong inhomogeneous magnetic field, perpendicular to the
beam axis and decreasing in the direction of magnetic field in a so-called Stern-Gerlach
experiment.

= ey

A N In an external inhomogeneous magnetic
L field B(7), an atom will, in general, feel
Py both a torque

My x B() ,

i
~u
I

and a force

L F=VVFE = un.mSv .

For W.Aﬁ = B.(2)é, and M L = Mgé, + Myé,, the torque 7 causes the magnetic
moment vector My, to precess around the z-axis, while the force F is zero.

However, for B(7) = B, (2) & and My = M, &,, the torque is zero, while the force is

7

F=Feé&, =M, dB. e, .
dz
We thus conclude:
B,
(i) if M,>0 and a& <0 = F, <0
A
B,
(i) if M,<0 and m% <0 = E>0
dB,
(iil) if M,=0 and &NW <0 = F,=0

Stem — Gerlach expeviment
sereen |X \Wmé 0. m.“ﬁ@s‘ W, Ger lac
\\\\%\.\\m\ St :

\
— M
— H B

G
At Hou x—=clvedio

¥ —axis 61 Paxrticles eudthed
beaw axis un e x—dliceetion
dowm (rrte +he 19st



e What are our expectations for the outcome of the Stern-Gerlach experiment?

(i) Alkali atoms, in the ground state, have one electron outside a closed shell, as
follows from the exclusion principle postulated by W. Pauli in January 1925.
S.A. Goudsmit and G.E. Uhlenbeck argued that the odd electron must be
responsible for the total magnetic moment of the atom, because

(a) the magnetic moments associated with the orbital motion of the electrons
in the closed shell will cancel, and

(b) the nuclear magnetic moments can be neglected as they are smaller by a
factor of ~ 10™2 than those of the electrons, as we have seen in the case
of the orbital magnetic moment of the proton.

(ii) The odd electron is presumably in a [ = 0 state, but { > 0 cannot be ex-
cluded, even for a spherically symmetric potential. The beam would thus
split according to the magnetic quantum numbers m; = -, =l +1, - - | +,
as all magnetic substates should be present in a beam emanating from a hot
gas due to the equipartition theorem. Thus for I = 0 and m = 0 we expect
no split at all, and for I = 1 and m = 1,0, —1, we expect a symmetric split
into three beams. However, Goudsmit and Uhlenbeck observed a, Symmetric
split into two beams. It thus seemed as if { = 1 with m; = 7,—%, although
! must be integer. Goudsmit and Uhlenbeck concluded that this puzzle may
be solved if the odd electron is indeed in a [ = 0 orbital state as expected,
but it has an intrinsic angular momentum called spin with quantum numbers
s =1 and m, = + 1. Indeed, Pauli had already foreseen this possibility of
half-integer angular momentum state vectors in his article in the Handbook
of Physics, published in early 1925. Associated with the spin should be a
magnetic moment. For this brilliant idea, which was initially heavily con-
tested, but eventually turned out to be the correct solution, Goudsmit and
Uhlenbeck should have been awarded the Nobel prize.

(iii) The magnetic moment associated with the electron’s orbital motion is

- -

M = —gy, %I L, with g;, = 1, as we have seen. Thus, they suggested
me

- h = - 7

Mg = —gs m_m_ S, with S = W“ oy being Pauli’s matrices. While we know
MeC

from the classical theory that g; = 1, there is no classical analogue for the
connection of the magnetic moment with spin. Thus the Landé factor gs
must be determined experimentally. Later, we will see that gs depends on
the type of particle e™,p,n,d, 4=, ---, etc. in question in contrast to gr-

14.5 Determining gs in experiment and theory

e experiment: The Landé factors gs of the charged leptons e~, e¥, u”, and put
have been very accurately determined through experiments on spin precession in

61

a constant magnetic field (e.g. at CERN, Geneva). The most recent gs-value for
the electron is gg = 2 x (1 + 0.001159652209 - --). How was this measured?

(i) spin precession frequency
The equation of motion for the precession of the magnetic moment Mg in a
constant magnetic field B is

T
7= xB=—h
T S 7 S
~ eh =
I ti Mg =gs — S
nser Em& . s =gs e o
we have P hS = gs wmym SxEB. Choosing B= Bé,, we obtain
L. & & €.
SxB=|S S, S, |= {Sy,—S;,0} B .
0 0 B
Thus, in components, we arrive at
: eB
S: = gs me CY T Wpree Sy
. eB
.mw = —9gs yM Sy = ~Wpree Sz
S, =0,
eB . . . .
where  wpree = g5 py— is the angular velocity of the spin precession.
theorem:

The most general solution to these coupled differential equations is

Sz = —acos(wprec t+¢) a, b, wprec = constants
Sy = asin(Wprect+ @)
S = b precessing  unchanged
components component
Here, 5§ =S, & +5,&,+5. e,
—_—
S. S
— [o2 2 — g2
. a nm». rm,.ﬁ + rm..t = rm‘x_r
UH.OOW %H =  Qa Wprec sin AEﬁﬁmn t+ ﬁv = Wprec M@
.W@ = @ Wprec COS Aﬁtﬁﬂmn t+ ﬁv = — Wprec »Wa

S, = 0



(ii) cyclotron frequency (ii) J. Schwinger was the first to calculate, in 1949, gs to first order in the fine

While there is no mogm acting on the mag- €2 1 . d order in €2). takine i
netic moment, as B = const, there is a force structure constant a = Fe = 13703 (i.e. second order in e?), taking into
acting on the charge of the particle. account Feynman graph contributions to the magnetic moment up to first
order in a.
_EV € Lorentz force = centripetal force Gth )
> % % ANAA X
5 e = mov? 7 Mak
F= P B = - ror After renormalization Schwinger found
2 .
v e v eB :
.Nﬂ”||”|€.m = Weyel = — = — A v 2 [ 1
« = 2(1 —_— = —= ——
T c r  me Ak 98 + o +0(e*) a e = 13705
cyclotron angular frequency or velocity NW L fine structure constant
iii) special case ,
(1) special case odex = 2(1+ 0.001161409) + O(a?)
For gs = 2, the two angular frequencies are equal, i.e. at ol X
eB _ accurate to almost 4 digits. As, in 1949, g5 was
Weyel = Wpree = o0 experimentally known to more than 3 digits, this
was the first significant test of QED.
Thus, after one full revolution, S will again point exactly in the same di- /

rection if gs = 2. However if, after a full 8<o~:50: S points in a different

direction, we know gg — 2 # 0 with incredible precision, because we can wait

for a very large number of revolutions to be completed, limited only by the .
lifetime of the particle.

£

(iii) Today, QED is, by far, the most accurate theory ever found in Nature, as

¢ E theory and experiment agree to at least 9 non-trivial digits! The theoretical
(i) gs = 2 emerges quite naturally from the principle of minimal substitution values are obtained, in perturbation theory up to fourth order in ¢, in a

applied to the relativistic Dirac equation (P.A.M. Dirac, 1928). This is also semi-convergent power series in the fine structure constant
true for the non-relativistic Pauli equation (W. Pauli, 1926), as we shall _er 1
see later. Small deviations from gs — 2 can be calculated with astonishing @= he ~ 137.03 -
accuracy, in the framework of perturbative quantum electrodynamics (QED). The fact that o includes the fundamental constants of Nature governing
This relativistic quantum field theory was first formulated by W. Pauli, W. Classical Electrodynamics (e), Special Relativity (c) and Quantum Mechan-
Heisenberg and P.A.M. Dirac in 1928, with contributions from E. Fermi in ics (R), suggests that gs simultaneously tests these three fundamental theo-
1932, and it was correctly applied to processes of first order in e, ie. the ries, which are the pillars of QED, to 9 significant digits. We may therefore,
emission and' absorption of photons by an electron. In 1949, R.P. Feynman, conclude that all these ingredients of QED, must be separately accurate to
J. Schwinger, S. Tomonaga and F. Dyson found an ingenious trick to hide at least 9 digits, unless there is some strange numerical conspiracy going on
the singularities, which plagued the higher-order perturbation theory, “under between these very different fundamental theories.

the rug” through the renormalization of the mass and charge of the electron.
For this achievement, R.P.Feynman, J. Schwinger and S. Tomonaga were
honoured with the Nobel prize in 1965, while F. Dyson was left out.

