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1 Notation

• Quantum mechanical quantities will be denoted with a hat : .̂

• Vector quantities are denoted using bold face; e.g. x ≡ (x1, x2, x3).

• Super/sub-scripts: x̂
(r)
i denotes the i-component (i ∈ {1, 2, 3}) of x̂ for particle r.

• f̂ and ĝ will always be assumed to be some polynomials in position and momentum variables x̂ and p̂.

• Time derivatives will sometimes be indicated with a dot (e.g. dx
dt
≡ ˙̂x)

• [x̂, p̂] denotes the commutator x̂p̂− p̂x̂.

• The Kronecker and Dirac deltas, δm,n, and δ(x), are detailed in the Appendix.

2 From Classical Mechanics to Quantum Mechanics

2.1 Classical Mechanics:

In Classical Mechanics (CM) the equations of motion are derived via Hamilton’s Equation. To prove this
from more basic principles is beyond our scope here, so we just take this as a basic assumption. Suppose
f is some physically observable quantity, which is a polynomial function of position x, momentum p (and
possibly has an explicit dependence on t).

Physical Assumption 1 The equation of motion governing the time-evolution of f follows Hamilton’s
equation

d

dt
f = {f,H}+ ∂f

∂t

where {, } is the Poisson Bracket.

The term ∂f
∂t

on the RHS of Hamilton’s equation is the explicit time-dependence of f , that is, not accounting
for the time-dependence through x and p (which are ultimately number-valued functions of t). In Hamilton’s
equation, x and p are treated as abstract variables, and f is some polynomial in x and p. In particular, this
means that if f is dependent on time only through x and p, Hamilton’s equation simplifies to

d

dt
f = {f,H} (∗).

The Poisson bracket is a multiplication rule for polynomials in positions x and momenta p. It is defined by
two sets of axioms:

A) {x(r)i , p
(s)
j } = δi,jδr,s

{x(r)i , x
(s)
j } = 0

{p(r)i , p
(s)
j } = 0

B) {f, g} = −{g, f}
{cf, g} = c{f, g}
{f, g + h} = {f, g}+ {f, h}
{f, gh} = {f, g}h+ g{f, h}
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An important consequence of the axioms of {, } is the Jacobi Identity:

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

The choices for f in Hamilton’s equation that are most important for classical mechanics are f = x
(r)
i and

f = p
(r)
i . For these choices of f Hamilton’s equation (∗) becomes:

d

dt
x
(r)
i = {x(r)i , H} (1)

d

dt
p
(r)
i = {p(r)i , H} (2)

As a concrete example illustrating that the equations of motion for a system follow Hamilton’s equation,
consider a free particle of mass m possessing only kinetic energy. Its Hamiltonian is

H =

3∑

j=1

p2j
2m

.

Using this H in equations (1) and (2) we obtain the following equations of motion:

d

dt
xi =



xi,

3∑

j=1

p2j
2m



 =

pi
m

d

dt
xi =



pi,

3∑

j=1

p2j
2m



 = 0.

These agree with what is learned in high-school physics: pi = mẋi and ẍi = 0.

As another concrete example, consider a system of two point-masses m1,m2 which are connected by a spring
with spring-constant k. Its Hamiltonian is

H =

(
p(1)

)2

2m1
+

(
p(2)

)2

2m2
+
k

2

(
x(1) − x(1)

)2
.

Using this H in equations (1) and (2) give the equations of motion

d

dt
x
(r)
i = {x(r)i , H} = p

(r)
i

mr

d

dt
p
(1)
i = {p(1)i , H} = −k

(
x
(1)
i − x

(2)
i

)

d

dt
p
(2)
i = {p(2)i , H} = −k

(
x
(2)
i − x

(1)
i

)

In CM, x, p are real-valued functions. This means that the Poisson bracket can be evaluated using the
following “representation”:

{f, g} = ∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
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2.2 What’s Different for Quantum Mechanics

Quantum Mechanics (QM) also obeys Hamilton’s equation, and all the axioms of the Poisson algebra.
What differs is the mathematical representations of position and momentum. The experimentally observed
phenomenon of incompatible measurements suggests that position and momentum cannot be number-valued
functions in QM. Suppose x̂ and p̂ denote the mathematical objects we use to represent position and momen-
tum. The condition that x̂ and p̂ cannot be number valued functions suggests that x̂p̂ 6= p̂x̂, or equivalently
[x̂, p̂] 6= 0 (if a representation consistent with the Poisson algebra satisfied [x̂, p̂] = 0, it would be isomorphic
to a number-valued representation). If x̂ and p̂ are not number-valued, then the representation of {, } in
terms of partial derivatives that we had for classical mechanics is no longer valid. So we need a new represen-
tation of {, } that is both mathematically consistent with the axioms defining it, and is physically consistent
with observed data. We begin by examining the constraints given by the requirement for mathematical
consistency with the axioms of the Poisson algebra.

We evaluate {û1û2, v̂1v̂2} in two ways, and require that the results agree.

{û1û2, v̂1v̂2} = û1{û2, v̂1v̂2}+ {û1, v̂1v̂2}û2
= û1 (v̂1{û2, v̂2}+ {û2, v̂1}v̂2) + (v̂1{û1, v̂2}+ {u1, v̂1}v̂2) û2 (1)

and also

{û1û2, v̂1v̂2} = v̂1{û1û2, v̂2}+ {û1û2, v̂1}v̂2
= v̂1 (û1{û2, v̂2}+ {û1, v̂2}û2) + (û1{û2, v̂1}+ {u1, v̂1}û2) v̂2 (2)

Equating (1) and (2) we get the requirement

(û1v̂1 − v̂1û1) {û2, v̂2} = {û1, v̂1} (û2v̂2 − v̂2û2) .

This means we must have

(û1v̂1 − v̂1û1) = K{û1, v̂1} and

(û2v̂2 − v̂2û2) = K{û2, v̂2}

where K is some entity that is independent of the û1, û2, v̂1, v̂2. Since û1, û2, v̂1, v̂2 were arbitrary, in general
we must have

K{û, v̂} = ûv̂ − v̂û (∗)
for all û, v̂ polynomials in x̂, p̂.

Classical mechanics is obtained in the case K = 0. In quantum mechanics, based on experiments we have
the following:

Physical Assumption 2 Quantum mechanics is consistent with the choice K = i~ (where ~ is Plank’s
constant) in equation (∗).

So, in quantum mechanics we have
[f̂ , ĝ] = i~{f̂ , ĝ}

which leads immediately to Heisenberg’s Canonical Commutation Relations (CCRs):

[x̂
(r)
i , p̂

(s)
j ] = i~δi,jδr,s

[x̂
(r)
i , x̂

(s)
j ] = [p̂

(r)
i , p̂

(s)
j ] = 0

and a representation of the Poisson bracket for QM:

{f̂ , ĝ} = 1

i~
[f̂ , ĝ]
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2.3 Heisenberg Equations

Using the above representation for the Poisson bracket, in QM Hamilton’s equation is represented as

d

dt
f̂ =

1

i~
[f̂ , Ĥ] +

∂f

∂t
.

The Heisenberg equations are the Hamilton equation for the cases f̂ = x̂ and f̂ = p̂:

i~ ˙̂x = [x̂, Ĥ]

i~ ˙̂p = [p̂, Ĥ]

The physics will also require x̂ = x̂†, and p̂ = p̂† (Hermiteicity, or reality conditions). We say f̂ is “Hermitean”

when f̂ = f̂†. We come back to exactly what “†” means when we look at representation theory.

Before proceeding, we record a fundamental physical assumption underlying our development of quantum
mechanics.

Physical Assumption 3 Any physically observable quantity can be expressed as a linear, Hermitean oper-
ator f̂ which acts on a complex vector space (Hilbert space, defined later). Such an f̂ is appropriately called
an observable of the system.

2.4 A Representation for x̂, p̂

The x̂ and p̂ can be represented in a way consistent with the development above, using infinite-dimensional
square matrices.

Definition 1

a :=




0
√
1 0 0 · · ·

0 0
√
2 0 · · ·

0 0 0
√
3 · · ·

0 0 0 0
. . .

...
...

...
...

. . .




Then let

x̂(t0) = L(a† + a)

p̂(t0) =
i~
2L

(a† − a)

where L ∈ R.

This gives x̂(t0) = x̂†(t0) , p̂(t0) = p̂†(t0) and [x̂(t0), p̂(t0)] = i~. As we shall see, it turns out that these
properties are preserved under the time-evolution of a quantum system, and so they will hold in general for
x̂(t) and p̂(t).

2.5 Dynamics

2.5.1 Time-Evolution Preserves the CCRs and Hermiteicity Requirement

Theorem 1 The CCRs are preserved under time-evolution.
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Proof: We need to show d
dt
[x̂, p̂] = 0.

d

dt
[x̂, p̂] = [ ˙̂x, p̂] + [x̂, ˙̂p] product rule

=
1

i~

[
[x̂, Ĥ], p̂

]
+

1

i~

[
x̂, [p̂, Ĥ]

]

=
1

i~

[
p̂, [Ĥ, x̂]

]
+

1

i~

[
x̂, [p̂, Ĥ]

]

= − 1

i~

[
Ĥ, [x̂, p̂]

]
(Jacobi Identity)

= 0 ¤

Theorem 2 If Ĥ satisfies Ĥ† = Ĥ, then the Hermiteicity of x̂ and p̂ is preserved under time-evolution.

Proof: We show that dx̂(t)
dt

is Hermitean.

(
dx̂(t)

dt

)†
=

(
1

i~
[x̂(t), Ĥ ]

)†

= − 1

i~
[Ĥ, x̂(t)] (use (AB)† = B†Â†)

=
1

i~
[x̂(t), Ĥ ]

=
dx̂(t)

dt
¤

The proof that dp̂(t)
dt

is Hermitean is analogous.

2.5.2 The Time-Evolution Operator

Definition 2 The time-evolution operator Û(t) is the solution to

i~
d

dt
Û(t) = Û(t)Ĥ(t) , Û(t0) = 1

which is
Û(t) = Te

1
i~
∫
t
t0
Ĥ(t)dt

where T is the time-ordering symbol, needed to resolve ordering ambiguities arising from noncommutivity.

Note: Û(t) is unitary (Û †(t) = Û−1(t)).

The time-evolution operator is simpler when ∂Ĥ
∂t

= 0:

Û(t) = e
1
i~ (t−t0)Ĥ .

Once we have the time-evolution operator, it gives the solution to the equations of motion.

Theorem 3 Assume x̂
(r)
i (t0), p̂

(r)
i (t0) obey the CCRs and are Hermitean. Then

x̂
(r)
i (t) = Û †(t)x̂

(r)
i (t0)Û(t) (∗)

p̂
(r)
i (t) = Û †(t)p̂

(r)
i (t0)Û(t)

are the full solutions to the equations of motion.
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Proof: First, we will need the following expressions for
˙̂
U and

˙̂
U †, which follow immediately

from the definition of Û , and using the fact that Ĥ is Hermitean, and that (AB)† = B†A†:

˙̂
U(t) =

1

i~
ÛĤ

˙̂
U †(t) = − 1

i~
ĤÛ †

Now, we check that x̂
(r)
i (t) obeys the equation of motion.

i~
d

dt
x̂
(r)
i (t) = i~

d

dt

(
Û †(t)x̂

(r)
i (t0)Û(t)

)

= i~
(
U̇ †(t)x̂

(r)
i (t0)Û(t) + Û †(t)x̂

(r)
i (t0)

˙̂
U(t)

)

= −Ĥ(t)Û †(t)x̂
(r)
i (t0)Û(t) + Û †(t)x̂

(r)
i (t0)Û(t)Ĥ(t)

= −Ĥ(t)x̂
(r)
i (t) + x̂

(r)
i (t)Ĥ(t)

= [x̂
(r)
i (t), Ĥ(t)]

The proof that p̂
(r)
i (t) obeys the equation of motion is similar. ¤

For any observable f̂ (polynomial in x̂, p̂) which is Hermitean and obeys the CCRs at time t0, Theorem 3

generalizes to give the equation for f̂(t):

f̂(t) = Û †(t)f̂(t0)Û(t).

We can also recover the Hamiltonian from the time-evolution operator: Ĥ = i~Û †(t) d
dt
Û(t).

2.6 Measurement of Observables

We have used a matrix representation of x̂, p̂. We would like measurements of these quantities to yield
real numbers. How do we compute these? In QM, we can compute the expected values x, p of position and
momentum measurements.

Physical Assumption 4 A unit vector |ψ〉 (in a complex Hilbert space) can be chosen which contains
enough information about the state of a quantum system at time t0 to predict measurement expecation values.
The expectation values are given by

x(t) = 〈ψ|x̂(t)|ψ〉
p(t) = 〈ψ|p̂(t)|ψ〉
f(t) = 〈ψ|f̂(t)|ψ〉 for any observable f̂ satisfying f̂† = f̂ .

Notice that in this picture, the state-vector |ψ〉 describes the system at the initial time t0, and it is the

operators f̂ describing observable quantities that vary with time.

Note: Observables are required to be Hermitean (f̂† = f̂). The Hermiteicity requirement ensures that
measurement outcomes are real numbers.

The time-evolution of x(t), p(t) does not in general follow the equations of motion of classical mechanics.
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Theorem 4 (Ehrenfest Theorem) If Ĥ is a polynomial in the x̂ and p̂ variables of degree ≤ 2, then x(t)
and p(t) obey the classical equations of motion.

Proof: Suppose Ĥ is a polynomial in the x̂ and p̂ variables of degree ≤ 2. Then

˙̂x = {x̂, Ĥ} =: g(x̂, p̂) is linear in x̂, p̂, and

˙̂p = {p̂, Ĥ} =: h(x̂, p̂) is linear in x̂, p̂

=⇒ g(x̂, p̂) = g(x, p) and h(x̂, p̂) = h(x, p) ¤

We also define the variance of f̂(t)

ν(f̂(t)) =
(
f̂(t)− f(t)

)2
= f̂2(t)−

(
f̂(t)

)2
= 〈ψ|f̂2(t)|ψ〉 − 〈ψ|f̂(t)|ψ〉2

and the standard deviation ∆f =

√
ν(f̂(t)).