At 9 digits the (calculable) weak interactions make an important contribu-
tion, and at 10 digits the strong interactions set in. The latter are, unfor-
tunately, not calculable, as the confinement problem has not been solved
yet.



14.6 The spin-modified Schrédinger equation

e We now incorporate the spin § = 57 of a spin 1 particle in the Schrodinger

equation. The Pauli matrices & = (0,,0y,0,) are supposed to act on a two-
component spinor. Thus ¥ must be a two-component spinor wave function

L 1 (Rt
wr = T ey e, (0 I

Awﬂﬂv W_w 212

[N
B

with [y 1) = A W v and |4y _1) = A w v Here, the spinors _equ:v are the

orthonormal eigenvectors of S and S, i.e.

S W1 m,) $ Y1 m.)

(l

B
|
B

ms =

Sy m) = msly )

The complex coefficients 11 (7,t) and ¢ 11 (7,t) describe the spin up and down

states, respectively, z being the quantization axis.

* The time-dependent spin-modified Schrédinger equation for a particle with mass
m, charge e and Landé factor gs moving in an electromagnetic field, is given by

AR I PR eh s oo
mﬁlﬁy AISQ mmv +TL ~m€1mmwsﬂum.m%l3.®.m|ﬂ

where gs = 2 (1 + 0.001159622209 - - - ) for the electron and positron.

remarks:

(i) Here the Landé factor gs is a free parameter that cannot be obtained from

the principle of minimal substitution, since B is itself gauge invariant and S
does not involve the coordinates.

(ii) In order to obtain a consistent 2 x 2 matrix equation, we have multiplied

the spin-independent parts with the unit matrix I, = A w w v, wherever
necessary.
e theorem: o . oL o L
0-Ad-B = A-BIL+id-(AxB)
with [Ak,01] = [Bg,o1] = 0 (k,l=z,y,2).
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proof:

QL
o
Qy

T z

= 02 Ay B,+ o2 A, B, + g A, B,

Y

——— N ——’

Nw .Nw Nm

+ 0y 0y Ay By +0y0, Ay B,
v ed S~
10, —1i0,

+oyo, Ay B. 40,0y A; By
f.\l\ ~—
10 —10,

+ 0,0, A, By +0,0, A; B,
S—_—— S—
10y —1i0y

= (A; By+AyB,+A,B.,) I,
+io. (A, By — Ay By)
+i0, (Ay B. — A, B,)

+ioy (A, B, — A; B,)

—

= A-BL+io, AMvaeJr@.q@ Tﬂxm

- A-BL+ &Amxmv

e Pauli’s brilliant idea: W. Pauli (1926)

B = (02 Ag +0y Ay + 0, A,) (0, By 40y By +o0, B,)

Consider the Hamilton operator Hpgy acting upon the spinor wave function 1

1

Hpauii = AI & A?sz&& ¥

2m

with 7 = —ihV. Using the mathematical identity &- 4 &-

—

B



we obtain

Hpauip = o

“doubled” Schrodinger part

# o (-5 4) % (5= S )] v

Pauli spin-part

EP Amlm\&ﬁwg_ I

(Rl s

Q:Elu Xpp+—5 AxAY
0 X =7 0
A and 1 in the first

Here we have to keep in mind that § = —ih V acts on both
term of X, yielding

X = —SypxA+SAxpy—SAxgy
¢ c c
= +SpinvxA=SypinB=ir By+£0
- C {I.Q - C
B
We therefore obtain
1 L e 5\2
N.bumﬁ:@ = ﬁw| A |I\~V +m%~ .Nm@
m c
+ L iz CinBy
2m c
or
1 L oe 2
Hpaui ¥ = TQ:A lmmv +mL Iy
“doubled” Schrédinger part
eh _ 0 =
_ & 5% B
2me 2 ¥

Pauli spin part

Comparing Hpau; 3 with

' = o (7= S A) ved] v S g5 B5u

2m 2me
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we conclude that
Hpani = H' for gs =2

Thus, the Landé factor gs = 2 emerges quite naturally from the Pauli equation.
This also happens for the relativistic Dirac equation.

e minimal substitution and gauge symmetry

One can now write the time-dependent Pauli equation in a form exhibiting its
U(1) gauge invariance, i.e.

(ng=eo) o = g [7-(-2A))" s
S ENY
. &m@oaen%@. T.Ai.muvﬂgv

with the covariant or gauge invariant derivatives

0
Do def .@M.II@@
— - e -
b mmm <|sm\&

introduced in tut 30.
e remarks

(i) The Landé factor gs = 2, predicted by the Pauli equation, describes the
experimentally measured magnetic moment of the electron very well. The
missing 0.1% are consistent with higher-order QED corrections.

(ii) Pauli’s Hamilton operator can be obtained from the non-interacting Hamil-
1

ton operator Hp,y; = o - Ew through a modified principle of minimal
m
substitution
i — p--4
c yielding

Hpayi — Hpauli —e ¢ Ip

=

mmmcznh T‘A \»iw+m&~w

2m

('bl('b



(iii) It is shown in tut 32 that, for a constant magnetic field w, Hp,y); is also
supersymmetric, making it so far the only case in which supersymmetry can
be observed in Nature.

(iv) The Pauli equation is obviously non-relativistic, as time and space are treated
differently, in fact it is a differential equation that is first order in time
and second order in space. A relativistically acceptable differential equation
should have derivatives of the same order in space and time.

14.7 Abelian gauge theory: U(1)

* covariant derivatives and Special Relativity

The covariant derivatives introduced in tut 30 can be put into a Minkowski vector

form 5
. e
p def g " e A
In pseudo-Euclidean Minkowski space M, we have
o :
@Hu oz
K 9
% = mww = m%\ space-time
Tu def ) 9 def - gradients
%Hw 0z
9 4
Ozy dict
Ay A
A A
Ay = ’ = \»@ vector-scalar
def As def z potentials
Ay i ¢
0 B, -B, —iE,
0A -B, 0 B, —iE
Fu = 04, e g electromagnetic

def Oz, Oz, field tensor

Here, we have used the definitions

_ - 1 94
E = -Vg¢--= .%m for the electric field and
def ¢ Ot

x A for the magnetic field.

v}
|
<l
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The commutators of the covariant space-time derivatives generate the electromag-
netic field via

0 e 0 e
[Dw, D] ¢ = ﬁwaﬂlsm\r: %H.\Ismxr; Y
8 J € )
= e [ ] ¥
~——
€ 3] e?
S o] ¥ el v
=0
B e 0 . € o
T e Ba, T A G
. e oY e 0O
lsmln\»:ma +SMM®H=A‘P;S
B e (0A, 0A, __.e€
mbtvbtu_ P = Isw A%Ht - %Htv P = smmmuttﬁ .

known as Bianchi identities. The Maxwell’s equations in vacuo are

mwt Fuw =0
special cases:
@) w=lLv=2 = [D,D,)]=i ,Mm B, (see tut 30)
() p=4v=1 = Efmlni.w&m&
= m [Do, D]
= [Do,D,] =i m B, (see tut 30)

remark:

The commutator of the covariant derivatives is proportional to the gauge field
tensor also in non-Abelian gauge theories, although it has a somewhat different
form.



15 Non-Abelian gauge theory: SU(2)

Following C.N. Yang and R.L. Mills (Phys. Rev.96(1954)191), we now want to gener-
alize the gauge principle to include a non-Abelian SU(2) symmetry group, which has
led to substantial advances in our understanding of the non-gravitational interactions.

We start here with the Schrédinger equation, describing two different, non-interacting,
spinless particles, having the same mass m, i.e.

h? . ) .
|W.|3M A gw Aﬁwv = ih % @W Aﬁvﬁv
Here, fra (7))

def .\..W ,IW Tn.v ﬂv

is a space-time dependent isospinor describing the up and down flavours, T5 = w and

T3 = Iw , of isospin T = w The choice of the isospin projection axis is arbitrary,
as the Schrodinger equation is invariant under global, i.e. space-time independent,

non-Abelian SU(2) isospin transformations
e (7N
oy ) = e (<io¢) vy @0

where 7- @ = 710" +72¢? + 730% and ¢* (k = 1,2,3) are some constant real phases.

def
The components of the isovector operator 7 = ?ﬁﬂm“ﬁwv are the Pauli matrices,
€
acting on the two-component isospinor Sw (7,t). The generators T* = w F (k=

1,2, 3) of the fundamental representation of SU(2) fulfil the Lie algebra

[k ) 3 Fm
.MQL ISWJMHQE 92
with (1 for even permutations of 1,2,3
Eklm = —1 for odd permutations of 1,2,3
0 otherwise

\

being the structure constants of this Lie group. Similar to the spin rotations, which can
be interpreted as rotations in ordinary 3-dimensional Euclidean space &3, the isospin
rotations can be interpreted in a fictitious 3-dimensional Euclidean isospace 73. The
components of the (real) isovector @ = (¢!, ¢?,»3) € T3 define the rotation axis, as
well as the rotation angle around this axis in isospace 73.

We would now like to gauge this SU(2) isospin symmetry by choosing the components

(or phases) ¢* locally, i.e. at every space-time point differently: % = *(7,t), k =
1,2,3. This is exactly what we did in the case of U(1) gauge symmetry. In order to

incorporate the generalized principle of minimal substitution, which is linked to gauge
invariance, we further require that suitably defined generalized space-time derivatives
transform under SU(2) gauge transformations like 91 , i.e.

Cor T
Dy Gw - @t@w = exp Als B .ﬁv Dy Sw
Similar to U(1) gauge theory, this can be achieved by introducing covariant derivatives,
0 I
@t I'&...QWH..\#ETM‘“@“

def Oz, he 2

acting on the isospinor ¢y (7,t). Here, the three SU(2) gauge fields Ak (7 t) (k=
1,2, 3) have been combined with the three generators of the SU(2) isospin group win
to form an isoscalar product wﬂ . L.t (7,t) that is invariant under rotations in isospace
T3. This guarantees that the covariant derivatives do not carry the isovector quantum
numbers. The coupling constant g is the analogue of the charge e in Abelian gauge
theory. kmﬁﬂ t) (p=1,2,3,4; k =1,2,3) are vectors, both in 3-dimensional Euclidean
isospace 73, as well as in 4-dimensional pseudo-Euclidean Minkowski space My4. They
are space-time dependent and describe three massless isophotons, similar to the photon
in U(1) gauge theory which is described by A, (7, t).

The commutators of the covariant derivatives fulfil the Bianchi identities

—

.9 = T
[Du, Do) = l@rm.m*utz.m )
as shown below. The non-Abelian isovector field tensor
= A, BA, g = o
v = - = .\At
Fu def Oz, oz, + fic Au X
. . . 04, 04, .
is the analogue of the Abelian electromagnetic field tensor F,, = , which

def Ozk oz,
we have derived from the Bianchi identity in section 4.7 and tut 30, i.e.

. e
TN:UL = I@mmﬁ:.\

—

However, in contrast to F,,, F,. is a nonlinear function of the isovector-Minkowski
4

vector potential «Mm. Thus the field equations for ﬁ:\ in vacuo, i.e. M Oy mmE\ =0,
v=1

exhibit some nonlinear terms in the gauge field .\ﬁ: describing the self-interactions

of the isophotons. In fact, this is the fundamental difference between non-Abelian

and Abelian gauge theory, where the electromagnetic field tensor F),, is given linearly

in terms of the photon field A,. Accordingly, the electromagnetic field equations in

2]

oz,
in Abelian gauge theory.

vacuo are F,, = 0 and there are no self-interaction terms of the photon field 4,

We now derive the relation between the D,’s and Fouw-



Last, but not least, we derive the transformation properties of L.t under SU(2) gauge

[ 11

theorem: [D.,D,] = —i A Fow - T . perties o
he 2 transformations. These are most easily obtained for infinitesimal SU(2) gauge trans-
. 1 i . . formations
with ﬁ;nmiqlmfﬂh X A, -
0z, Oz, hc v = Ab — ia- mv ) eq.(1)
proof 7
. 0 .9 T - 0 .9 T 5 Dy, = ANw - s.m.lv Dy, eq.(2)
H\UE@LGW o ﬁmﬁt NMQM.L:VQH:ISﬁM..\A;%m 2
_ ﬁ h 9 W1 —i 9 ﬁb T 7 w b with @ = r%m ¢ being an infinitesimal space-time dependent vector.
- El B ) 14 = €
Oz, Oz, | "% he |0z, 2 ? Inserting the inverse of eq.(1)
g [T » O 9 [T » T 2 _ AT
-1 fic —HM 1y mwbw.\u_ @Wl% ﬁm .\CSM .\r\“ﬁ @W ) . @ — A.an_lsQ Mv @
. - into eq.(2), we obtain
_ . g T 0A, . g T 0A, A LT L TN
= The2 8, YT he 2 Bn, Puvi = \Lmid g ) Du(Ltidg |
2 3.k 3.1 . . S .
9 T4k o Introducing the covariant derivatives yields
Tha |2 T A 2 3 A | o g 7% 7 o g7
k=1 =1 . g ' N . - R
S (=i z &) v= (pmiwg) (mg ok 5 4) (neie
g E g |7 T
T RZe2 M A Ay ﬁﬂv W% ew Up to order &, we thus arrive at
k=1 . ,
3 m A.w . Q qﬂ. - @ 3 .Q q...« —
R T N‘ - . [} ! — ‘N‘ _ . \A !
@Mmisw Awmat “he 2 :v@ Awma: e 2 :VS
m=1 N -
. g T [8A, O tv g2 - S\ 7™ u
= —4—— == - Y1 —i MA X\r\v —1 d 7o 7
he 2\ Oz Oz, 2 h2c? K 2 7z ;9T ia - L
K \ m=1 + AF oz, L5 Ay} oid w@
1 7\ — § kgl . g Nn.. T . g qn.. T
S;rA :x}\v %m\@MNHUHmESLtL_\ TR 2 Ayt = 1sm|mw\€€
o T%ﬁpuﬁ o
g T (0A, JA, s > N\ T 2 Oz,
= —3 = —. — s\\w —1 > A EX,\r\V.lﬁbw - -
he 2 \ 0z, Oz, ] "2 h2c? 272 &L ;57T 7 Y
Y, . 27 he 2 TH
- ;9T v _ 9% |.MH.AMN T\ v, g7 g T
“he 2\ Ba, gvf Ve 3 (o Ao A) 0y Tiheg MY S i gAY
g = T o oa 7
D = —iL F = IE Ty
= [Du, D] smo*:t 5 +s®&t w@
. . 84, B84, g - - 1wa, M:M.\MQS\
with .wut: i %&t — 9z, + m \At x A, q.e.d. 2 Fe 9
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16 Time-dependent perturbation theory

16.1 General formalism
H(t) = Ho + Hy (t)

4 1
AL
e Consider the Hamilton operator
with Hy time-independent and H; (¢) time-dependent. |u,) and E, are the eigen-

vectors and eigenvalues of Hy, respectively, i.e.
n=12,-

r
) MH_ ﬁ\\
.m.o_dﬁv = mQ.._ﬁ:v
. T
MU UEkim —5~ The |up)’s form a complete and orthonormal set of eigenvectors of Hy. At ¢t =0
the statevector is given by
o0
[¥(0)) = M cnlun), with ¢, = (un|¥0(0))  Fourier coefficients.
n=1
k kﬁu ‘QH \K\
w9 e The time evolution of this initial state |2/(0)), due to Hy alone, is governed by the
Schrédinger equation
. d
iy W (0)) = Holb(t)
Its most general solution that incorporates the initial condition is
e .
() =D cnlun) e FFn
n=1
e The time-evolution of the state vector |¢)(t)), due to H(t) = Ho + Hi(t), is gov-
= erned by the time-dependent Schrédinger equation
) 5v L d ~ N
ih— [§(0) = H [$(8) = (Ho + Hi (1)) [(®)) - eq.(1)
@ ﬁ. Here we assume that the initial state vector is the same as before, i.e.
g Oz, .
(0)) = [1(0) = > enlun)
n=1

A solution of eq.(1) can be attempted in terms of

o .
tEat

_mNvi = M cn(t) lun)e™ " )

n=1

with time-dependent Fourier coeflicients ¢, (t).



strategy: Find a differential equation for the coefficients ¢, (¢). In mathematics
this procedure is called the method of the variation of the constants.
o0

[E) =" cnlt) [un) e Bnt

n=1

e Inserting

into the time-dependent Schrédinger equation (1), we obtain

i

[o e} . o0
ih Y en(t) (=9) By lun) e 85 il Y " en(t) lun) e K EnE
n=1

h

n=1
e . o .
= > cnlt) Balun) e % £ 3 Hy (1) enlt) fug) e 5
n=1 n=1

The first terms on both sides of the equation cancel.