2.7 The General Uncertainty Principle

Theorem 5 Assume f̂ , ĝ are Hermitean, and that a system has state-vector |ψ〉. Then ∆f∆g ≥ 1
2

∣∣∣〈ψ|[f̂ , ĝ]|ψ〉
∣∣∣.

Proof: Recall from linear algebra: 〈ψ|ψ〉 ≥ 0. Choose

|ψ〉 =
(
f̂ − f1 + iα(ĝ − g1)

)
|ψ〉, α ∈ R̂.

Then 〈ψ|ψ〉 ≥ 0 gives:

〈ψ|
(
f̂ − f1− iα(ĝ − g1)

)(
f̂ − f1 + iα(ĝ − g1)

)
|ψ〉 ≥ 0

=⇒ 〈ψ|(f̂ − f1)2|ψ〉+ α2〈ψ|(ĝ − g1)2|ψ〉+ α〈ψ|i(f̂ ĝ − ĝf̂)|ψ〉 ≥ 0

=⇒ (∆f)2 + α2(∆g)2 + α〈ψ|i[f̂ , ĝ]|ψ〉 ≥ 0

=⇒ (∆f)2 + (∆g)2

(
α+
〈ψ|i[f̂ , ĝ]|ψ〉

2(∆g)2

)2
−

(
〈ψ|i[f̂ , ĝ]|ψ〉

)2

(2(∆g)2)
2 (∆g)2 ≥ 0

The above inequality is most stringent if we choose α = − 〈ψ|i[f̂ ,ĝ]|ψ〉2(∆g)2 . Then we have

(∆f)2 −

(
〈ψ|i[f̂ , ĝ]|ψ〉

)2

4(∆g)2
≥ 0

=⇒ ∆f∆g ≥ 1

2

∣∣∣〈ψ|[f̂ , ĝ]|ψ〉
∣∣∣ ¤

Alternative Proof of the Uncertainty Principle: The uncertainty principle is often stated
in the (equivalent) form:

(∆f)
2
(∆g)

2 ≥
(

1

2i
[f̂ , ĝ]

)2
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which has the advantage that it allows the Cauchy-Schwartz inequality to be exploited, making
the proof appear somewhat simpler. We have

(∆f)
2
=
(
f̂ − f

)2
= 〈ψ|

(
f̂ − f

)2
|ψ〉 = 〈F |F 〉

where |F 〉 ≡
(
f̂ − f

)
|ψ〉 (note that since f̂ is Hermitean, so is f̂ − f . Similarly we have (∆g)

2
=

〈G|G〉. Now, apply the Cauchy-Schwartz inequality:

(∆f)
2
(∆g)

2
= 〈F |F 〉〈G|G〉 ≥ |〈f |g〉|2 .

For any complex number z,

|z|2 = (Re(Z))
2
+ (Im(z))

2 ≥ (Im(z))
2
=

(
1

2i
(z − z∗)

)2

So, letting z = 〈F |G〉, we have

(∆f)
2
(∆g)

2 ≥
(

1

2i
(〈F |G〉 − 〈G|F 〉)

)2
.

Now,

〈F |G〉 = 〈ψ|
(
f̂ − f

)
(ĝ − g) |ψ〉

= 〈ψ|
(
f̂ ĝ − f̂g − ĝf + fg

)
|ψ〉

= 〈ψ|f̂ ĝ|ψ〉 − g〈ψ|f̂ |ψ〉 − f〈ψ|ĝ|ψ〉+ fg〈ψ|ψ〉
= fg − fg − gf + fg

= fg − fg.

Similarly,
〈G|F 〉 = gf − fg.

Therefore
〈F |G〉 − 〈G|F 〉 = fg − gf = [f̂ , ĝ].

So we have

(∆f)
2
(∆g)

2 ≥
(

1

2i
[f̂ , ĝ]

)2
¤

An important special case of the general uncertainty principle is position-momentum uncertainty:

∆x(t)∆p(t) ≥ ~
2
∀t.

2.8 The Time-Energy Uncertainty Relation

There is a time-energy uncertainty relation

∆t∆Ĥ ≥ ~
2

which is not a consequence of the general uncertainty principle above. What does the time-energy uncertainty
mean? Time t is not an observable quantity like f̂ , so how do we define ∆t? Any uncertain entity f̂ takes
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time for a change to be noticeable. A change is not noticeable until it is about one standard deviation ∆f .

So the time it takes is ∆t where ∆t
∣∣∣df(t)dt

∣∣∣ = ∆f . That is

∆t =
∆f(t)∣∣∣df(t)dt

∣∣∣
.

The time-energy uncertainty relation is then derived as follows. For Hermitean f̂ we have

i~
d

dt
f̂(t) = [f̂ , Ĥ] (1)

∆f(t)∆Ĥ ≥ 1

2

∣∣∣〈ψ|[f̂ , Ĥ]|ψ〉
∣∣∣ (2)

Sub (1) into (2):

∆f(t)∆Ĥ ≥ 1

2

∣∣∣∣〈ψ|i~
d

dt
f̂(t)|ψ〉

∣∣∣∣

=
~
2

∣∣∣∣
d

dt
〈ψ|f̂(t)|ψ〉

∣∣∣∣

=
~
2

∣∣∣∣
df(t)

dt

∣∣∣∣

=
~
2

∆f(t)

∆t

=⇒ ∆t∆Ĥ ≥ ~
2

2.9 “Pictures” of Quantum Mechanics

We have used a matrix representation. Matrix multiplication is noncommutative, but it is associative.
Depending on how we “bracket” the fundamental equations, we can get different “pictures”. The pictures
differ in which different quantities are considered constant, and which are time-dependent.

2.10 The Heisenberg Picture

What we have considered so far is the Heisenberg Picture. In this picture, the state vector |ψ〉 is constant, and
the observables f̂(t) are time-dependent. We solve i~ d

dt
f̂(t) = [f̂(t), Ĥ(t)] + ∂f̂

∂t
directly and then calculate

measurement-expectations f(t) = 〈ψ|f̂(t)|ψ〉.

2.11 The Schrödinger Picture

This is the picture most often used in practise for quantum mechanics. Recall the time-evolution operator
method: f̂(t) = Û †(t)f̂(t0)Û(t). Substituting this into the equation for measurement-expectations gives

f(t) = 〈ψ|Û †(t)f̂(t0)Û(t)|ψ〉 (∗).

Recall that in this expression f̂(t0) is a constant matrix, and |ψ〉 is the (constant) initial state vector. In the
Schrödinger picture we define time-dependent “Schrödinger” states:

|ψs(t)〉 = Û(t)|ψ〉
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which, when substituted in (∗) gives:

f(t) = 〈ψs(t)|f̂(t0)|ψs(t)〉.

An important point is that when ∂Ĥ
∂t

= 0, we can actually calculate |ψs(t)〉 without first having to solve for

Û(t). This is done by solving the Schrödinger Equation:

i~
d

dt
|ψs(t)〉 = Ĥs(t)|ψs(t)〉.

where
Ĥs(t) = Û(t)Ĥ(t)Û †(t)

is called known as the Schrödinger Hamiltonian.

This formulation is especially simple for time-independent Hamiltonians.

Claim 1 If ∂Ĥ
∂t

= 0 then Ĥs(t) = Ĥ(t).

Proof: Recall that when ∂Ĥ
∂t

= 0, the time-evolution operator has the simple form

Û(t) = e
1
i~ (t−t0)Ĥ =

∞∑

m=0

1
i~ (t− t0)m

m!
Ĥm

and so

[Û(t), Ĥ ] = 0

=⇒ Ĥs(t) = Û(t)Ĥ(t)Û †(t) = ĤÛ(t)Û †(t) = Ĥ(t) ¤

Derivation of the Schrödinger equation: Recall the definition of the time-evolution op-
erator i~ d

dt
Û(t) = Û(t)Ĥ(t). From the definition of the Schrödinger Hamiltonian we have

Ĥ(t) = Û †(t)Ĥs(t)Û † (t). Putting these together we get

i~
d

dt
Û(t) = Û(t)Û †(t)Ĥs(t)Û(t)

=⇒ i~
d

dt
Û(t) = Ĥs(t)Û(t) (since U is unitary)

=⇒ i~
d

dt
Û(t)|ψ〉 = Ĥs(t)Û(t)|ψ〉

=⇒ i~
d

dt
|ψs(t)〉 = Ĥs(t)|ψs(t)〉 ¤

2.12 The Dirac Picture

This is the picture most often used in practise for quantum field theory. It is sometimes called the “interaction
picture”. Assume Ĥs(t) is given, and suppose we can write

Ĥs(t) = Ĥ0(t) + Ĥ ′(t)

such that Ĥ0(t) is an easily solvable Hamiltonian (for example in quantum computing, Ĥ0(t) is that of a
quantum gate). By assumption, we can easily find the solution to i~ d

dt
Û0(t) = Ĥ0(t)Û0(t). So assume we
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have Û0(t) explicitly. Now, define Û ′(t) := Û †0 (t)Û(t) so we have Û(t) = Û0(t)Û
′(t). Then the equation for

measurement-expectations can be written as

f(t) = 〈ψ|Û †(t)f̂(t0)Û(t)|ψ〉
= 〈ψ|Û ′†(t)Û †0 (t)f̂(t0)Û0(t)Û ′(t)|ψ〉

=
(
〈ψ|Û ′†(t)

)(
Û †0 (t)f̂(t0)Û0(t)

)(
Û ′(t)|ψ〉

)

So, we define operators in the Dirac picture as:

f̂D(t) = Û †0 (t)f̂(t0)Û0(t)

and states in the Dirac picture as:
|ψD(t)〉 = Û ′(t)|ψ〉

So, since Û0(t) is assumed easy, if we can calculate the Dirac states |ψD(t)〉 then we get expectation values
f(t). The dynamics of |ψD(t)〉 is captured in the following theorem.

Theorem 6 |ψD(t)〉 is the solution to

i~
d

dt
|ψD(t)〉 = ĤD(t)|ψD(t)〉

with initial condition |ψD(t0)〉 = |ψ〉, where

ĤD(t) = Û †0 (t)Ĥ
′(t)Û0(t).

Proof:

i~
d

dt
Û(t) = Ĥs(t)Û(t)

i~
d

dt

(
Û0Û

′
)
=
(
Ĥ0 + Ĥ′

)
Û0Û

′

i~ ˙̂
U0Û

′ + i~Û0 ˙̂U ′ = i~ ˙̂
U0Û

†
0 Û0Û

′ + Ĥ ′Û0Û
′

i~Û0 ˙̂U ′ = Ĥ ′Û0Û
′

i~ ˙̂
U ′ = Û †0 Ĥ

′Û0Û
′

i~ ˙̂
U ′ = ĤDÛ

′

i~
d

dt
Û ′|ψ〉 = ĤDÛ

′|ψ〉

i~
d

dt
|ψD(t)〉 = ĤD(t)|ψD(t)〉 ¤

Once we have |ψD(t)〉,
f(t) = 〈ψD(t)|f̂D(t)|ψD(t)〉.

3 Representation Theory

We need to represent x̂ and p̂ as mathematical objects which are Hermitean and which obey the CCRs. Any
mathematical object can be viewed as a map. In Quantum Mechanics the physically successful representa-
tions are as maps which are linear. We will look at linear maps in complex and unitary vector spaces in
finite dimensions, and then consider what changes for these in infinite dimensions. A number of basic results
in linear algebra are recalled; many without proof.
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3.1 Dual Spaces

In the following, assume H is a vector space over the complex numbers C, and vectors in this space are
written in the Dirac notation (e.g. |ψ〉).

Definition 3 Assume H is given. H∗ is defined as the set of linear maps H → C. We denote elements of
H∗ by 〈χ|, where the action of 〈χ| is:

〈χ| : |ψ〉 → 〈χ|ψ〉 ∈ C

Theorem 7 H∗, (with the natural definitions for “+” and scalar multiplication) is a complex vector space,
called the dual vector space of H.

Definition 4 Assume H, H∗ possess a map “†”, called “Hermitean conjugation”:

† : H → H∗ and the inverse operation † : H∗ → H

so that
|ψ〉† = 〈ψ| , 〈ψ|† = |ψ〉 ∀|ψ〉 ∈ H.

Assume that “†” obeys the axioms:

(|ψ〉+ |ϕ〉)† = 〈ψ|+ 〈ϕ|

(λ|ψ〉)† = λ∗〈ψ|

〈ϕ|ψ〉∗ = 〈ψ|ϕ〉

〈ψ|ψ〉 = 0 iff |ψ〉 = 0

Then we say that H is a unitary vector space.

3.2 Bases

Assume that H is finite-dimensional.

Definition 5 A set of vectors {|bm〉}m∈ζ ⊆ H, where ζ is some index set, is called an orthonormal basis

〈bn|bm〉 = δn,m ∀m,n ∈ ζ

and every |ψ〉 ∈ H can be written as

|ψ〉 =
∑

n∈ζ

ψn|bn〉 , ψn ∈ C.

ψn = 〈bn|ψ〉 are called the “coefficients of |ψ〉 in basis {|bn〉}”.

Theorem 8 The set {〈bn|} is an O.N. basis for H∗ called the dual basis.

Definition 6 The map ψ : ζ → C which maps n→ ψn is called the wavefunction of |ψ〉 in the basis {|bn〉}.

Remark: The same |ψ〉 has a different wavefunction for each choice of O.N. basis.
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Theorem 9 Choose an O.N. basis {bn}n∈ζ . Then every linear map T̂ can be written as

T̂ =
∑

n,m∈ζ

T̂n,m|bn〉〈bm|

The action of T̂ is then

T̂ : |ψ〉 →
∑

n,m∈ζ

T̂n,m|bn〉〈bm|ψ〉 where T̂n,m = 〈bn|T̂ |bm〉.

The identity operator can be written as

1 =
∑

n∈ζ

|bn〉〈bn| (∗).

(∗) is called the resolution of the identity in the basis {|bn〉}n∈ζ .

Consider 〈ψ|f̂ |ψ〉 and insert the resolution of the identity twice:

〈ψ|f̂ |ψ〉 =
∑

n,m

〈ψ|bn〉〈bn|f̂ |bm〉〈bm|ψ〉

=
∑

n,m

ψ∗nf̂n,mψm

Theorem 10 All matrix representations of the CCRs give the same physics, because they are all obtained
in this way, by choosing an O.N. basis.

3.3 † for Matrix Representations

〈ψ|Â|ψ〉 means 〈ψ|Â (|ψ〉).

Definition 7 Â† : H → H is defined as that linear map which, if acting first on the left, will give the same
scalar as A acting on the right:

(
Â†|ϕ〉

)†
|ψ〉 = 〈ϕ|Â|ψ〉 , ∀|ψ〉, |ϕ〉 ∈ H.

That is,
〈ψ|Â†|ϕ〉∗ = 〈ϕ|Â|ψ〉 (∗).

If we insert the identity in (∗), we obtain Â†m,n = Â∗n,m (i.e. † is matrix Hermitean conjugation).

3.4 Eigenvectors in Quantum Mechanics: State Collapse

Theorem 11 If |ψ〉 is an eigenvector of a Hermitean f̂ (an observable) with eigenvalue λ, at time t the

measurement of f̂ will surely yield λ.
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Suppose f̂ |ψ〉 = λ|ψ〉. Then

f = 〈ψ|f̂ |ψ〉
= 〈ψ|λ|ψ〉
= λ〈ψ|ψ〉
= λ

and

ν(f) = 〈ψ|f̂2|ψ〉 − 〈ψ|f̂ |ψ〉2

= λ2 − λ2

= 0 ¤

The following theorem guarantees that the measurement results will be real numbers.

Theorem 12 If f̂ = f̂† and if f̂ |ψ〉 = λ|ψ〉 then λ ∈ R.

Suppose we have a system initially in state |ψ〉 and at time t we perform measurements of several observables

f̂ (1), f̂ (2), . . . , f̂ (s) at once. Recall the uncertainty principle

∆f (i)∆f (j) ≥ 1

2

∣∣∣〈ψ|[f̂ (i), f̂ (i)]|ψ〉
∣∣∣ . (∗)

To allow for reproducibility of measurements we want ∆f (i),∆f (j) = 0 ∀i, j. So we need the RHS of (∗)
to be 0. This means we can only measure simultaneously commuting sets of observables. The maximum
number is s = 3r, (where r is the number of particles).

Suppose we prepare a state of r particles at time t0, and perform 3r measurements at time t1 obtaining the
results vi ∈ R for f̂ (i). We know (from experiment) that an immediate repeat measurement of the f̂ (i) at
time t2 > t1 will yield the same numbers vi. Starting from time t1, the system has the initial state vector
|ϕ〉 which is a joint eigenvector to all f̂ (i) with eigenvalues vi. The old state |ψ〉 collapses to become the new
state |ϕ〉 at time t1. We record this fundamental observation here.

Physical Assumption 5 If a measurement of an observable f̂ of a quantum system in state |ψ〉 is made

at time t, then the result of the measurement is some eigenvalue λ of f̂ , and the new state immediately after
the measurement is the eigenvector of f̂ corresponding to eigenvalue λ.

3.5 The Spectral Theorem

The eigenvectors of a Hermitean operator corresponding to different eigenvalues are mutually orthogonal.

Theorem 13 If f̂ = f̂† and if f̂ |ψ1〉 = λ1|ψ1〉 and f̂ |ψ2〉 = λ2|ψ2〉, and λ1 6= λ2, then 〈ψ1|ψ2〉 = 0.

Hermitean f may possess many non-orthogonal eigenvectors with the same eigenvalue. The set of eigenvectors
with a common eigenvalue λ is called the “eigenspace” of f̂ corresponding to eigenvalue λ.

Theorem 14 The eigenvalues of a Hermitean operator are all real.

Theorem 15 Any eigenspace is a unitary vector space.

Definition 8 Eigenvalues with eigenspaces larger than 1 are called “degenerate” eigenvalues.
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Definition 9 We denote the set of eigenvectors of a Hermitean f̂ by {|f̂n〉}n∈G, G ⊂ Z.

Theorem 16 (Spectral Theorem) For every Hermitean f̂ there is at least one O.N. basis consisting of

eigenvectors of f̂ .

f̂ is diagonal in it’s own eigenbasis: f̂ =
∑
n fn|fn〉〈fn|.

Theorem 17 (Extended Spectral Theorem) For every maximal set of commuting Hermitean operators

f̂ (1), f̂ (2), . . . , f̂ (n) there is a unique O.N. basis of H consisting of joint eigenvectors of all f̂ (1), . . . , f̂ (n).

We denote a joint eigenvector by |k1, k2, . . . k3r〉 so, f̂ (i)|k1, k2, . . . k3r〉 = ki|k1, k2, . . . k3r〉.

We have a resolution of the identity:

1 =
∑

n1,n2,...,n3r

|kn1
, kn2

, . . . kn3r
〉〈kn1

, kn2
, . . . kn3r

|.

3.6 What’s Different in ∞-Dimensions

Much of the theory developed above does not apply for infinite dimensional vector spaces. In finite-
dimensional spaces, we found that any Hermitean operator has a complete (and orthonormal) set of eigen-
vectors in the space (spectral theorem). This is no longer true in infinite-dimensional spaces. We will develop
a different version of the spectral theorem for infinite-dimensional spaces, in which Hermitean operators will
have a complete set of eigenvectors which do not lie in the space, but which can be “orthonormalised” in a
different sense.

The reason we investigate infinite-dimensional representations is that they arise naturally when we consider
the eigenvectors of the position and momentum operators. We would like to use these sets of eigenvectors as
orthonormal bases for our Hilbert space but, as we shall see later, this can only be done in the continuous
sense. Also, while matrix equations are very intuitive, they are usually harder to solve than the differential
equations that arise in continuous bases.

3.6.1 Vectors |ψ〉 in ∞-dimensions

For ∞-dimensional spaces,
∑∞
n=1 ψ

∗
nψn ≮ ∞ in general. So far we considered the unitary vector space of

vectors which contain only a finite number of nonzero components. This is called a pre-Hilbert space, denoted
Hp.

Definition 10 The completion H of a pre-Hilbert space Hp (obtained by adding the limit of every Cauchy
sequence in Hp) is called a Hilbert Space

Note: In practise we take H to be the set of all vectors |ψ〉 such that
∑∞
n=1 ψ

∗
nψn <∞.

Definition 11 A Hilbert space H is called separable if it has a countable O.N. basis {|bn〉}n∈G (so that
every |ψ〉 has a unique expansion |ψ〉 =

∑
n∈G ψn|bn〉). Such a basis is called a Hilbert basis for H.

Note: We know that the CCRs in QM can be represented using a separable Hilbert Space.

Theorem 18 All separable Hilbert Spaces are isomorphic.



Advanced Quantum Mechanics 18

Theorem 19 There exist families of non-normalisable vectors {|bλ〉}λ∈ζ parameterized by a parameter ζ
which takes values in a continuous subset ζ of R (e.g. ζ = (1, 4]), which form an “improper O.N. basis for
H”, so that 〈bλ′ |bλ〉 = δ(λ− λ′), and every |ψ〉 ∈ H can be expanded uniquely as: |ψ〉 =

∫
ζ
ψ(λ)|bλ〉dλ.

We have a resolution of the identity with respect to an improper O.N. basis: 1 =
∫
ζ
|bλ〉〈bλ|dλ. A word

about what the above theorem is saying. That the {|bλ〉}λ∈ζ is an improper basis means that the vectors
|bλ〉 are not in the Hilbert space H. That these vectors are non-normalisable means that

∑
n〈bλ|bn〉〈bn|bλ〉

is divergent. These vectors can, however, be “continuously orthonormalised” so that 〈bλ|bλ′〉 = δ(λ− λ′).

Remark: We can also define a mixed O.N. basis {|bn〉}n∈G ∪ {|bλ〉}λ∈ζ so that

1 =
∑

n∈G

|bn〉〈bn|+
∫

ζ

|bλ〉〈bλ|dλ.

3.6.2 Operators Â|ψ〉 in ∞-dimensions

Even if
∑
n∈G ψ

∗
nψn <∞, it does not necessarily follow that ψ = Â|ψ〉 ∈ H (because

∑∞
n=1 ψ

∗
nψn might be

divergent).

Definition 12 The maximal domain DÂ for an operator Â is :

DÂ = {|ψ〉 ∈ H : Â|ψ〉 ∈ H}

Â is called unbounded if DÂ $ H

Â is called bounded if DÂ = H

3.6.3 Scalars 〈ϕ|Â|ψ〉 in ∞-dimensions

In general:

lim
N→∞

lim
M→∞

N∑

n=1

M∑

m=1

ϕ∗nÂn,mψm 6= lim
M→∞

lim
N→∞

N∑

n=1

M∑

m=1

ϕ∗nÂn,mψm

So we must be careful with our definition of Â†.

Definition 13 Assume Â and DÂ are given. Then Â† and DÂ† are defined so that

(
〈ϕ|Â†

)
|ψ〉 = 〈ϕ|Â†|ψ〉 ∀|ψ〉 ∈ DÂ

Note: In general DÂ 6= DÂ† .

3.6.4 Spectral Theorem in ∞-dimensions

Definition 14 Û is called unitary if Û † = Û−1.

Definition 15 f̂ is called self-adjoint if f̂ = f̂†.
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Definition 16 f̂ is called symmetric if 〈ψ|f̂ |ψ〉 ∈ R ∀|ψ〉 ∈ D
f̂
.

Theorem 20 If H is finite dimensional, then

f̂ symmetric ⇐⇒ f̂ self-adjoint.

Theorem 21 If H is ∞-dimensional, then

f̂ self-adjoint =⇒ f̂ symmetric.

Note: There is no universally agreed definition for “f̂ is Hermitean”.

Note: In linear algebra, “Â symmetric” is defined as Ân,m = Âm,n, rather than as Ân,m = Â∗m,n.

Note: For f̂ to be an observable, we need f̂ is symmetric. Most observables are also self-adjoint.

Theorem 22 (Spectral Theorem) Assume f̂ = f̂†. Then f̂ possess a (possibly improper) O.N. basis
{|fn〉}n∈G ∪ {|fλ〉}λ∈ζ , (ζ ⊂ R) such that

f̂ |fn〉 = fn|fn〉 and f̂ |fλ〉 = fλ|fλ〉

and
〈fn|fm〉 = δn,m , 〈fλ|fλ′〉 = δ(λ− λ′) , 〈fn|fλ〉 = 0.

Then, we can expand every |ψ〉 ∈ H uniquely as:

|ψ〉 =
∑

n∈G

ψn|fn〉+
∫

ζ

ψλ|fλ〉dλ

and
ψn = 〈fn|ψ〉 , ψλ = 〈fλ|ψ〉.

Definition 17 The set of proper and improper eigenvalues of f̂ is called the spectrum of f̂ , denoted spec(f̂).

We can write f̂ in it’s own eigenbasis as

f̂ =
∑

n∈G

fn|fn〉〈fn|+
∫

ζ

fλ〈fλ|fλ〉dλ

and, of course, we have the resolution of the identity

1 =
∑

n∈G

|fn〉〈fn|+
∫

ζ

〈fλ|fλ〉dλ.

3.7 Sharpness of Measurement Predictions

If f̂ is self-adjoint then by the spectral theorem we can prepare a system so that ∆f = 0 by choosing an
eigenstate (state vector which is an eigenvector of f̂).

For measurement-expectations to be real, however, only requires that f̂ be symmetric. There are important
examples of observables which are symmetric, but not self-adjoint (e.g. in quantum optics). For such

observables, spec(f̂) may be the empty set. In this case ∆f would be bounded below by some positive
number ∆fmin.
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3.8 The Position and Momentum Eigenbases

We know from Physical Assumption 5 that if we measure observable x̂ and obtain the result x, the state
“collapses” to an eigenstate |x〉 of x̂, with corresponding eigenvalue x. A similar thing happens for measure-
ments of p̂. If we make the reasonable assumption that a measurement of x̂ or p̂ can yield any real number,
this suggests that every real number is an eigenvalue of x̂ and of p̂. So

spec(x̂) = R , spec(p̂) = R.

Since x̂ and p̂ are self-adjoint, the spectral theorem applies. It turns out that the eigenvectors of x̂ are
improper, and nondegenerate. So there is an improper orthonormal position basis

{|x〉}x∈R

so that

〈x|x′〉 = δ(x′ − x) , 1 =

∫

R
|x〉〈x|dx.

Similarly, there is an improper orthonormal momentum basis

{|p〉}p∈R.

We can expand every vector in the Hilbert Space H in the position basis:

|ψ〉 =
∫

R
ψ(x)|x〉,

where ψ(x) = 〈x|ψ〉 is called the wavefunction of |ψ〉 in the position basis, or simply the position wavefunction
of |ψ〉.

We have |ψ〉 ∈ H ⇐⇒ 〈ψ|ψ〉 <∞ which, in the position basis, means

∫

R
〈ψ|x〉〈x|ψ〉dx =

∫

R
ψ∗(x)ψ(x)dx <∞.

It is natural to ask how the operator x̂ acts on a position wavefunction ψ(x). This is easy to calculate,
starting with the action of x̂ on the state vector ψ:

x̂|ψ〉 = |ϕ〉
=⇒ 〈x|x̂|ψ〉 = 〈x|ϕ〉
insert the identity on the LHS:

=⇒
∫

R
〈x|x̂|x′〉〈x′|ψ〉dx′ = 〈x|ϕ〉

=⇒
∫

R
x′δ(x− x′)ψ(x′)dx′ = ϕ(x)

=⇒ xψ(x) = ϕ(x).