Applying (u,| from the left, we arrive at

ihiép() e KB = 3" (uy |Hy(8) ug) e 5Pt e, (1)

n=1

or . . > i t
iheg(t) = Y [Hi(t)]y, € fen(t)
n=1
with H ()] = (s [HL(8) un)
nd I@a — B
al 3 =
“hn e T R
theorem: ] ; :
T H@) et = [ (e
~ ~ k,n
Hi(2)
H (t): interaction operator in the Dirac picture
[ (t)): state vector in the Dirac picture
proof:

iH, iH, iH, T H,
(ug _mimﬁ Hy(t) e~ TR Up) = (7 7F : Sﬁ_mpﬁv e TR ﬁ:v

iBgt iBpt

= (7% ug|Hi(t)e ™ F uy)

; Bx—En
= (u|[Hi(t)un) &~ 7 °

m&b.:o.:w

q.e.d.
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e Our problem can be formulated in three different ways:

(i) in terms of Fourier coefficients:

3%@5 = :Muw F @L o en(t) with cn(0) =cp ,

(ii) in terms of a Schrédinger equation:

d O 1]
ih - [9(8) = H() [4(2))

1

with  [$(0))=| ¢ |,

(iii) or in terms of a time-evolution operator equation:

d

700 =-5 H @) U(t) with U@©) =T eq.(2)

Here we have introduced the time-evolution operator in the interaction pic-
ture

@) = U@ [H©) .

def

remark:

As, in general, T@H (), Hy (¢ L # 0 for t # t', this differential equation cannot be
solved in closed form. However, we can get implicit solutions that eventually yield
a perturbation expansion in powers of H; (t).

o Integrating eq.(2) from zero to ¢, we obtain

t t1=t . ot
d .
\ —Ut)dt =U(ty)| =U@®) -U@0)=—2 \ dt, i (1) U(t)
0 &ﬂH =0 SN NM 0
= I

or the implicit solution

Ult) = I+ A!U \o” dty By (1) Ulty) eq.(3)



Inserting eq.(3) repeatedly on the right-hand side of eq.(3), one can easily generate
a whole sequence of implicit solutions, like

.t I R
Ut) = ~|w \c dty Hi (1) ANI.W \o dty EHQNVQ.Q&V eq.(4)

or

—1

U@t)=1I+ AJWV \on diy Hy(t1) + Aﬂvm \oﬁ&p Hi(t1) \o: dty Hi(ts) Ul(ts) eq.(5)

etc.
Approximating U(t,) by U(t,) = I on the right-hand sides of eqs.(3), (4), etc.,
one obtains the following successive approximations of U(t):

to first order:

Ui(t) =1+ Amv \o N.\ dty Hy (1) from eq.(3)

to second order:

s t . S\ 2 ot R 121 R
Q‘wmmv =1+ A.lsv \, &ww mHQHV -+ Alwv \ &? .mw@wv &ww muﬁﬁwv
R ) Jo k) Jo 0
from eq.(4)

to infinite order:
Dyson’s expansion

U@ =1+3) Alwb:\oﬁ it \o: dty - \O;L dtn ELi(t) - Fu(t)

n=1
remarks:

(i) In this approximation scheme we may identify the term Up(t) = I as the
zeroth order approximation.

(ii) In 1949, Freeman Dyson replaced these virtually intractable nestled integrals
by multiple integrals, all extending from O to ¢.

To see whether Dyson’s idea works, let us look at the second order term in the
perturbation expansion:

;@n additional
integration yd
domain ¢, > t, e

e @N” .dw 1

>,
>

original
integration
domain ¢, < ¢;

(%) 4

Dyson’s idea is that we should add to the original integral I, a further integral

t 2 R ~
) m”\ &ﬂw\. &NH .m.HAmem.HQHv -
0 0

I, = I}, because I} is obtained from I, by interchanging the two dummy in-
tegration variables ¢; <> t;. However, we note that we cannot combine these
two integrals into one single integral, divided by two, because the intergrands are
different, i.e. Hy(t1)Hi(t2) # Hi(t2) Hy(t1). In order to have a single intergrand
defined in both integration domains, Dyson introduced the time-ordering operator
T with the following property:

Hy(ty) Hy(t2) if ta <ty
. N original orderin
NJ ﬁmwﬁwwv ‘mwﬁwmv“— = N N m m
def | Hi(ts) Hi(th) if ta >ty
ordering inverted

Thus T orders the operators such that their arguments increase from the right to
the left. We can therefore write in second order

t i1 R R ”_, t t R R
I = \ dt, \ dts Hy (0) H(ts) = 5 \ \ im&:m:& dty dt
0 0 2! 0 0

.



This idea can be generalized to include inultiple integral terms to all orders,

© s \m ot t tn-1 . . .
Uslt) = I+ A%v \O&H\o &w.:\o dtn Hy(t) Hy(ts) - Hi(tn)
n=1
0 ~i\™"1 t t R R
= .Nu_:MWAMv y\c, \o Hﬁm;ﬂwv...m;w:v_ dty -+ dtn
remarks:

(i) Here again the time-ordering operator T' orders the operators such that their
time arguments increase from right to left.

(ii) The factor n! takes care of the number of possible permutations of time
variables ty,%3 - - - , t,, and thus identical integrals generated in this way. The
simplification of these terms is very useful, because the time-ordered operator
products can be easily expanded into normal-ordered products. These can
then be interpreted in terms of Feynman graphs (see Relativistic Quantum
Field Theory).

16.2 Example: constant perturbation in first order
perturbation theory

s We now specialize these equations to first order perturbation theory yielding either

. t
U@t)=1-~ \ dt' 1, (t)
R Jo

WO =)~ ; [ @ B(©) (o)
) =@ -7 [ @ Y [m@)] | e
k=1

Using the latter formula and assuming that only the state |u,,) is populated at
t = 0, with unit amplitude i.e. ¢x(0) = §gm (k= 1,2, ---), the Fourier coefficients

cn(t) simplify

cn(t) lm \o “ F&izs dt’

.ot
| @), et
4]

t

and for n=m| to

.ﬁ
en) = 1= 3 [ ()

For a constant perturbation, these integrals yield

\QEN v}#

Z : Wt
? ? m

en(t) = —+ [Hi]

elll:ll@l.
‘ m:as.e:ao
ms.Eq:Bm'H
W H muw 2 L) = —[H] ST
¥ 4 c Av — L:§ Fnm
i*lﬂ and for n=m
a\l‘nlt.@iﬂ ,
mw

) QSQV = H|W. —mu.”_ﬂ:s.. t .
l“T h

g

o

for n#m

e The probability for a transition from a state |u,,) to a state |u,) (n # m) is,
in first order perturbation theory, given by

Hil,,, > enmt =1 |[Hy),, | 4sin® “amt
P(m = n) = |ea(t)]® = =0m e e
" h? huw?,, h2 w,,
where we have used the identity
(et —1) (et —1) = 2— (e +e ™) =2(L — cos wt)
t t . i
= mAHIno% Eywl+m5w EWV = 4 sin® EW



For t — oo,

definition:

e theorem:

proof:

A
4

%w Agv

o ..,kﬁn )

def 7t

9 sin

this looks almost like Dirac’s delta function.

g wit

2
w2

lim 6§ (w) = 6(w)

t—o0

(i) lim &;(w) is normalized to unity

t—o0

o 0]
\ 0 (w) dw
-0
2 ® gin? g
S (222
(%)

=

(i1) lim é;(w) = 0 except at w =0

t—o0
For t>0 and w3#0, we have
sin? wt
2 9 2 1
< 1) = — < _—
0 < &) nt w? St w?
lim | 1 1
t—o0
0 < lim &(w) < O

t—co

= lim §(w)=0 for w#0

t—oo

(iii) mwmwo fw)=00 at w=0

2
. o2 (4t
6(0) = lim 6;(w) = lim — =% = o
> lim 6(0) = lim — =
o M T M 9 T

In summary, we have shown that lim §;(w) fulfils the three requirements of

S(w), ie. e
o) \. Y W) dw = 1

(it) 6w) = 0 for w#0
(iii) d(w) = oo for w=0 .

remark:

These are the three attributes defining the delta function, as it was originally
introduced by P.A.M. Dirac around 1925, also the founder of the mathematical
theory of distributions = generalized functions. ’