So we find that x̂ acts on position wavefunctions ψ(x) as multiplication by x. What about p̂? The compu-
tation is analogous, but relies on the following result (the proof of which we omit as it involves distribution
theory):

Theorem 23

〈x|p̂|x′〉 = i~
d

dx′
δ(x− x′).
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Note that, even though operators can not be described in an improper basis by a discrete matrix, we will
refer, for example, to 〈x|p̂|x′〉 as a matrix element of the p̂ operator in the position basis.

Now,

p̂|ψ〉 = |ϕ〉
=⇒ 〈x|p̂|ψ〉 = 〈x|ϕ〉

=⇒
∫

R
〈x|p̂|x′〉〈x′|ψ〉dx′ = 〈x|ϕ〉

=⇒
∫

R
i~

d

dx′
δ(x− x′)ψ(x′)dx′ = ϕ(x)

integration by parts gives

=⇒ −i~ d
dx
ψ(x) = ϕ(x).

So p̂ acts on position wavefunctions ψ(x) as −i~ d
dx
.

3.9 Hermite and Fourier Transforms

We claimed that every real number x is an eigenvalue of x̂, and that the corresponding eigenvectors satisfy
〈x|x′〉 = δ(x−x′). We can prove that this is the case, by solving x̂|x〉 = x|x〉 explicitly in a convenient basis.
Choose the orthonormal basis {|n〉}n∈N in which

〈n|x̂|m〉 = L




0
√
1 0 0 · · ·√

1 0
√
2 0 · · ·

0
√
2 0

√
3 · · ·

0 0
√
3 0

. . .
...

...
...

. . .
. . .




n,m

and

〈n|x̂|m〉 = L




0 −
√
1 0 0 · · ·√

1 0 −
√
2 0 · · ·

0
√
2 0 −

√
3 · · ·

0 0
√
3 0

. . .
...

...
...

. . .
. . .




n,m

We have 〈n|x̂|n〉 = x〈n|x〉. Inserting the identity,
∑

m

〈n|x̂|m〉〈m|x〉 = x〈n|x〉.

If we define un(x) ≡ 〈n|x〉 (so that |x〉 =∑n un(x)|n〉), this becomes
∑

m

〈n|x̂|m〉um(x) = xun(x).

This is a matrix equation, from which we can read-off equations:

L
√
1u2(x) = xu1(x)

L
√
1u1(x) + L

√
2u3(x) = xu2(x)

...

L
√
n− 2un−2(x) + L

√
n− 1un(x) = xun−1(x) ∀n ∈ N
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which leads to the recursion relation

un(x) =
1

L
√
n− 1

(
xun−1(x)− L

√
n− 2un−2(x)

)
.

This recursion relation can be solved (we will not do it) to give

un(x) =
1√√

π2n−1(n− 1)!
e−

x2

4L2Hn−1

(
x√
2L

)

where

Hn(z) = (−1)nez2 d
n

dzn
e−z

2

.

So, we have solved explicitly for the eigenvectors |x〉 =∑n∈N un(x)|n〉. It can be shown that

〈x|x′〉 =
∑

n∈N
〈x|n〉〈n|x′〉 =

∑

n∈N
u∗n(x)un(x

′) = δ(x− x′).

A natural question is how we convert the wavefunctions between the position basis and the discrete bases;
i.e. how do we convert between ψ(x) and ψn? The answer is found (not surprisingly) by the “trick” of
inserting the identity, together with the fact that un(x) is self-adjoint:

ψ(x) = 〈x|ψ〉 =
∑

n

〈x|n〉〈n|ψ〉 =
∑

n

un(x)ψn (A)

and conversely

ψn = 〈n|x〉 =
∫

R
〈n|x〉〈x|ψ〉dx =

∫

R
un(x)ψ(x)dx (B).

(A) and (B) are known as the Hermite Transforms.

Consider the momentum eigenbasis {|p〉}p∈R.

Definition 18 ψ̃(p) = 〈p|ψ〉 is known as the momentum wavefunction of |ψ〉.

So we have that |ψ〉 ∈ H iff
∫

R ψ̃
∗(p)ψ̃(p)dp <∞, and every state |ψ〉 can be written as

|ψ〉 =
∫

R
|p〉〈p|dp =

∫

R
ψ̃(p)|p〉dp.

We have the following result

Theorem 24

〈x|p〉 = 1√
2π~

e
ixp

~ .

A natural question is how to convert between position wavefunctions and momentum wavefunctions. Again,
the answer is calculated by inserting the identity, and using the theorem stated above.

ψ̃(p) = 〈p|ψ〉 =
∫

R
〈p|x〉〈x|ψ〉dx =

∫

R

1√
2π~

e−
ixp

~ ψ(x)dx (C)

and conversely

ψ(x) = 〈x|ψ〉 =
∫

R
〈x|p〉〈p|ψ〉dp =

∫

R

1√
2π~

e
ixp

~ ψ̃(p)dp (D)

(C) and (D) are known as the Fourier Transform and the Inverse Fourier Transform respectively.
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3.10 Equivalence of Representations: the Stone/Von-Neumann Theorem

Any representation we choose must satisfy the CCRs; i.e. must satisfy [x̂, p̂] = i~. So, for all |ψ〉 we need

x̂p̂|ψ〉 − p̂x̂|ψ〉 = i~|ψ〉 (∗).

In the discrete basis {|n〉}, we have x̂, p̂ as matrices L(a†+a) and i~
2L (a

†−a) acting on vectors (ψ1, ψ2, . . .)
T ,

and it is an easy matrix calculation to verify that (∗) is satisfied. In the position basis {|x〉} we verify (∗),
by first noting that

(∗) ⇐⇒ 〈x|x̂p̂|ψ〉 − 〈x|p̂x̂|ψ〉 = i~〈x|ψ〉︸ ︷︷ ︸
=ψ(x)

(∗∗)

for any position eigenvector |x〉. So it suffices to check (∗∗). We use the (now familiar) “trick” of inserting
the identity a total of 4 times on LHS of (∗∗), and use integration by parts.

〈x|x̂p̂|ψ〉−〈x|p̂x̂|ψ〉

=

∫

R

∫

R
〈x|x̂|x′〉〈x′|p̂|x′′〉〈x′′|ψ〉dx′dp′ −

∫

R

∫

R
〈x|p̂|x′〉〈x′|x̂|x′′〉〈x′′|ψ〉dx′dp′

= x

(
−i~ d

dx

)
ψ(x) + i~

d

dx
xψ(x)

= x

(
−i~ d

dx

)
ψ(x) + i~ψ(x) + x

(
i~
d

dx

)
ψ(x)

= i~ψ(x)
= i~〈x|ψ〉

So (∗∗) is indeed satisfied.

We can do computations like the above (much) more quickly, without going through the tedious exercise of
inserting the identity everywhere, by using the rule

x̂ acts on position wavefunctions ψ(x) as multiplication by x, and

p̂ acts on position wavefunctions ψ(x) as −i~ d
dx

which we proved in Section 3.8.

The representations of [x̂, p̂] = i~ in terms of matrices, and in terms of operators x̂, p̂, differ only in a choice of
basis for the Hilbert space H. The following theorem says that this is so for all representations of [x̂, p̂] = i~.

Theorem 25 (Stone/von-Neumann) Every representation of x̂, p̂ obeying [x̂, p̂] = i~ as linear maps is ob-
tainable as a choice of basis in the Hilbert space H that we have been working with.

As another example, consider the representations of x̂ and p̂ in the momentum basis {|p〉}. Here

x̂ maps momentum wavefunctions ψ̃(p) to i~ d
dp
ψ̃(p), and

p̂ maps momentum wavefunctions ψ̃(p) to pψ̃(p).
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4 Quantum Mechanics in the Schrödinger Picture, and the Posi-
tion Basis

4.1 The Schrödinger Equation Revisited

We are now in a position to view the Schrödinger equation as it is often seen in introductory quantum
mechanics books as the more general equation expressed in a particular choice of basis for H. We will

assume that our Hamiltonians are time-independent (i.e. ∂Ĥ
∂t

= 0) so that the Ĥs = Ĥ, and we will denote

the Hamiltonians simply by Ĥ.

Recall the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉.

For a free particle, with Ĥ = p̂2

2m , this reads

i~
d

dt
|ψ(t)〉 = p̂2

2m
|ψ(t)〉.

To write this in the position basis, replace |ψ(t)〉 with the position wavefunction ψ(x, t), and use the rule for
how x̂ and p̂ acts on position wavefunctions:

i~
∂

∂t
ψ(x, t) = − ~

2

2m

∂2

∂x2
ψ(x, t).

Do the same thing for general Hamiltonian

Ĥ =
p̂2

2m
+ V (x̂, p̂)

where V is a potential energy function. The Schrödinger equation for this Hamiltonian in the position basis
is

i~
∂

∂t
ψ(x, t) =

(
− ~
2m

∂2

∂x2
+ V

(
x,−i~ ∂

∂x

))
ψ(x, t).

This is the form of quantum mechanics as Schrödinger found it (Heisenberg found quantum mechanics in
the discrete {|n〉} basis.

4.2 Predicting Observables

Recall that in the Schrödinger picture, measurement-expectations obey

f(t) = 〈ψ(t)|f̂(x̂, p̂)|ψ(t)〉.

Using the rule for how x̂ and p̂ acts on position wavefunctions, we write this in the position basis as

f(t) =

∫

R
ψ∗(x, t)f̂

(
x,−i~ ∂

∂x

)
ψ(x, t)dx.

Recall that physical states |ψ〉 ∈ H must obey 〈ψ|ψ〉 = 1. In the position basis, this is expressed as∫
R ψ

∗(x)ψ(x)dx = 1.



Advanced Quantum Mechanics 25

Example: Consider a particle in 3 dimensions. We have [x̂i, p̂j ] = i~δi,j , i, j ∈ {1, 2, 3}. We can
use x1, x2, x3 as a maximal set of commuting observables and find a joint eigenbasis {|x1, x2, x3〉}.
According to the continuous normalization, we have

〈x1, x2, x3|x′1, x′2, x′3〉 = δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3)

1 =

∫∫∫
|x1, x2, x3〉〈x1, x2, x3|dx1dx2dx3.

Any |ψ〉 can be expanded as

|ψ〉 =
∫∫∫

|x1, x2, x3〉〈x1, x2, x3|ψ〉dx1dx2dx3

=

∫∫∫
ψ(x1x2x3)dx1dx2dx3

where ψ(x1x2x3) is the position wavefunction. Suppose the particle is an electron orbiting a
nucleus. Then the Hamiltonian is

Ĥ =
p̂2

2m
− α√

x̂2
.

In the Schrödinger picture, and the position basis, i~ ∂
∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 reads

i~
∂

∂t
ψ(x, t) =

(
− ~

2

2m

(
∂2

∂x21
+

∂2

∂x21
+

∂2

∂x21

)
− α

|x̂|

)
ψ(x, t). (∗)

To obtain the dynamics of the electron, we would need to solve (∗) with some initial condition
ψ(x, t0) = ψ0(x). Once ψ(x1, x2, x3, t) is found, we can predict all expectation values! For
example

p2(t) =

∫∫∫
ψ∗(x1, x2, x3, t)(−i~)

∂

∂x2
ψ(x1, x2, x3, t)dx1dx2dx3.

4.3 The Green Function Method for solving Schrödinger Equations

The “Green Method” prevents us from having to solve the Schrödinger equation separately for each initial
condition ψ(x, t0) = ψ0(x). The method is:

1. Solve

i~
∂

∂t
G(x, x′, t) = Ĥ

(
x,−i~ ∂

∂x

)
G(x, x′, t)

with initial condition
G(x, x′, t0) = δ(x− x′).

2. For any initial condition ψ0(x) we obtain

ψ(x, t) =

∫

R
G(x, x′, t)ψ0(x

′)dx′.

The function G(x, x′, t) is called the Green function, and sometimes called the propagator.
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Proof that Green’s Method Works:

i~
∂

∂t

∫

R
G(x, x′, t)ψ0(x

′)dx′

=

∫
Ĥ

(
x,−i~ ∂

∂x

)
G(x, x′, t)ψ0(x

′)dx′

= Ĥ

(
x,−i~ ∂

∂x

)∫
G(x, x′, t)ψ0(x

′)dx′

= Ĥ

(
x,−i~ ∂

∂x

)
ψ(x, t) X

Also,

ψ(x, t0) =

∫
G(x, x′, t0)︸ ︷︷ ︸
δ(x−x′)

ψ0(x
′)dx′ = ψ0(x) X

Now, recall the time-evolution operator Û(t). The problem of solving the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉

|ψ(t0)〉 = |ψ0〉

becomes that of solving

i~
d

dt
Û(t) = ĤÛ(t)

Û(t0) = 1

Then we have |ψ(t)〉 = Û(t)|ψ0〉. Inserting everywhere the identity resolved in the position basis we would
obtain

G(x, x′, t) = 〈x|Û(t)|x′〉.
So we see that G(x, x′, t) are the matrix elements of the time-evolution operator Û(t) in the position basis.

It is natural to wonder what is the physical meaning of the propagator. This question takes us to a formulation
of quantum mechanics due to Feynman.

5 Feynman’s Formulation of Quantum Mechanics

For convenience, choose the Schrödinger picture. At time ti suppose the initial state of a quantum system
is |ψ〉. Then |ψ(t)〉 = Û(t)|ψ〉.

Suppose at time tf we use a measurement device which outputs 1 if the system is found in state |ϕ〉 and
outputs 0 otherwise. This device is described by a self-adjoint operator P̂|ϕ〉 having eigenvalues 0 and 1. The
eigenspace corresponding to eigenvalue 1 is spanned by |ϕ〉. All vectors |ν〉 which are orthogonal to |ϕ〉 are
in the eigenspace corresponding to eigenvalue 0. The above observations tell us that P̂|ϕ〉 is the projector

P̂|ϕ〉 = |ϕ〉〈ϕ|.

Decompose the final state as |ψ(tf )〉 = α|ϕ〉+ |ν〉 such that |ν〉⊥|ϕ〉. We need

〈ϕ|ν〉 = 0 = 〈ϕ|ψ(tf )〉 − α〈ϕ|ϕ〉︸ ︷︷ ︸
=1

=⇒ α = 〈ϕ|ψ(tf )〉
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So
|ψ(tf )〉 = α|ϕ〉+ |ν〉

Now consider the wavefunction collapse resulting from the measurement. If the measurement outputs 1,
then the new state immediately after tf is |ϕ〉. If the measurement outputs 0, the state immediately after
tf is k|ν〉, where k is chosen so the state is normalised.

Now consider an ensemble of identically prepared systems, and running the experiment separately on each
system. In general, we will have many 0’s and many 1’s in the collection of measurement outputs. The mean
of these numbers is equal to the probability of finding |ϕ〉 at time tf on one particular run of the experiment.
But, from the theory we have developed, we know this probability can be calculated as

P |ϕ〉(tf ) = 〈ψ(tf )|P̂|ϕ〉|ψ(tf )〉 = 〈ψ(tf )||ϕ〉〈ϕ||ψ(tf )〉 = |〈ϕ|ψ(tf )〉|2 .

The quantity 〈ϕ|ψ(tf )〉 is called a probability amplitude or transition amplitude. If |ϕ〉 is improper (for
example |ϕ〉 = |x〉), then 〈x|ϕ(t)〉 = ϕ(x, t) is a probability density function and, for example,

∫ xb

xa

|ϕ(x, t)|2 dx =

∫ xb

xa

ψ∗(x, t)ψ(x, t)dx

= prob. of finding the particle in the interval (xa, xb).

Recall the time-evolution operator Û(t). We have 〈ϕ|ψ(t)〉 = 〈ϕ|U(t)|ψ〉, and so we see that the probability
amplitudes are just the “matrix elements” of the time-evolution operator.

Recall the Green function G(x, x′, t) = 〈x|Û(t)|x′〉. In light of the above, we see that G(x, x′, t) is the
probability amplitude for a particle to propagate from x′ to x.

Now, Feynman compared classical probability theory to the laws of probability dictated by quantum mechan-
ics. Consider a classical system going from state A to state B with some probability P (A → B). Suppose
there are n possible paths from A to B, each passing through one of the n states C1, . . . Cn. Then the
(classical) law of conditional probability dictates that

P (A→ B) =

n∑

i=1

P (A→ Ci)P (Ci → B).

Now consider an isolated, unobserved quantum system with Hamiltonian Ĥ, starting in state |ψ0〉 at time
t0 and evolving until time tf . Consider the probability amplitude 〈ϕ|ψ(tf )〉 for the state being |ϕ〉 at time
tf . Suppose that to get to state |ϕ〉, the system would have to evolve through one of n states |b1〉, . . . , |bn〉
at time t1 (t0 < t1 < tf ). Then we have

〈ϕ|ψ(tf )〉 = 〈ϕ|Û(tf , t0)︸ ︷︷ ︸
e
tf−t0
i~ Ĥ

|ψ0〉 = 〈ϕ|Û(tf , t1)︸ ︷︷ ︸
e
tf−t1
i~ Ĥ

Û(t1, t0)︸ ︷︷ ︸
e
t1−t0
i~ Ĥ

|ψ0〉

=

n∑

i=1

〈ϕ|Û(tf , t1)|bi〉〈bi|Û(t1, ti)|ψ0〉.

Note that 〈ϕ|Û(tf , t1)|bi〉 is the probability amplitude for the evolution |bi〉 → |ϕ〉 and 〈bi|Û(tf , t1)|ψ0〉 is
the probability amplitude for the evolution |ψ0〉 → |bi〉. Feynman observed that in quantum mechanics,
the law of conditional probabilities applies to probability amplitudes, instead of simple probabilities. This is
significant, because probability amplitudes can have phase factors (so in particular, the could be negative!).
This is why quantum interference can happen.
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6 Density Matrices and Mixed States

6.1 Density Matrices and Mixed States

So far, we have assumed that a state |ψ〉 of a system can be known with certainty. Then our expectation

values are f = 〈ψ|f̂ |ψ〉. A more realistic situation is that we do not know the state of the system with
certainty, but rather know that it is in one of the states |b1〉, . . . , |bn〉 with respective probabilities p1, . . . , pn.
Without loss of generality we can assume that the |bi〉 form an O.N. basis (otherwise we could extend the
set by adding new states with corresponding probabilities equal to zero), and that

∑n
i=1 pi = 1 (we know

for certain the system is in one of the n possible states). In this case, the expectation values are computed
through

f =
n∑

i=1

pi〈bi|f̂ |bi〉.

Note that the uncertainty in f now has two sources:

a) our uncertainty about which state the system is in, and

b) the quantum-mechanical uncertainty.

Definition 19 We say that a system is in a Mixed State if more than one pi is nonzero. Otherwise the
system is said to be in a Pure State.

Definition 20

ρ̂ =
∑

i

pi|bi〉〈bi|

is called the Density Matrix for the system.

Definition 21 The trace of an operator Â is

Tr(Â) =
∑

n

〈cn|Â|cn〉

where {|cn〉} is any O.N. basis for the space of Â.

Note: ρ̂ is self-adjoint, and Tr(ρ̂) = 1 (proof follows from cyclicity of trace).

Now, the equation f =
∑
i pi〈bi|f̂ |bi〉 becomes

f = Tr(ρ̂f̂).

Suppose we choose a basis {|cn〉}. Then f = Tr(ρ̂f̂) becomes

f =
∑

n,m

〈cn|ρ̂|cm〉〈cm|f̂ |cn〉.

We can define coefficient matrices for ρ̂ and f̂ in the {|cn〉} basis:

ρ̂n,m = 〈cn|ρ̂|cm〉 , f̂n,m = 〈cn|f̂ |cm〉.

Then f =
∑
n,m ρ̂n,mf̂n,m.

Remarks:
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We can choose, equivalently, improper or mixed O.N. bases in all of the above.

For a mixed state, ρ̂ is non-diagonal in almost all bases. But, because ρ̂ is self-adjoint, there always
exists a basis in which it is diagonal (the eigenbasis). Only then does ρ̂ have the form

ρ̂ =
∑

n

pn|bn〉〈bn|.

In general bases we have

ρ̂ =
∑

n,m

ρ̂n,m|cn〉〈cm|.

We know that the time-evolution of Schrödinger states |ψ(t)〉 obeys the Schrödinger equation. This leads us
to a result for the time-evolution of density matrices.

Theorem 26 The time-evolution of the density matrix for a closed system follows the von-Neumann eqution:

i~
d

dt
ρ̂(t) = −

[
ρ̂(t), Ĥ

]
.

Proof: Write
ρ̂(t0) =

∑

n

pn|bn〉〈bn|.

From the Schrödinger equation:

i~
d

dt
|bn(t)〉 = Ĥ(t)|bn(t)〉

and thus

−i~ d
dt
〈bn(t)| = 〈bn(t)|Ĥ(t) (since Ĥ†(t) = Ĥ(t)).

At time t, each |bn(t0)〉 has evolved to |bn(t)〉. So ρ̂(t0) has evolved to

ρ̂(t) =
∑

n

pn|bn(t)〉〈bn(t)| (∗).

Apply i~ d
dt

to both sides of (∗):

i~
d

dt
ρ̂(t) = i~

d

dt

∑

n

pn|bn(t)〉〈bn(t)|

=
∑

n

pn

(
i~
d

dt
(|bn(t)〉〈bn(t)|)

)

=
∑

n

pn

(
i~
(
d

dt
|bn(t)〉

)
〈bn(t)|+ i~|bn(t)〉

(
d

dt
〈bn(t)|

))

=
∑

n

pn

(
i~
(
d

dt
|bn(t)〉

)
〈bn(t)| − |bn(t)〉

(
−i~ d

dt
〈bn(t)|

))

=
∑

n

pn

(
Ĥ(t)|bn(t)〉〈bn(t)| − |bn(t)〉〈bn(t)|Ĥ(t)

)

= Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)

= −
[
ρ̂(t), Ĥ

]
¤
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Note: We also have ρ̂(t) = U(t)ρ̂Û(t)†.

Review: changing bases for operators

How do we convert ρ̂ from the {|cn〉} basis to a {|dn〉} basis? We use the old trick of inserting
the identity resolved in the new basis:

ρ̂ =
∑

n,m,r,s

ρ̂n,m|dr〉〈dr|cn〉〈cm|ds〉〈ds|

=
∑

r,s

ρ̃r,s|dr〉〈ds|

where ρ̃r,s =
∑
n,m ρ̂n,m〈dr|cn〉〈cm|ds〉.

6.2 Example: quantum system S in a heat bath

Suppose a quantum system S is in a heat bath at temperature T . According to statistical physics, the
probability for a subsystem of a heat bath to be at energy E is proportional to

∼ e− E
kT

where k = 1.38 · 10−23J/Kelvin is the Boltzman Constant.

Assume the system S has nondegenerate energy eigenvalues {En}. Then

prob(En) = Ne−
En
kT ,

where N = 1
∑

m e
−
Em
kT

. In other words, the probability is

pn = prob(En) =
e−

En
kT

∑
m e

−Em
kT

.

Choose the energy eigenbasis of the system. Then the density matrix is

ρ̂ =
∑

n

pn|En〉〈En|.

Now, since {Em} are the eigenvalues of the Hamitonian Ĥ, we have that Ĥ is diagonal in the basis of its
eigenvectors |Em〉, and so

e−
Ĥ
kT =

∑

m

e−
Em
kT |Em〉〈Em|

Using this observation, and the definition of Trace, we get

Tr(e−
Ĥ
kT ) =

∑

n

〈En|e−
Ĥ
kt |En〉

=
∑

n

〈En|
∑

m

e−
Em
kT |Em〉〈Em|En〉

=
∑

n,m

〈En|Em〉e−
Em
kT 〈Em|En〉

=
∑

n

e−
En
kT .
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Therefore we can write the density matrix for the system in the Heat bath as

ρ̂ =
1

Tr(e−
Ĥ
kT )

e−
Ĥ
kT .

6.3 Decoherence and Mixed States

Consider a quantum system Sc in a pure state, evolving in time. If Sc is completely isolated from it’s
environment, then the time-evolution is unitary, and the state of Sc remains pure. If Sc is allowed to interact
with the environment at time t1, then the interaction carries away some information about the state of
Sc, and in this sense constitutes a measurement of Sc (whether or not this interaction was intended as a
controlled measurement). Thus the state of Sc collapses as a result of the interaction. Since we don’t learn
the outcome of this measurement, we don’t know which pure state Sc is in, and so Sc is left in a mixed
state ρ̂Sc at time t1. Suppose we know that the interaction with the environment was, in particular, with
a subsystem of the environment which we will label Sb. Imagine Sb is a photon which comes in from the
environment, bounces off Sc, and returns to the environment, carrying with it some information about the
state of Sc. Let us investigate how to compute the mixed state ρ̂Sc .

Assume Sc has N particles. Assume Sc is in a pure state |ψ(Sc)〉 at time t0. We have x̂
(j)
i , p̂

(j)
i , where

i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , N}. The system Sc has some Hamiltonian Ĥ(Sc)
(
x̂
(j)
i , p̂

(j)
i

)
. Choose a maximal

set of 3N commuting observables (self-adjoint operators), say Q̂(1), . . . , Q̂(3N). Find a joint eigenbasis of all
the Q̂(j) spanning HSc :

{|q(1)n1
, q(2)n2

, . . . , q(3N)n3N
〉},

where q
(j)
ni are the eigenvalues of Q̂(j). The pure state of Sc can be expanded in this basis as

|ψ(Sc)〉 =
∑

n1,...,n3N

ψ(Sc)n1,...,n3N
|q(1)n1

, q(2)n2
, . . . , q(3N)n3N

〉

and any observable f̂ can be expanded as

f̂ =
∑

n1,...,n3N,

ñ1,...,ñ3N

f̂n1,...,n3N ,ñ1,...,ñ3N
|q(1)ñ1

, q
(2)
ñ2
, . . . , q

(3N)
ñ3N
〉〈q(1)n1

, q(2)n2
, . . . , q(3N)n3N

|.

Expectation values are calculated as

f = 〈ψ(Sc)|f̂ |ψ(Sc)〉
=

∑

n1,...,n3N,

ñ1,...,ñ3N

ψ
∗(Sc)
ñ1,...,ñ3N

f̂n1,...,n3N ,ñ1,...,ñ3N
ψ(Sc)n1,...,n3N

.

Now, consider the subsystem of the environment, Sb. Assume Sb has M particles. We have operators

x̂
(j)
i , p̂

(j)
i , where i ∈ {1, 2, 3}, j ∈ {N + 1, N + 2, . . . , N +M}, and a Hamiltonian Ĥ(Sb)

(
x̂
(j)
i , p̂

(j)
i

)
. Choose

a maximal set of 3M observables, say R̂(1), . . . , R̂(3M). Obtain a joint orthonormal eigenbasis of all R̂(i):

{|r(1)m1
, r(2)m2

, . . . , r(3M)m3M
〉}.

Assume Sb is in a pure state |ϕ(Sb)〉 ∈ HSb , and expand as

|ϕ(Sb)〉 =
∑

m1,...,m3M

ϕ(Sb)m1,...,m3M
|r(1)m1

, r(2)m2
, . . . , r(3M)m3M

〉.