‘We thus conclude that

. o wi
. i M Sin lMl
o) = Jim ) = Jim S —
is, indeed, a representation of the ¢ function q.e.d.



remark:  For completeness, we mention again that Dirac’s function 6z — )

is a generalization of Kronecker’s d,,/, where the integer variables n and n' are

replaced by continuous real variables z and z’

flz) = \Ioo\@mv §(z' — z) da', \.oo 6(z' —z)dz' = 1

—00

i ¥ t i

anp = Wo“ W Onin = 1

n'=1 n'=1

Ay O ’

o The probability for a transition |um,) — |u,) is

. 9 Wpmt
L 2 o
h2 Tt wl,

P(m = n) =|ea(t)]? =2

and the transition probability per unit time is, therefore,

27 2 2 sin? wpmt

(Hi] | =

pim = n) = 7t w2
nm

In the limit ¢t — oo, i.e. asymptotically, the transition probability per unit time
becomes

%Agzgv s

[H1]

nm

27
Poo(m — n) = =

ie. independent of time. One may replace the argument of the delta function
Wnm by By — Ep, using the identity
5(w) = hé (hw)

which fulfils all requirements of the delta function, in particular the normalization

\8 m&?v%n\ﬂaé dw =1

— o

We thus obtain Fermi’s golden rule (E. Fermi ~ 1930, Nobel Prize 1938)

27 2
Poo(m —n) = — §(En — Ep)

h ﬁmlﬁjs
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remarks:

(i) Dirac’s delta function governs energy conservation. As §(E, — Ep,) = 0 for
E, # En, a constant perturbation is not able to induce a transition, because
asymptotically it does not carry energy, as it is not time-dependent.

ii) Fermi’s golden rule can easily be generalized to include perturbation theor
ybeg y

to infinite order. The probability to infinite order for a transition from a
state |1 ) to |i,) is governed by

Pi(m = n) = | < hn|Uso(t)hm > ,

which will also generate an energy conserving delta function d(E, — E,;). In
first order perturbation theory, we obtain the terms derived earlier.

16.3 Example: periodic interaction in first order
perturbation theory

Let us now discuss a Hermitean perturbation oscillating with a circular frequency
w

Hi(t)=Fe @ty Flewt >0 eq.(1)

Here F' is a time independent operator, which carries an energy F = +hw, ac-
cording to Planck’s law. If at ¢ = 0 the Fourier coefficients are ¢, (0) = &, (k =
1,2,-++), cm(t) is in first order perturbation theory given by

Lot
? N ‘
cn(t) = lm\ [Hi(t)],,, e“ " dt' eq.{2)
0
with n#m and w _ E.—-En
Inserting eq.(1) into eq.(2), we obtain
i L .
cn(t) = 5 Aﬁ:é \ giwnm—w)t’ gyt
0
¢
+ (Fnm \ eilwnmtw)t” gy W
{ 0
Fon
or Y wnm—w)t _ {Wnmtw)t _ 1
en(t) = — Fop o L g €T oL g w0

QQSB +w)



remark:

This equation differs from that for a constant perturbation only by the frequency
shifts & w, which lead to frequency shifts of & w in the arguments of the d-function.
The transition probability per unit time has thus two terms

2

2
o 6 (Wrm + w) w>0

2
.TJSE &Agzslsvu_u K2 .N.ﬂ“s:

2r
%8A3IV§VHMW

The transition can now take place if w = twpm or By, = B, & hw.

We now apply these equations to an electron of mass m and charge —|e|, bound
in a hydrogen-like atom, and subject to an oscillating electric field E(@t) =
(0,0, E,(w)) cos wt. The period of the perturbation of the Hamilton operator
Hp causes the system to emit or absorb an energy Aw via

AmmE& + mImev

Hi(t) = |e|E.(w)z cos wt = |e|E,(w)z 5

—

Here |e|E,(w)z is the potential energy of the electron in the field E.

Classically, we have

—

7 = relative vector between nucleus and electron

The probability per unit time for a transition |um,) — |un) (with m # n) in first
order is

7 e? 2
po(m—m) = o3 S

Znm

N 6 =)+ Bl +9

w>0

In thermal equilibrium, the energy density of the electric radiation field, at a cir-
cular frequency w in a cavity, consists of three components in mutually orthogonal
directions, e.g.

u@) = o (B + Ew) + B2w)

(see Classical Electrodynarmics).

Only the electric field component in direction of the matrix element of the relative
vector

Tnm ﬁw|m,|», A\:ﬁ_% CSV = Tpm €z t+ Ynm €y + Znm €z ,

contributes to the transition. As this comprises only a third of the total energy
density, we have

2 €2 1 2
Poo (M —n) = «wamaﬁEV

1
Tnm

6 = ) + B+ |

w>0

Integrating over the circular frequency w yields

4m2e?

3h2

\Doo@sAS — n)dw = [Fram|” Tﬁsssv + :TE:SL

The first term describes the induced emission of a photon m — n, while the second
term stands for the induced absorption of a photon, as —wpm = Wmn -



17 Radiative Decays

17.1 Radiation in thermal equilibrium with matter

e We would now like to establish relations between the various transition ampli-
tudes, in a gas at temperature T, consisting of atoms with only two eigenstates,
i.e. the groundstate n and one excited state m.

A. Einstein (1917), Nobel Prize 1922
T: temperature of the heat bath
o:  atom in the ground state n
z:  atom in the excited state m

~+: photon with energy Awmn

- simplest case:
We assume that the

i8S gm =gn=1.

induced
absorption
y+H— H*

.2.?
.@w”

v

induced spontaneous
emission emission
Yy+H*sy+vy+H H*—>~v+H
——

these photons have
the same direction
and energy

number of atoms in the state Juy) k=m,n

energy of state |ug).

> degeneracy of the levels
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In thermal equilibrium at the temperature T, the number of atoms in the state
[t is
En,

.2.3”286 Alﬂmﬂlv Boltzmann factor (see Statistical Mechanics).

L. Boltzmann (~ 1871).

The constant N is determined by the total number of atoms in the gas and it
drops out in the ratio of the numbers of atoms in the two states, i.e.

glmx l@ﬁl@: = ex mEE.z
N, ~ P kT ) TP kT

The reaction probabilities and numbers of atoms in the excited and groundstates
must respect the conservation of the total number of atoms.

Buwmn) No= ﬁ 4 + Culum) % N
probability for probability for probability for
induced absorption spontaneous emission induced emission

Dividing both sides by Ny, Bu(wmn) and using Ny, /Ny, = exp(Fwmn/kT), we get

No o _ 4 0
Nm  Bu(wmd) ~ B~ ®PTT
or Ilnllx» = ex fsrmn m
Bu(wmn) = OPTpr T B
Taking the inverse on both sides, we end up with
B _ 1
7 Uomn) = Fomn O
PIT TR
A/B
or  u(wmn) = lms\j.d
mn
*PIT T B

Comparing this result with Planck’s law

h®/ (n2c%) M. Planck (1900)
u(w) dw = ———5—=dw Nobel Prize 1901
mxwﬁ -1

we conclude that, for w = wm, , we have

A/B = i/ (r¢) A. Einstein (1917)
C/B = 1. Nobel Prize 1922



e The probability per unit time for the spontaneous emission of a photon is, in first
order perturbation theory, given by

3 2 .3 2
HbE:SNwHAmE:S

w3 3hc?

A

Tnm

Here, wny, is the circular frequency of the emitted radiation, i.e.
gS: =FBp, - m:

and

ﬁ:SHAﬁ:_ﬂ:‘sv = \ §w?dﬂ:§?&%~.v

where ei”is the electric dipole (E1) operator.
remarks:

(i) A fully consistent calculation of the decay probability A could only be ob-
tained once Quantum Electrodynamics was formulated and evaluated to first
order.

(ii) The process of induced or stimulated emission, predicted by A. Einstein in
1917 on the basis of Planck’s formula, lead to the invention of the Maser by
Ch. H. Townes in 1954 (Nobel Prize 1964) and the Laser by Ch. H. Townes
and A.L. Schawlow in 1956 (Nobel Prize 1981).

radioactive decay law:

Without radiation field, i.e. u(wnm) = 0, the rate of change of N,,(t) is given by
AN (t) = —AN,(t)dt |

where N, (t) + Ny, (t) = const, as well. Here

N (t) is the number of atoms in the excited state E,,, and
Ny (t) is the number of atoms in the ground state E,,.