Now, consider the total system Stot = Sc ∪ Sb. We have operators x̂
(j)
i , p

(j)
i , where i ∈ {1, 2, 3}, j ∈

{1, . . . , N +M}. Now all j ∈ {1, . . . , N +M} can occur in the Hamiltonian Ĥ(tot)
(
x̂
(j)
i , p

(j)
i

)
. Choose a
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maximal set of 3(N +M) commuting self-adjoint operators Q̂(1), . . . , Q̂(3N), R̂(1), . . . , R̂(3M). Again, obtain
a joint orthonormal eigenbasis

{|q(1)n1
, . . . , q(3N)n3N

, r(1)m1
, . . . , r(3M)m3M

〉}.
A general pure state of Stot is

|ψ(tot)(t)〉 =
∑

n1,...,m3M

ψ(tot)n1,...,m3M
(t)|q(1)n1

, . . . , r(3M)m3M
〉.

Now, given that at time t0, Sc and Sb are respectively in pure states |ψ(Sc)〉 and |ϕ(Sb)〉, then the state of
Stot has the components

ψ(tot)n1,...,m3M
(t0) = ψ(Sc)n1,...,n3N

ϕ(Sb)m1,...,m3M
.

Consider the expectation of an observable f̂ of Sc at time t0:

f = 〈ψ(tot)(t0)|f̂ |ψ(tot)(t0)〉
=

∑

n1,...,m3M,

ñ1,...,m̃3M

ψ
∗(tot)
ñ1,...,m̃3M

(t0)f̂ñ1,...,ñ3N ,n1,...,n3N
ψ(tot)n1,...,m3M

(t0)

=




∑

n1,...,n3N,

ñ1,...,ñ3N

ψ
∗(Sc)
ñ1,...,ñ3N

f̂ñ1,...,ñ3N ,n1,...,n3N
ψ(Sc)n1,...,n3N




·




∑

m1,...,m3M,

m̃1,...,m̃3M

ϕ
∗(Sb)
m̃1,...,m̃3M

ϕ(Sb)m1,...,m3M




︸ ︷︷ ︸
=1

= 〈ψ(Sc)|f̂ |ψ(Sc)〉.

The evolution according to the joint Hamiltonian Ĥ(tot) will destroy the product form of the state |ψ(tot)(t)〉
and we obtain, at time t1, the general components ψ

(tot)
n1,...,m3M (t1).

Definition 22 If ψ(tot) is a product, it is called an unentangled, or separable state. Otherwise, it is called
an entangled state.

Consider an observable f̂ of Sc. We have

f̂ñ1,...,m̃3M ,n1,...m3M
= f̂ñ1,...,ñ3N ,n1,...n3N︸ ︷︷ ︸

action on Hc

δm̃1,m1
δm̃2,m2

· · · δm̃3M ,m3M︸ ︷︷ ︸
action on Hb

.
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At time t1, the expectation value of the observable f of Sc is:

f = 〈ψ(tot)(t1)|f̂ |ψ(tot)(t1)〉︸ ︷︷ ︸
pure-state calculation in S(tot)

=
∑

n1,...,n3N,m1,...,m3M,

ñ1,...,ñ3N,m̃1,...m̃3M

ψ
∗(tot)
ñ1,...,m̃3M

(t1)f̂ñ1,...,ñ3N ,n1,...,n3N
(δm̃1,m1

· · · δm̃3M ,m3M
)ψ(tot)n1,...,m3M

(t1)

=
∑

n1,...,n3N,

ñ1,...,ñ3N

f̂ñ1,...,ñ3N ,n1,...,n3N
ρ̂
(c)
n1,...,n3N ,ñ1,...,ñ3N

(t1)

︸ ︷︷ ︸
mixed-state calculation in S(c)

where ρ̂
(c)
n1,...,n3N ,ñ1,...,ñ3N

(t1) =
∑

m1,...,m3M

ψ
∗(tot)
ñ1,...,ñ3N ,m1,...m3M

(t1)ψ
(tot)
n1,...,n3N ,m1,...m3M

(t1).

7 Compositions of Several Systems

Consider two quantum systems S1 and S2. Observables of S1 contain only x̂ and p̂ from S1 acting on
|ψ〉 ∈ H1. Observables of S2 contain only x̂ and p̂ from S2 acting on |ψ〉 ∈ H2. Observables of the total
system Stot = S1 ∪ S2 may contain all x̂, p̂ of S1 and S2, acting on Htot. For example

Ĥ(tot) =

(
p̂(1)
)2

2m1
+

(
p̂(2)
)2

m2
+ V

(
x̂(1) − x̂(2)

)
.

We call V the interaction term.

A natural question is “how do we construct Htot from H1 and H2”? A partial answer is that we often have
Htot = H1 ⊗H2, where “⊗” denotes the tensor product, defined as follows.

Definition 23 As a set, define H1 ⊗H2 = span{|ψ〉 ⊗ |ϕ〉 : |ψ〉 ∈ H1, |ϕ〉 ∈ H2} with the additional laws:

I)

(|ψ1〉+ |ψ2〉)⊗ |ϕ〉 = |ψ1〉 ⊗ |ϕ〉+ |ψ2〉 ⊗ |ϕ〉
|ψ〉 ⊗ (|ϕ1〉+ |ϕ2〉) = |ψ〉 ⊗ |ϕ1〉+ |ψ〉 ⊗ |ϕ2〉

II)
(λ|ψ〉)⊗ |ϕ〉 = λ(|ψ〉 ⊗ |ϕ〉) = |ψ〉 ⊗ (λ|ϕ〉)

and with conjugation map †:
† : |ψ〉 ⊗ |ϕ〉 −→ 〈ψ| ⊗ 〈ϕ| ∈ (H1 ⊗H2)†

(extended linearly for linear combinations).

It can be shown that H1 ⊗ H2 is a Hilbert space. In particular, if {|bn〉}n and {|cm〉}m are orthonormal
bases of H1 and H2 respectively, then {|bn〉 ⊗ |bm〉}n,m is an orthonormal basis of H1 ⊗H2.

Assume f̂ is polynomial in the x̂ and p̂ of S1. Define f̂ to act on |ψ〉 ⊗ |ϕ〉 ∈ H1 ⊗H2 as

f̂ : |ψ〉 ⊗ |ϕ〉 −→ (f̂ |ψ〉)⊗ |ϕ〉.
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We write f̂ on the acting on the whole system as f̂ ⊗ 1.

Note: All the CCRs hold on H1 ⊗H2, and ⊗ respects Hermiteicity.

By the Stone/Von-Neumann uniqueness theorem, Htot ⊆ H1 ⊗H2. Thus every |ψ〉 ∈ H(tot) can be written
as

|ψ〉 =
∑

n,m

ψn,m|bn〉 ⊗ |cm〉.

Definition 24 |ψ〉 ∈ Htot is called unentangled (or separable) if it can be written as

|ψ〉 = |ϕ1〉 ⊗ |ϕ2〉

for |ϕ1〉 ∈ H1, |ϕ2〉 ∈ H2. Otherwise, |ψ〉 is called entangled.

Assume |ψ〉 = |ϕ1〉 ⊗ |ϕ2〉 (i.e. |ψ〉 is unentangled). Now let f̂ be any observable on the first subsystem.

Consider the expectation of this observable on the whole system; i.e. the expectation of f̂ ⊗ 1.

f = 〈ψ|(f̂ ⊗ 1)|ψ〉
= (〈ϕ1| ⊗ 〈ϕ2|)(f̂ ⊗ 1)(|ϕ1〉 ⊗ |ϕ2〉)
= 〈ϕ1|f̂ |ϕ1〉〈ϕ2|ϕ2〉
= 〈ϕ1|f̂ |ϕ1〉.

But 〈ϕ1|f̂ |ϕ1〉 is exactly the expectation we would predict for f̂ acting on system S1 alone. Since this is true

for any observable f̂ , system S1 is in the pure state |ϕ1〉. We have shown the following:

Fact 1 |ψ〉 ∈ Htot is unentangled iff the states of subsystems S1 and S2 considered on their own are pure
states.

If, however, |ψ〉 is entangled, then the state of system S1 is a mixed state whose density operator is obtained
by the partial trace (i.e. we trace over the basis of the second system; sometimes referred to as tracing-out
the second system). For the remainder of this section, we show that the partial trace operation gives the
right result.

Let {|bn〉} be an orthonormal basis of subsystem S1, and let {|cm〉} be an orthonormal basis of subsystem
S2. Suppose |ψ〉 is a general (possibly entangled) pure state on the total system:

|ψ〉 =
∑

n,m

ψn,m|bn〉 ⊗ |cm〉.

The subsystem S1 is in a mixed state with density operator ρ̂(1) iff

f = Tr(f̂ ρ̂(1)) (∗)

for arbitrary Hermitean observables f̂ of S1.

We compute the left-hand side (LHS) and right-hand side (RHS) of (∗) separately, and make sure they are
equal.

RHS:
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By definition of the reduced density operator and partial trace, we have

ρ̂(1) = Tr(2)(|ψ〉〈ψ|)

= Tr(2)




∑

n,m,ñ,m̃

ψn,mψ
∗
ñ,m̃(|bn〉 ⊗ |cm〉)(〈bñ| ⊗ 〈cm̃|)




=
∑

r

∑

n,m,
ñ,m̃

ψn,mψ
∗
ñ,m̃|bn〉〈bñ|〈cr|cm〉〈cm̃|cr〉

=
∑

r

∑

n,m,
ñ,m̃

ψn,mψ
∗
ñ,m̃|bn〉〈bñ|δr,mδm̃,r

=
∑

n,ñ,m

ψn,mψ
∗
ñ,m|bn〉〈bñ|.

Now, (f̂ ρ̂(1)) is an operator on system S1 alone, so by definition of Trace we have

Tr(f̂ ρ̂(1)) =
∑

u

〈bu|


f̂

∑

n,ñ,m

ψn,mψ
∗
ñ,m|bn〉〈bñ|


 |bu〉

=
∑

u,m,n,ñ

ψn,mψ
∗
ñ,m〈bu|f̂ |bn〉〈bñ|bu〉

=
∑

u,m,n,ñ

ψn,mψ
∗
ñ,m〈bu|f̂ |bn〉δñ,u

=
∑

m,n,ñ

ψn,mψ
∗
ñ,m〈bñ|f̂ |bn〉. (1)

LHS:
To compute the LHS, we consider f̂ acting on the total system as f̂ ⊗ 1.

f = 〈ψ|(f̂ ⊗ 1)|ψ〉
=

∑

n,m,ñ,m̃

ψ∗ñ,m̃ψn,m(〈bñ| ⊗ 〈cm̃|)(f̂ ⊗ 1)(|bn〉 ⊗ |cm〉)

=
∑

n,m,ñ,m̃,r,s,u,v

ψ∗ñ,m̃ψn,m(〈bñ| ⊗ 〈cm̃|)(|br〉 ⊗ |cs〉)(〈br| ⊗ 〈cs|)(f̂ ⊗ 1)(|bu〉 ⊗ |cv〉)(〈bu| ⊗ 〈cv|)(|bn〉 ⊗ |cm〉)

=
∑

n,m,ñ,m̃,r,s,u,v

ψ∗ñ,m̃ψn,m(〈bñ|br〉〈br|f̂ |bu〉〈bu|bn〉)⊗ (〈cm̃|cs〉〈cs|cv〉〈cv|cm〉)

=
∑

n,m,ñ,m̃,r,s,u,v

ψ∗ñ,m̃ψn,m(δñ,r〈br|f̂ |bu〉δu,n) · (δm̃,sδs,vδv,m)

=
∑

m,n,ñ

ψ∗ñ,mψn,m〈bñ|f̂ |bn〉. (2)

Since (1) = (2), we have LHS=RHS, and so we are done. We have thus shown the following.

Fact 2 For a general pure state |ψ〉 of the joint system S1 ∪ S2, the subsystem S1 considered alone is in a
(generally mixed) state whose density operator is

ρ̂(1) = Tr(2)(|ψ〉〈ψ|).
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8 Identical Particles

8.1 Bosons and Fermions

Consider a system S. Choose a maximum set of commuting observables Q̂(1), . . . , Q̂(N) with joint orthonormal

eigenbasis {|q(1)n1 , . . . , q
(N)
nN 〉}. We will write Q̂ and {|qn〉} for short. Every |ψ〉 ∈ H can be written |ψ〉 =∑

n ψn|qn〉.

Consider having two identical such systems. The total system is in a state |ψ〉 ∈ Htot. We know from the
previous section that Htot ⊆ H ⊗ H. Suppose we measure Q̂ for both systems and obtain measurement
outcomes qn, qm. If we assume that the systems are truly indistinguishable, there is no way of knowing
which system was measured in qn and which was measured in qm. All that we can know is that one system
was measured in each of the two. In fact, it is not even meaningful to ask “which system was measured in
qn?”, since the measurement was of a joint observable of the overall system. Now consider the state of the
system immediately after the collapse. Any state of the form

|ψ〉 = α|qn〉 ⊗ |qm〉+ β|qm〉 ⊗ |qn〉

would yield qn, qm on an immediate remeasurement. So the question is, which one of these states does
nature select? Does nature confine itself to a fixed choice of α and β? Before answering the question, note
that an overall phase eiϕ never matters, since

f = 〈ψ|e−iψ f̂ eiψ|ψ〉 = 〈ψ|f̂ |ψ〉

and so |ψ〉 and eiψ|ψ〉 describe the same physical state. Now, to answer the question above, it turns out that
nature always makes one of two choices for the relative phase:

(I) α = β (“Bosonic case”)

(II) α = −β (“Fermionic case”).

So, two identical “Bosons” collapse into

|ψ〉 = 1√
2
(|qn〉 ⊗ |qm〉+ |qm〉 ⊗ |qn〉)

and two identical “Fermions” collapse into

|ψ〉 = 1√
2
(|qn〉 ⊗ |qm〉 − |qm〉 ⊗ |qn〉).

Bosons are particles which have integer values of angular momentum, and Fermions are particles which have
half-integer values of angular momentum.

Consider carefully the situation for Fermions. Suppose the outcome of the measurement was qn, qn. Then
the two identical Fermions will collapse into the state

|ψ〉 = 1√
2
(|qn〉 ⊗ |qn〉 − |qn〉 ⊗ |qn〉) = 0.

But 0 is not a physical state, and so we see that identical Fermions can never be in the same state.

Note: If space had fewer than 3 dimensions, then any relative phase would be possible. Such a space would
give rise to Anyons (e.g. quantum Hall effect).

Remark: Ĥ treats identical subsystems identically. One can show that symmetry (or anti-symmetry) is
preserved under time-evolution. This means that Htot ( H⊗H for bosons and fermions.



Advanced Quantum Mechanics 37

8.2 Special Behaviour of Bosonic and Fermionic Systems

Consider a system S. Suppose a maximum set of commuting observables is Ĥ, Q̂. Assume the eigenvalues of
Ĥ form a discrete set {Em}, and that Q̂ has only two eigenvalues {q1, q2}. The joint orthonormal eigenbasis
is {|En, qi〉}n∈N,i∈{1,2}. Now, suppose we put the system into a heat bath. The density matrix of the system
is

ρ̂ =
∑

n∈N,i∈{1,2}

ρn|En, qi〉〈En, qi| , ρn =
1

N
e−

En
kT .

Suppose at time t1 we measure Ĥ and Q̂. The probability for finding state |En, q1〉 is proportional to e−
En
kT ,

and the probability for finding state |En, q2〉 is also proportional to e−
En
kT . In both cases, the probability is

independent of i. If we find En, then the probability of finding q1 is
1
2 .

Now, suppose we have two similar systems in the heat bath together, and at time t1 measure Ĥ and Q̂
of each system. Suppose we obtain energy En for both systems (i.e. the measurement result is En, En).
Consider the probability for finding the qi to be different, verses the probability for finding the qi the same.
There are three cases.

Case 1: Distinguishable systems
We are sure to find one of 4 states:

|En, q1〉 ⊗ |En, q1〉 , |En, q1〉 ⊗ |En, q2〉
|En, q2〉 ⊗ |En, q1〉 , |En, q2〉 ⊗ |En, q2〉

All four states have equal energy 2En, and so are equally probable. So,

the probability to find the qi equal is
1
2 , and

the probability to find the qi unequal is
1
2 .

Case 2: Identical Bosons
We are sure to find one of 3 states:

|En, q1〉 ⊗ |En, q1〉 , |En, q2〉 ⊗ |En, q2〉
1√
2
(|En, q1〉 ⊗ |En, q2〉+ |En, q2〉 ⊗ |En, q1〉)

All three states have equal energy, and so are equally probable. So,

the probability to find the qi equal is
2
3 , and

the probability to find the qi unequal is
1
3 .

The probability for Bosons to be in the same state is enhanced. This is what makes Bose-Einstien
condensates (many Bosons in the same state) possible.

Case 3: Identical Fermions
We are sure to find the state:

1√
2
(|En, q1〉 ⊗ |En, q2〉 − |En, q2〉 ⊗ |En, q1〉)

So,

the probability to find the qi equal is 0, and

the probability to find the qi unequal is 1.

This is known as the Pauli exclusion principle.
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9 Angular Momentum

9.1 Generators of Symmetries

We begin by examining how which the (linear) momentum operator p̂ can be thought to “generate” trans-
lations of the position operator. It can be shown that

e
ibp̂
~ x̂e−

ibp̂
~ = x̂+ b ∀b ∈ R

by expanding the second exponential in terms of a power series, and then commuting x̂ through p̂n.

Now, consider the action of x̂ on the state e
ibp̂
~ |x〉.

x̂
(
e
ibp̂
~ |x〉

)
= e

ibp̂
~ e−

ibp̂
~ x̂

(
e
ibp̂
~ |x〉

)

= e
ibp̂
~
(
e−

ibp̂
~ x̂e

ibp̂
~
)
|x〉

= e
ibp̂
~ (x̂+ b)|x〉

= (x̂+ b)
(
e
ibp̂
~ |x〉

)

and so we see that e
ibp̂
~ |x〉 is an eigenvector of x̂, with eigenvalue (x̂+ b). This eigenvector is |x+ b〉. So we

have found
e
ibp̂
~ |x〉 = |x+ b〉.

In the position basis,

e
ib(−i~)

~
d
dxψ(x) = ψ(x+ b)

=⇒ eb
d
dxψ(x) = ψ(x+ b)

=⇒ ψ(x+ b) = 1 +

(
d

dx
ψ(x)

)
b+

1

2

(
d2

dx2
ψ(x)

)
b2 + . . . (Taylor series).

Consider x̂2. We have

e
ibp̂
~ x̂x̂e−

ibp̂
~ = e

ibp̂
~ x̂e−

ibp̂
~ e

ibp̂
~ x̂e−

ibp̂
~

= (x̂+ b)2,

and by induction, e
ibp̂
~ x̂ne−

ibp̂
~ = (x̂+ b)n.

Since [p̂, p̂] = 0, we clearly have e
ibp̂
~ p̂e−

ibp̂
~ = p̂. Putting these observations together, for any Hamiltonian

which is polynomial in x̂, p̂ we have e
ibp̂
~ Ĥ(x̂, p̂)e−

ibp̂
~ = Ĥ(x̂+ b, p̂).

For a Hamiltonian Ĥ to be translation invariant means

Ĥ(x̂, p̂) = Ĥ(x̂+ b, p̂) ∀b ∈ R.

We have
Ĥ(x̂+ b, p̂) = Ĥ(x̂, p̂) = e

ibp̂
~ e−

ibp̂
~ Ĥ(x̂, p̂).

We also know from above that
Ĥ(x̂+ b, p̂) = e

ibp̂
~ Ĥ(x̂, p̂)e−

ibp̂
~ .

Putting these together we get

e
ibp̂
~ e−

ibp̂
~ Ĥ(x̂, p̂) = e

ibp̂
~ Ĥ(x̂, p̂)e−

ibp̂
~ ,
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which implies that [p̂, Ĥ] = 0. By Heisenberg’s equation, this implies that ˙̂p = 0. So for a Hamiltonian
Ĥ which is translation invariant, the generator p̂ of the translation “symmetry” is conserved. This is an
instance of a fact sometimes referred to as the “Noether Theorem”; namely, that every symmetry of the
Hamiltonian implies a conserved quantity.

Now, keeping in mind this picture of operators behaving as generators of symmetries, we move onto angular
momentum.

9.2 Orbital Angular Momentum

Definition 25 Orbital angular momentum in three dimensions is defined as follows.

L̂1 = x̂2p̂3 − x̂3p̂2 , L̂2 = x̂3p̂1 − x̂1p̂3 , L̂3 = x̂1p̂2 − x̂2p̂1.

The following notation is often used.

L̂i =

3∑

i,j,k=1

εi,j,kx̂j p̂k

where ε1,2,3 = 1, and ε is totally antisymmetric (so, for example, ε2,1,3 = −1).

In the same sense that p̂ generates translations of x̂, the orbital angular momentum L̂ generates rotations
of x̂ and p̂. Consider, for example, a rotation L̂ = (0, 0, L̂3) by angle θ about the z-axis:

x̂1 −→ x̂1 cos θ + x̂2 sin θ

x̂2 −→ −x̂1 sin θ + x̂2 cos θ

x̂3 −→ x̂3

x −→ Rx.

One can show that

e
iθL̂3

~ x̂1e
−
iθL̂3

~ = x̂1 cos θ + x̂2 sin θ

e
iθL̂3

~ x̂2e
−
iθL̂3

~ = −x̂1 sin θ + x̂2 cos θ

e
iθL̂3

~ x̂3e
−
iθL̂3

~ = x̂3

and therefore

e
iθL̂3

~ |x〉 = |Rx〉
where R is the rotation matrix.

Similarly,

e
iθL̂3

~ |p〉 = |Rp〉.

Note that this gives the “Taylor expansion analogue”:

e
α
(
x̂1

∂
∂x2

−x2
∂
∂x1

)

ψ(x) = ψ(Rx).

For Ĥ to be rotation invariant means

H(x̂, p̂) = Ĥ(Rx̂, Rp̂).
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This means

e
iθL̂3

~ Ĥ(x̂, p̂)e−
iθL̂3

~ = Ĥ(x̂, p̂)

which gives [L̂3, Ĥ ] = 0, and so
˙̂
L3 = 0. So for a Hamiltonian which is rotation invariant, the generator L̂3

of the rotation symmetry is conserved.

For example, consider the Hamiltonian for the Hydrogen atom

Ĥ =
p̂2

2m
+

α√
x̂2
.

This Hamiltonian is rotation invariant, because x2, p̂2 are scalars for rotations.

9.3 Angular Momentum and Identical Particles

Recall that when we studied identical particles we said that bosons are particles having integer values for
angular momentum, and fermions are particles having half-integer values for angular momentum. Suppose
we have a boson, and assume that L̂3|ψ〉 = ~m|ψ〉, where m ∈ Z. Then

2π rotated |ψ〉 is e
2πiL̂3

~ |ψ〉 = e
2πi~m

~ |ψ〉 = |ψ〉.

On the other hand, suppose we have a fermion, and assume that L̂3|ψ〉 = ~m2 |ψ〉, where m ∈ Z. Then

2π rotated |ψ〉 is e
2πiL̂3

~ |ψ〉 = e
2πi~m

2~ |ψ〉 = eπim|ψ〉 = −|ψ〉.

This is the underlying reason why “swapping” two bosons leaves the state unchanged, but “swapping” two
fermions introduces a (-1) factor.

9.4 Orbital Angular Momentum v.s. Spin

We proceed by finding joint eigenvectors of L̂
2
and L3:

L̂3|λ, µ, τ〉 = µ~|λ, µ, τ〉 (I)

L̂
2|λ, µ, τ〉 = λ~2|λ, µ, τ〉 (II)

where τ are the eigenvalues with respect to the rest of a maximal set of commuting observables. For simplicity,
we will omit writing τ .

One approach to solving (I) and (II) is to convert to a position representation: ψλ,µ(x) = 〈x|λ, µ〉. From
Definition 25, and the rule for converting to the position basis, (I) and (II) become

(
−i~x1

∂

∂x2
+ i~x2

∂

∂x1

)
ψλ,µ(x) = µ~ψλ,µ(x) (I ′)

3∑

i=1

(· · · )2 ψλ,µ(x) = λ~2ψλ,µ(x) (II ′)

These two partial differential equations can be solved, giving the result of “spherical harmonics”:

ψλ,µ(x) = Y λµ (x)

with eigenvalues

λ = j(j + 1) where j ∈ {0, 1, 2, . . .}
µ = {−j,−j + 1, . . . , 0, 1, 2, . . . , j}
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Notice that we only get integer solutions. This means we have only found solutions corresponding to bosons.
But we know that fermions exist, so our solution must have missed something. The calculation didn’t miss
any solutions... what went wrong was that we used the definition for orbital angular momentum when we
set up (I ′), (II ′). That is, we assumed

L̂i =
3∑

j,k=1

εi,j,kx̂j p̂k.

It turns out that if we only make the weaker assumption that

[L̂i, L̂j ] = i~
3∑

k=1

εi,j,kL̂k (∗)

the resulting L̂i can be shown to generate of rotations of the vector (L̂1, L̂2, L̂3). For example, the rotation
generated by L̂3 is:

e
iθL̂3

~ L̂1e
−
iθL̂3

~ = L̂1 cos θ + L̂2 sin θ

e
iθL̂3

~ L̂2e
−
iθL̂3

~ = −L̂1 sin θ + L̂2 cos θ

e
iθL̂3

~ L̂3e
−
iθL̂3

~ = L̂3

So, to be general, we should study (2) directly.

Note: A direct consequence of (∗) is [
L̂
2
, L̂i

]
= 0.

Remark: (2) is a special case of a Lie Algebra.

Definition 26

L̂+ = L̂1 + iL̂2

L̂− = L̂1 − iL̂2

L± has the following easily verifiable properties.

[L̂+, L̂−] = 2~L̂3
[L̂3, L̂±] = ±~L̂±
[L̂, L̂±] = 0 (I)

L̂
2
= L̂−L̂+ + L̂3 + ~L̂3 (II)

Now assume |λ, µ〉 is a joint eigenvector of L2 and L̂3.

Proposition 1 L̂±|λ, µ〉 is proportional to |λ, µ± 1〉.

Check:

L̂
2
(L̂±|λ, µ〉) = L̂±(L̂

2|λ, µ〉) by (I)

= λ~2(L̂±|λ, µ〉)
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L̂3(L̂±|λ, µ〉) = (L̂±L̂3 ± ~L̂±)|λ, µ〉 = ~(µ± 1)(L̂±|λ, µ〉) ¤

Now, we calculate ‖L̂±|λ, µ〉‖ (we set ~ = 1 for simplicity).

‖L̂±|λ, µ〉‖2 = 〈λ, µ|L̂∓L̂±|λ, µ〉

= 〈λ, µ|(L̂2 − L̂23 ∓ L̂3|λ, µ〉
= λ− µ2 ∓ µ (because 〈λ, µ|λ, µ〉 = 1)

In general, we have

‖(L̂±)n|λ, µ〉‖2 =
n−1∏

ν=0

(λ− (µ± ν)2 ∓ (µ± ν)).

Clearly, this may become negative for sufficiently large choices of n. Since any vector’s norm is zero or

positive, the assumption that |λ, µ〉 is a joint eigenvector of L̂
2
and L̂3 can be true only if λ and µ are such

that the product on the RHS never becomes negative. So λ and µ must be such that for some n, a factor
in the product equals zero. In this way, the application of high powers on L̂± on |λ, µ〉 merely leads to the
zero vector in the Hilbert space for sufficiently large n.