The solution of this differential equation is

N (t) = Npp(0) e = N, (0)e~4/7

with 7 = 1/A being the lifetime of the excited state |u,,).

17.2 Example: lifetime of an excited state

initial state:

final state:

ﬁwHoA3 ﬁ“wuNHvauc

QHOOQJ SHH“N“OvSHO

(n—1-1)!

Unim(T, 0, Sv = - omn :3 N C;w

e initial state:

27\ 2+3 A 27r
()" o (-2) 5 () i

an

an an

n=21=1m=0, Z=1

:mpuo?vmuﬁv ==

U2,1,0 Aﬁu %v ﬁv

uz1,0(r,0,0) =

e final state: n=1,1=0, m

S S Y ey /2
A.wz\w).\w@ ﬁmx@A MQVA 6) gy cos ¢

Awilw o~ % rexp Alwhv cos
a

] =

1 /2)° r or
u1,0,0(r,0,0) = — 5 va exp AIMV L] AM»V Yoo (6, ¢)
{ H
-1 —
v
1 T
@fo,oﬁﬁ“%uwbv - ﬂ.@w exp Ava



i ol : Z%et 1 mem
* matrix element: E, = Itmmm — with = Sm“M> reduced mass
Tri = \ u1,0,0 (7) 7 ug1,0 (F) d°r
E|mw|.m.wl..§NwmA 1 W lw.ENmmA
R 23 4) 8w
z = rsinfcosyp
y = rsinfsing d®r =r?drsin 0d6 dy ;2 A1 ke
z = rcoséd aftmmNIHMmlm
T o - or o—(r/a) T sin 8 cos ¢ a—5/2 ) radiative decay time
y H\ T %.\ sin 6 df dp —— r sin 6 sin ¢ re 2 cosf
z ), 0 0 0 avma r cos 4v2m 3 5
fi (2p — 15) va Amnv 1 A
27 27 T = — — 78
but \ mwbﬁ&ﬁn\ cospdp = 0 2 c 2% pe
0 0
e? o 1 . Memy
= Zfi = Yz — 0 = no radiation emitted Be 137.035999(50) K= Me +ma
in the z,y plane
examples:
=) T 27 Iw’m _ _ _ —9
Zfi = \ &ﬁ\ %\ dp —>""_ 14 gin g cos? 0 z =1 e +H _HIH.moxHo mMnl*
0 0 0 mat4+/2
o o Z = 80 e+ Hg |7 =3.90 x 10" sec]
= o \ dre™ 2t \ df sin @ cos® 6
e 0 ° Z = 2 pT+He |7 = 0494 x 10~ Psec |
1 2a\° ™ 1 where we have used
= — = A'mv \ due vyt \ cos® §d(cos 0)
2+v/2at \'3 0 1 nucleon mass
T number excess
I'(5) = 4! 2 amu
3 mpg 2 = (200 x 931478 — 29.5) MeV mercury
4l 4e203 ) muc® = 105.658389 MeV muon
T 3mS 254l
mec® = 3728.3368 MeV helium
4B [ 2545412 7 _4e?W [ 28q 7 .
T 3hc3 [2444/235-3]  3hc V235 Bo= Snt+ QMQ = 102.7476 MeV 3% difference!
QL7 42 02 3 reduced mass

31 fy 3

77



18 Ionization of Atomic Hydrogen

® A hydrogen atom is subject to a spatially homogeneous electric field in the 2-
direction that is periodic in time and given by the Hamilton operator interaction
1 . .
Hi(t) = eE,z coswt = 5eB:z (e + eiwt)
t T

de—excitation excitation

For an atom in its groundstate, only the second term leads to a non-zero contri-
bution. The probability per unit time for the emission of the electron is given, in
first order perturbation theory, by Fermi’s golden rule, i.e.

27 2

+ 0 (hw — Rwy;) d®n

1
p(i — f) = ?lm e: E zu;)

ith hws =
W fi def

Mw%lms.

Here we neglect the recoil energy of the proton and the spin of the electron, which
are both good approximations.

The initial electron wave function and energy are given by

- 1 r
us(f) = u1,0,0 (1,0,0) = 3 &XP Allv
Ta a
1 met
Bo= b= =55,

respectively, while the final electron wave function and energy are

1 ik

up(f) = %o\,
mnww
By = 2m

We neglect the Coulomb interaction in the final state which is also a good ap-
proximation at high energies. The final state wavefunction is normalized using
periodic boundary conditions in a large volume V. The differentia]

v

2
s ¥ dhd

d’n =

in eq.(1) describes the number of final states available to the electron with wave
vectors of absolute values between k and k + dk pointing into the solid angle df).

eq.(1)

78

We now calculate the matrix element
1 ek,

ufl= eE, zu;) = e T e By eq.(2
{ur|3 v%mmjmﬁ\ Lz -dr q.(2)
J (o, k)
) o sU..:w.. e~ar 3 _ %3-
corollary: I{a, k) = \m - d’r = P
proof: Choose k and the

angles 6 and ¢ as
shown in this figure.

oo ™ 27
I{a,k) . = \ re %" gr \ sin o dj e?r cos 9 \ d
0 0 0

[es] -1
= 27 \ re” dr d cos 1 gtk cos ¥
0 1

1
= 27 e dr \ dz e*re

)
r

0 1
2r [ p o o
= == —e—ar Amii. _ ml;ﬂv dr
ik 0 T
27 \oo

0

il (tk—a)r _ al—ik—a)r
i T e M dr

27 -1 + 1
T ik ik - o —ik —

- _2r (tk+a)+ (ik - a) 4z
T ik (ik—a)itk+a) ~ B +a?

q.e.d.



- o 327ik, a
. _ —ikT q—ar 43, _ Q< thz &
theorem: J(a, k) gof \Nm e dir = (k2 + a2)3
proof: . L ik €7 3
k) = 5o |\m T
o N o 47 47
- = - 2
Ok, e, k) Ok, k2 + a2 (k%2 + a?)? s
. _ e—or =, T ar
- mw \m::oﬁ &wﬂu\s.umsém dr
N r
Thus we arrive at
mq.:“\au ik-7 e " 3
ray = [ 2R

Taking the partial derivative with respect to a, we obtain

o mq:;nn _ k7 r —ar j3
da (k2 +a2)? \Nm Alme “r

_ 2:8miks
CETSE

_ 2nik,a q

Defining the electron emission angle y
v\ through k., = kcosy, and introducing
Bohr’s radius of the hydrogen atom,

a =L, we arrive at

a’

327ia’ k cos x
@k 1 1)?

- T . 27
&?ﬁ@“\nml%émlm&wﬁ _ 3 g:\aoomw =
a (2 + 5)
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The ionization probability per unit time is in first order perturbation theory given
by

.H )

2m v
p(i = - 5 €Lz U - i) ST o
p(i = f) 7 (ug 2 e By ug)| 6 (hw — huwyi) (27)3 k2 dk d
Inserting the matrix element eq.(2), we obtain
21 e?E? 210724102 \%4
2 /- et 2 2 s =N _ ) 2
&pi— f) = 5 asyE o8 X AT a2k)e 8 (Fuw — hwy;) @) k* dk dQ
' 64e’E2a" k2,
or &mﬁ? — .wav = 3&@!@. cos“ x k°dk dQ %Ag - @.Q.?.v
With 22 B2
hwe; = Ef—E;, E; = , = —
t f ; 5 dEy 5 2k dk
and m
kdk = =l dE;
we arrive at
64e? E2a” k2 . mk
dp(s = ——— §(hw — ; Iy — d
p(i — f) \ Fr(L 1 a2k2)S (hw — E¢ + E;) cos® x = 4B Q
. 642 E2a" k3m
or &ﬁﬁs — .\uv = 3 Cos™ X an
with Ef —E; = hw describing the conservation of energy.

The differential probability for ionization per unit time is

dp(i = f) 64e? E2a" k3 m

- 2
Q.  Rer(l+a2k2)p X
with V2m(E; + hw) 2m
k= —r——= =/ —(w—wo)
h2 A
and me* 2
PL= g = The, e = oG
. me?
The circular frequency at threshold is wg = o After a little algebra, i.e.
2m CORt W — w
2 .2 — 0
HcTNa a = HITﬂAE’EOVgNmA = 1+ o
= 1+2 1=%
Wo Wo



|
l
Il

w kKa? = k2 = a2 AIEIIHV

3 -3 (¥ 32
k° = a — =1 ,
Wwo

the differential probability for ionization per unit time becomes

: 2 2 4 3/2 6
dp(i = f) _ 64e’EZa’m Ahclluv AEOV cos? x |

an R3w wo w

-~ v
—

fw)

where f(w) is a dimensionless spectral ionization probability.

i)

f Wo

Omax

We would like to find the maximum of the function f (w), ie.

fw) = A%Vm Asmolwvw.\m
e = o2 () (5-)" @ (E- (2)
flw) = Aw&m Awsolvm TWé%g =0
> G T
4
Wmaz = w.Eo

80

R . . 4
Thus the ionization process is most effective for Wmas = = Wy

3

4
Bres = = 13.6eV The electron is preferentially

3
emitted in the direction of the electric field, i.e.

%Qiblﬁ%&%s w\wsomm
QT T o 1 Alarv s X

corresponding to

dQl = sin x dy dy

3

) 27 w
Q‘/ _ Vb\ \ dy \ sin x cos® x dy = im
0 0

Integrating over the electron emission angles, the spectral ionization probability
per unit time is .

. 256 at e E? 1uwo\6 [ w 3/
ﬁ?'v.\v = 353 AUV AO‘M 'Hv 9

while the total ionization probability per unit time is

Pl )= [ pti s pras= BOUCEL [ oy Ava%

3
wo 3k . W wo
remark:

Some 400 kyr after the Big Bang, the electrons and protons combined for the
first time in this universe to form hydrogen atoms. However, 600 Myr later,
perhaps due to the early quasars, the hydrogen atoms were reionized through
strong ionizing radiation. This allowed the mixture of hydrogen atoms, protons
and electrons, to form stable hydrogen molecule ions H; , which eventually became
neutral Hy molecules through the capture of additional electrons. Because of the
low-lying rotational bands of the H, molecules at infrared wavelengths (see tut
31), the massive Hj clouds could radiate off their gravitational collapse energy
efficiently, eventually forming the early stars of the galaxies.



19 Relativistic wave equations

19.1 Recipe for generating wave equations

(i) Take a Hamiltonian describing a free massive particle

H = f(p,m) energy-momentum-mass relationship.

(ii) Introduce the electromagnetic interaction via minimal substitution

A

oI

P=p— e -

= mlmgulm:mxrsv
H—H-¢cg
(iii) Make the transition from classical to quantum mechanics, e.g. in coordinate space,
by replacing
P —ihV
. 0 L= ez
5 = Aa% |&v =1 (=inv - “Am) g

mism\%

and apply this operator equation to a space-time dependent wave function 1.

19.2 Examples

e Schrédinger’s equation:
E. Schrédinger (1926), Nobel Prize 1933.

H = —
2m

0 1 L= e »\2
= m&%lmgveuwﬂ Alaqrm& »

describes a charged, nonrelativistic and spinless particle moving in an electromag-
netic field.

e Pauli equation:
W. Pauli (1926), Nobel Prize 1945.

81

5 (ingi—eo) v=sb [ (09 £4)] [r- (-en9 - 4)]

describes a charged, nonrelativistic particle with spin w and gs = 2 moving in an
electromagnetic field.

e Relativistic Schrédinger equation:
E. Schrodinger, Ann. Physik 81 (1926) 109

H = A\Nw‘wﬁm:_lSwQA

B N
= QmWIQ ve = /\Al&mﬂlmmv 2 +m2cty

(~in% - m@w

= mec\|l+
m2c?

Y

describes a charged relativistic massive spinless particle moving in an electromag-
netic field. Expanding the square root yields

(-in¥ - £ 4)°

m2c?

0
A%%Im&vﬁ = me |[1+1

| (-in¥ - £ )"

8 mict

+ o |y,

where we have used
z? .
8 1

S5
w

(N

I
—
-+

(1+2)2 =

D

The rest energy term mc? can be “gauged away”, introducing the wavefunction

¥




Lhs. = @.mmﬁwlm&@
imc? 0 5 ~
= exp Ar > ﬂv AQ%;.SQ Imgv P
imc? 5 1 5 e 2 1 L= e
rhs. = exp A' 7 ﬂv —w3@0 + m.ﬂwls A|sm\< - mkﬁv - Wﬁﬁlwﬁw A’sm\ﬂw - M\H
Lh.s. = rhs.
@ ~ H = e 2 ~
o d - L (_ao_¢
= Asmmw m&v ) NBA thV Q\Q P
nonrelativistic term
bridi . 1 5 e N\t~
relativistic Schrédinger equation T Al@ V- mk»v P + -

first relativistic correction term

remarks:
= e »2
iV — J& .
c
This series describes the relativistic corrections to the nonrelativistic

Schrédinger equation. Of course, this differential equation is not particu-
larly pretty, as time and space derivatives are treated very differently.

(i) We have expanded the square root in powers of the operator A

- N 2
~ihV - £ 4)
c
become increasingly singular and difficult to evaluate in perturbation theory.

(ii) The matrix elements of the higher powers of the operator A

e Klein-Gordon equation

E. Schrédinger, Ann. Physik 81 (1926) 109
W. Gordon, Z. Physik 40 (1926) 117
O. Klein, Z. Physik 41 (1927) 407.

A way of bypassing the “relativistic square-root problem” is to apply our proce-
dure for generating wave equations to H? instead of H. Indeed,

simply yields
2
As.m e v %)

The Klein-Gordon field describes a massive, charged and spinless, relativistic par-
ticle field.

9 _
ot

Klein-Gordon equation

K9

remarks:

(i) Here space and time derivatives are treated equally.

(i) However, o(7,t) cannot be interpreted as a quantum mechanical wavefunc-
tion or state vector Indeed, one would have to specify (7, 3_ +—o as well as
% (T, N: t=¢» 10 order to obtain the time-evolution of o(7,¢). This is con-
trary to the well-established principles of QM, which are based on the link
with CM.

However, (7,t) describes a massive charged, relativistic spin-0 field,
the would-be wavefunction (7,¢) fulfils the Klein-Gordon equation

me

o- (22
(o-(5
to the scalar-vector potential A, (7, ¢) that describes the massless spin-
1 photon field, and obeys OA, = 0 in the Lorentz or Feynman gauge

> 0 A, (71) = 0.
12

Oz,
¢ Klein-Gordon current conservation

2
v VSQA t) =0 in the noninteracting case. This is similar

We would like to obtain an equation describing the current conservation of the
Klein-Gordon field, for A = ¢ = 0 for simplicity.

mwﬁ — Aﬁ*wmw‘_u:\%o»v )
5? -
N EY = Aimw Vi +m? npv ¢ | divide by h%¢2
1 0 -, mic?
et T TVtTR)e
= 1 82 mey 2
M _—— —_——— —_— —_— =
:q %%vﬁ Am:s 0
1 82 = = 1 92
O = S v I VA
def c? o2 V-V c? o2
d’Alembert operator
multiply by
me\?

original Klein-Gordon equation

complex conjugated

subtract Klein-Gordon equation




O - - 1 92 .
1 , 02 8 R - =

ih 1 & *® 0 * = * v = * _
e mﬁ %eie%SV + 4.? 461€<ﬁv =0

8 [ ih 0 0 - h - =
as * — =" q N P *H *Q — q *H— =0
ot TS% Aﬁ at ¥ ﬁmwﬁvg+ 2im gYPTeVY
p: probability density J: probability current
differs from Schrédinger’s density exactly the same
expression p = @*p expression as for the
the Schrédinger equation
dp - . .
= B +V-Jd=0 continuity equation
remarks:

(i) Both, p and H are real, as in the case of the Schrédinger equation. However,
p is not positive definite, and thus p cannot be interpreted as a probability
density! The root of this problem is again that the Klein-Gordon equation
contains a second derivative in time.

(ii) The Klein-Gordon equation allows for both positive and negative energy

solutions
G prownd \w @WAW l.l.munv
with E? = §2¢2 + m2ct
= E = ++/p2c2+m2ct

Thus there is no way that we can restrict ourselves to positive energy so-
lutions only, as these do not form a complete set, and interactions will in-
variably cause coupling to these negative energy solutions. However, this
problem appears in all relativistic equations.

(iii) In order to have a non-zero current, ¢ must be complex, as in the case of the
Schrédinger equation.

R

20 Dirac equation

20.1 Dirac’s brilliant idea

P.AM. Dirac, Proc. Roy. Soc. A117 (1928) 610;
A118 (1928) 351

Dirac’s starting point in 1927 was Schrédinger’s noninteracting relativistic wave equa-
tion

Nobel Prize 1933

3 W@ H /\Al@.mQVN %._.SM,%@
ot

Initially, Dirac believed, erroneously, that by choosing the positive root, he could elim-
Inate the unwanted negative energy solutions. The challenge he faced in 1927 was that
he wanted a differential equation of first order in time and space that describes a spin
w particle. Thus, he linearized the square root by brute force, using 4 “coefficients”
O, Qy, 0, and G, i.e.

/\Alaﬂw hm2et [ = T. T.m@v n+m3& »

Of course, Dirac knew about the successful incorporation of spin S = w with gg = 2
in the Pauli equation
oY 1 =\12
L G = 5 (7 (<07
] 2 ot om g hV @
Thus it was probably not too far-fetched to postulate that the coefficients
{az,ay,a.} and B could be matrices.

—

a =

20.2 Properties of the Dirac matrices

The matrices @ and B are defined through the “linearization condition” of the free
Dirac Hamilton operator, i.e.

P24+ m2ctl = cd- g+ Fme?

with 7= —ihV.

we note:

(i) ag, oy, a, and B must be Hermitean matrices, as well, if we want H to be
Hermitean.

(ii) we must have

H? = Ammmw+3wn3 I = Anm«..ﬁﬁ.mgomvm



or in components

H? = pl4+pil+p2T+m?ct]

2
= (cagps +cayp, +ca,p, + Bmc?)

(i) The Dirac spinor index has nothing to do with the Lorentz vector index. It is
a mere accident that both have four components ind = 3 + 1 dimensions.

(ili) By construction, the Dirac spinor 1 is a solution of the free Dirac equation

2
= daipi+ctalpl+clal

24+ 82m?c* square terms

+ Az ay+ayaz) p, Py + ¢ (o oy + azag) pyp,

+

c? AOQ a; + o, Q@v Pyp: + me3

mixed

AQnﬁ+EQNv Dz terms

+ me? AQ@.@V.*QQ@V F\.TSnw AQnﬁ+%qu 22

e Thus, the Dirac matrices must fulfil a Clifford algebra, i.e.

af = a2l =a=p=1
{az, 0y} = {ay,a.} = {a;,a,} = O
AQ“QHW = AEVQQW AQVQNM =
The matrices chosen by P.A.M. Dirac,
I, Oy . O, &
g = a = n
Oy —1I ad Os

indeed, fulfil this algebra. Introducing

Y =iBay (k=1,2,3) and v4 = 3, one

can see that these -y, are Hermitean and fulfil the Clifford algebra, as well, i.e.

Aq\tﬁq\tw = Mmm\t\

(w,v=1,2,3,4),

This enables us to write the noninteracting Dirac equation in covariant form as

M\FQI&M.T

remarks:

n|v=0

(i) In Hv, the 4 x 4 matrices Oy, Qy, 0z, 8 act on a complex 4-component

(G}

MMG , which
3

(2

Dirac spinor ¢ =

and an antiparticle.

describes two spin w particles: a particle

R4

Y

thgy = HY =

A&. Tm@v +m§%v "

But each spinor component also obeys the free Klein-Gordon equation
1) 0 = e = e () o)
ih o P = = (ca i +B8me*)

mwﬁ
2
m a2

or 4

m2c? o \? m2e?
(-5 ) v = (S (o) -5 ) ¢~

n=1
20.3 Dirac current density conservation

or

= H¢ = T%%@ﬁrswq& ”

The Dirac equation implies current density conservation:
take the Dirac equation

m@@

5 T@. Al&m@v +QSQL P

multiply it with 9% from the left

ihyt =2 @ u|§e£.¢@+§€§@ eq.(1)
take Eo adjoint of Dirac equation
R he(Sut) gt ot
~ih S ::Aq@v.o:rsm ny:
multiply it with ¢ from the right
t -
—ih mww su%:“?%v ~@+mc? ¢t By eq.(2)

\ﬂ
acts only on ¢t
and not on %
subtract eq.(2) from eq.(1)



t - -
sm\ﬁﬁm WI@M\.T% v = —iheyptd@ Vo —ihc AQ@J.@@
\—l
acts only on ¢t
and not on %

= —ihicV- (ytay)

= mgé = —cV-(ytay)
8 Lo continuity equation or
5" + V-J =0 oo:m.mj\waoz of EOU@UE.@
density and current density
with
p=vtyp = Yr+ - Yfs >0 real and positive scalar
J=cytay real vector
both under rotations
indeed:

Jr=Jl=cyptal it =cyt gy =g, . real

The continuity equation can be put into covariant form as well, i.e.

N
—J, = V- J+ 2 g
W@&z&h T o

with Ju
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Q
<
S
<
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2l
&
‘SK*
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where ¢ is the adjoint Dirac spinor

Y = \.\:‘E
Indeed, we have
Ji = ich sy ity = iyt BBy = iyl = icp

Je =icpuy = ity = i BiBary = —ept ag
(k=1,2,3)
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conclusions:

(i) p can be interpreted as a probability density. Thus the free Dirac equation
seems to have all the required attributes:
(a) positive definiteness of the probability density
(b) it is first order in time and space derivatives.

(ii) We can now use minimal substitution, keeping & and £ as chosen by Dirac, to
obtain the interacting Dirac equation

.m |1 .1@1 m
Qm%lm&v P = T.Alsmﬂlmk»voergog@
or in covariant form

4

mc
M J\t@tn*.ﬂ @”O
tHH

0
with the covariant derivatives D, il v i mm Ay (p=1,2,3,4) .
"

This interacting Dirac equation is invariant under local gauge transformations,
because it is formulated in terms of covariant derivatives. It describes an electron
with charge (— [e]) or positron with charge (+ |e|), both with mass m and gs =2,
interacting with an electromagnetic field given by Ay = (A5, Ay, A,,id).

20.4 Interacting Dirac and Maxwell fields

A Dirac field (7, t), interacting with a Maxwell field given by the vector and scalar
potentials A, (r,t), fulfils the Dirac equation

4

me
MUQ\tbtlﬂ Y =0.
p=1

Here the covariant derivatives are defined as

D, = %me?
with
9 _ A@. 9 bv
0z, def \ Oz’ Oy’ Bict
and

\»t = mxrf \rtxwf s.ﬁv .



The 4 x 4 matrices v, defined as

Oy —ioy
T et tg, O
and
Oy -1
Y4 nwm L O, s
obey the Clifford algebra
Vi ] = 28, (1, v =1,2,3,4)

(k=1,2,3)

The electromagnetic field tensor Fy,,, (7, t) is given in terms of the Maxwell field A, (7, )

as
0A,  9A,

Fur &5 oz, ’

def Oz,

and it obeys Maxwell’s equations

M%.ﬁvﬁ\ — m.mﬁ:.N

oz, c

F,. OF: OF,
OFu | 9P | OFn _

Oy oz, Oz,

A p,v=1,2,3, 4)
Eq.(3) is fulfilled identically by eq.(1). Here the current density
Ju(it) = J, = A,wf Jy, Jz, s.nbv ,
def
fulfils the continuity equation
4
o 7. 0
B A i
M mat * ot 0
In the Lorentz or Feynman gauge,
mm -
A [ A
M.@I:Hd.xp‘*.wmlHou
— Oz, c

Maxwell’s equations (eq.(2)) assume their simplest form, i.e.

4
DA, = IM,?

eq.(1)

eq.(2)

eq.(3)
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We may identify the conserved electric current density J, (7,
equation, multiplied with e, i.e.

Ju = decthyu
where the adjoint Dirac field is defined as
S def ﬁ% Y4
The space-time components of the current density are thus
Jr = —ecptapy (k=1,2,3)
Jo = decylty

t) with that of the Dirac

Inserting this conserved current density into Maxwell’s equations (eq.(4), we arrive
at a system of coupled nonlinear partial differential equations describing the mutual

interactions between the Dirac and Maxwell fields, (7,
e me
Ay =
1S (o) -5

OA, = —dmeihy, ¢

04,
Oz,

=0

t) and A, (7, 1),

These field equations, which can be solved in a perturbation expansion in powers of the
electromagnetic coupling e, are the classical analogue of Quantum Electrodynamics,
the theory of the interacctions of the electrons, positrons and photons.