This means that the possible eigenvalues λ, µ are such that there exist nonnegative integers ν, ν ′ so that

λ− (µ+ ν)2 − (µ+ ν) = 0 (1)

λ− (µ− ν′)2 + (µ− ν′) = 0 (2)

Subtracting the two equations yields:

−2µν − 2µν ′ − ν2 + ν′
2 − 2µ− ν + ν′ = 0

i.e.
2(ν + ν′ + 1)µ+ (ν + ν ′ + 1)(ν − ν′) = 0.

Clearly, for this equation to hold, the eigenvalues of µ must be of the form

µ =
ν′ − ν

2

and substituting into (2), the eigenvalues λ must be of the form

λ =
ν′ + ν

2

(
ν′ + ν

2
+ 1

)
.

We allowed ν and ν ′ to be any two nonnegative integers. Define j = ν′+ν
2 . We can now read-off that joint

eigenvectors |λ, µ〉 of L̂2 and L̂3 have these (and only these) eigenvalues:

λ = j(j + 1) where j ∈ {0, 1
2
, 1,

3

2
, 2,

5

2
, . . .}

and
µ ∈ {−j, . . . ,−1, 0, 1, . . . , j}.

Note: Since j is almost the root of λ, j is essentially the length of the angular momentum vector. The
condition for µ says that the component of the angular momentum vector in the z-direction cannot be longer
than the total length of the angular momentum vector.

Note: It would seem we have only shown that all eigenvalues other than the above mentioned ones are
excluded. In fact, we have shown their (mathematical) existence by explicitly constructing their eigenvectors
from one vector |λ, µ〉 by the repeated application of L̂±.

Note: An often used notation for the state |λ, µ〉 is |j, µ〉.
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9.5 Spin

We studied the commutation relation

[L̂i, L̂j ] = i~
3∑

k=1

εi,j,kL̂k (∗)

and found that for any L̂ satisfying this the eigenvalues corresponding to

L̂
2|λ, µ〉 = ~2λ|λ, µ〉

L̂3|λ, µ〉 = ~µ|λ, µ〉

are

λ = j(j + 1) where j ∈ {0, 1
2
, 1,

3

2
, 2,

5

2
, . . .}

µ = {−j,−j + 1, . . . , 0, 1, . . . , j}.

We saw that an example of L̂ which obeys (∗) is the orbital angular momentum:

L̂
(orb)
i =

3∑

j,k=1

εi,j,kx̂j p̂k.

We saw that the possible eigenvalues for orbital angular momentum are only those corresponding to j ∈
{0, 1, 2, . . .}. But we found that for operators obeying (∗) the mathematics admits the possibility of those
having half-integer eigenvalues. We cannot interpret these as orbital angular momentum vectors. But the
presence of Fermions in the universe indicates that half-integer angular momentum values do occur in nature.
Recall we saw that for Fermions, a 2π-rotation introduced a relative phase factor of (−1). We know that
all our usual spatial degrees of freedom are unaffected by such a 2π-rotation. So it must be that an angular
momentum operator having half-integer eigenvalues acts on something other than the Hilbert space that we
have dealt with so far. This means we have a new degree of freedom for these operators. We call this the
spin degree of freedom. We introduce a new, finite-dimensional, Hilbert space for the spin, which we attach
to our familiar Hilbert space using a tensor product.

Physical Assumption 6 Quantum mechanical systems have a physically meaningful spin degree of freedom
which is independent of the position/momentum degrees of freedom. The corresponding spin operators L̂(spin)

act on a (new) finite dimensional Hilbert space. A description of a system including it’s position/momentum
and spin degrees of freedom is given by a unit vector in H = H0 ⊗ Hs, where H0 is the Hilbert space on
which the x̂ and p̂ act, and Hs is the new finite-dimensional Hilbert space on which the spin operators act.

Note: The total angular momentum operator for a system is the sum of all its angular momentum operators;
i.e. the sum of all the orbital angular momentum operators of its constituent particles and all the spin
operators of its constituent particles.

The following is also known from physical experiment.

Physical Assumption 7 Each species of particle has a fixed eigenvalue λ for its spin.

Some examples:

e−1, quarks, neutrinos: λ = 1
2 (1 +

1
2 ) (i.e. j =

1
2 ) “spinor”

Higg’s particles: λ = 0 (i.e. j = 0) “scalar”



Advanced Quantum Mechanics 44

Photons, gluons, w, z: λ = 1(1 + 1) (i.e. j = 1) “vector”

Since the spin operators act nontrivially only on these new degrees of freedom, they commute with all the
operators which act on the old Hilbert space (such as the x̂, p̂, orbital angular momenta, etc). This means

we can add, for example, L̂
(spin)2

, L̂
(spin)
3 to a maximal set of commuting observables. So a new maximal

set of observables for a single particle could be

Q̂(1), Q̂(2), Q̂(3), L̂
(spin)2

, L̂
(spin)
3

where the Q̂(i) are commuting observables which only contain the x̂ and p̂ (i.e. which do not contain any of
the spin operators Ŝi). The operators x̂⊗ 1, p̂⊗ 1 and 1⊗ Ŝi act on the full Hilbert space H = H0 ⊗Hs. In
general, the Hamiltonian may contain any polynomial (or other functions) of these operators.

Note that, in practise, it is often a good approximation to assume that the Hamiltonian is of the form
Ĥ = Ĥ0+ Ĥs, where Ĥ0 contains only the x̂ and p̂ operators, and where Ĥs contains only the spin operators
Ŝi. (This is completely analogous to the case of two noninteracting subsystems of a larger system, the total
Hamiltonian being the sum of the subsystems’ Hamiltonians without any additional interaction Hamiltonian.)
We say in this case that the spin degree of freedom is decoupled from the usual motion degrees of freedom
of the particle.

9.6 Working With Spin- 1

2
Particles

For a spin- 12 particle, we choose as a maximal set of commuting observables

Q̂(1), Q̂(2), Q̂(3), L̂
(spin)2

, L̂
(spin)
3

with joint eigenbasis
{|qn1

, qn2
, qn3

, λ, µ〉}
where λ = 1

2 (1 +
1
2 ).

Sometimes these basis vectors are denoted

{|qn1
, qn2

, qn3
〉 ⊗ |λ, µ〉}.

Since λ is fixed, |λ, µ〉 is often shortened to |µ〉 (i.e. | 12 〉, | − 1
2 〉 or also as | ↑〉, | ↓〉).

Let Ŝ = L̂
(spin)

. Consider the matrix elements of Ŝi in the {| 12 〉, | − 1
2 〉}-basis. We have

Ŝ3| 12 〉 = 1
2~| 12 〉

Ŝ3| − 1
2 〉 = − 12~| − 1

2 〉.

So

〈µ|Ŝ3|µ′〉 =
(
1
2~ 0
0 − 12~

)

µ,µ′
.

Also, using the operators L̂± we saw in Section 9.4 we can derive

〈µ|Ŝ1|µ′〉 =
(

0 1
2~

1
2~ 0

)

µ,µ′

〈µ|Ŝ2|µ′〉 =
(

0 − i
2~

i
2~ 0

)

µ,µ′

.
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These are sometimes more compactly represented as

Ŝi =
~
2
σi

where σi are the Pauli Matrices:

σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)
.

Suppose we choose x̂1, x̂2, x̂3, Ŝ3 as a maximal set of commuting observables, with joint orthonormal basis
{|x̂1, x̂2, x̂3, µ〉}.

We have a resolution of the identity:

1 =
∑

µ∈{
1
2 ,−

1
2}

∫

R3

|x, µ〉〈x, µ|d3x

and then

|ψ〉 =
∑

µ∈{
1
2 ,−

1
2}

∫

R3

ψµ(x)|x, µ〉d3x where ψµ(x) = 〈x, µ|ψ〉.

Scalar products are

〈ϕ|ψ〉 =
∑

µ∈{
1
2 ,−

1
2}

∫

R3

ϕ∗µ(x)ψµ(x)d
3x.

Matrix elements of operators are

〈x, µ|Ŝ3|x′, µ′〉 = δ3(x− x′)
~
2

(
1 0
0 −1

)

µ,µ′

〈x, µ|x̂i|x′, µ′〉 = xiδ
3(x− x′)δµ,µ′ = xiδ

3(x− x′)

(
1 0
0 1

)

µ,µ′

〈x, µ|p̂j |x′, µ′〉 = i~
∂

∂xj
δ3(x− x′)

(
1 0
0 1

)

µ,µ′
.

Wavefunctions now become 2-vectors 

ψ 1
2
(x)

ψ
−
1
2
(x)




and the scalar product in terms of these is

〈ϕ|ψ〉 =
∫

R3

(
ϕ∗1
2

(x), ϕ∗
−
1
2

(x)

)

ψ 1
2
(x)

ψ
−
1
2
(x)


 d3x.
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The action of operators Q̂|ψ〉 = |ϕ〉 in the x̂, Ŝ3 basis becomes

Q̂ = x̂j : 〈x, µ|x̂j |ψ〉 = xj

(
1 0
0 1

)

ψ 1
2
(x)

ψ
−
1
2
(x)




Q̂ = p̂j : 〈x, µ|p̂j |ψ〉 = −i~
∂

∂xj

(
1 0
0 1

)

ψ 1
2
(x)

ψ
−
1
2
(x)




Q̂ = Ŝ1 : 〈x, µ|Ŝ1|ψ〉 =
~
2



(
0 1
1 0

)

ψ 1
2
(x)

ψ
−
1
2
(x)




 .

9.7 Example: e− in a B-Field

Ĥ =
p̂2

2m
+ αL̂

(orb) ·B+ βŜ ·B.

Suppose, for example, the B-field is constant in the x-direction. Then Schrödinger’s equation in the x̂,
Ŝ3-basis is:

i~
d

dt



ψ 1
2
(x)

ψ
−
1
2
(x)


 =

(
− ~

2

2m

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)(
1 0
0 1

)

+

(
−i~x2

∂

∂x3
+ i~x3

∂

∂x2

)
b

(
1 0
0 1

)
+ βb

~
2

(
0 1
1 0

))

ψ 1
2
(x)

ψ
−
1
2
(x)


 .

10 Time-Independent Perturbation Theory

As we have just seen in the example above, Hamiltonians can very quickly become extremely complicated,
even for relatively simple physical systems. The can give rise to systems of many coupled differential
equations, which could be very difficult to solve, in general. Perturbation theory is a systematic procedure
for obtaining approximate solutions by building on the known exact solutions to a simplified case.

Suppose the Hamiltonian Ĥ can be split into the sum of an easy-to-diagonalise term Ĥ0, and the remaining
term is εŴ , where ε is some small number:

Ĥ = Ĥ0 + εŴ

and Ĥ0|E(0)n 〉 = E(0)n |E(0)n 〉 , where E(0)n , |E(0)n 〉 are assumed easy to calculate.

The goal is to find {En, |En〉} which solve Ĥ|En〉 = En|En〉. (1)

Assume spec(Ĥ0) is nondegenerate and discrete (the more general case is just more complicated). Treat
Ĥ(ε) as a function of ε. Then the eigenvalues En(ε) and the eigenvectors |En(ε)〉 are functions of ε as well.
Taylor expand En and |En〉 in powers of ε, and use the fact that ε is small to ignore terms of ε-degree ≥ 3
in the expansion:

En = E(0)n + εE(1)n + ε2E(2)n +O(ε3) (2)

|En〉 = |E(0)n 〉+ ε|E(1)n 〉+ ε2|E(2)n 〉+O(ε3) (3)
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(assume the |E(i)n 〉 have been normalised). Substituting (2) and (3) into (1) we get:

(
Ĥ0 + εŴ

)(
|E(0)n 〉+ ε|E(1)n 〉+ ε2|E(2)n 〉+O(ε3)

)

=
(
E(0)n + εE(1)n + ε2E(2)n +O(ε3)

)(
|E(0)n 〉+ ε|E(1)n 〉+ ε2|E(2)n 〉+O(ε3)

)
.

Now compare terms of like powers of ε in the above equation to get:

ε0-terms: Ĥ0|E(0)n 〉 = E
(0)
n |E(0)n 〉 (4)

ε1-terms: Ŵ |E(0)n 〉+ Ĥ0|E(1)n 〉 = E
(0)
n |E(1)n 〉+ E

(1)
n |E(0)n 〉 (5)

ε2-terms: Ŵ |E(1)n 〉+ Ĥ0|E(2)n 〉 = E
(2)
n |E(0)n 〉+ E

(1)
n |E(1)n 〉+ E

(0)
n |E(2)n 〉 (6).

Equation (4) was assumed to be easy to solve. Now, multiply equation (5) on the left by 〈E (0)n |:

〈E(0)n |Ŵ |E(0)n 〉+ 〈E(0)n |Ĥ0|E(1)n 〉 = E(0)n 〈E(0)n |E(1)n 〉+ E(1)n 〈E(0)n |E(0)n 〉.

This gives the first-order correction to the eigenvalues:

E(1)n = 〈E(0)n |Ŵ |E(0)n 〉.

Since, by assumption, the eigenvectors |E(0)n 〉 are explicitly known in some basis, the calculation of the first-
order correction in practise boils down to some explicit integral or sum (depending on whether one uses a
discrete or continuous basis).

To compute the first-order correction |E(1)n 〉 to the eigenstate, multiply equation (5) on the left by 〈E(0)n′ |:

〈E(0)n′ |Ŵ |E(0)n 〉+ E
(0)
n′ 〈E

(0)
n′ |E(1)n 〉 = E(0)n 〈E

(0)
n′ |E(1)n 〉+E(1)n 〈E

(0)
n′ |E(0)n 〉.

Therefore:

〈E(0)n′ |E(1)n 〉 =
〈E(0)n′ |Ŵ |E

(0)
n 〉

E
(0)
n − E(0)n′

. (7)

Note that substituting the expansion equation (3) into 〈En|En〉 = 1 yields:

〈E(0)n |E(1)n 〉 = 0 (8).

Equation (8) immediately gives:

|E(1)n 〉 =
∑

n′ 6=n

|E(0)n′ 〉〈E
(0)
n′ |E(1)n 〉

which together with equation (7) gives the first order correction to the eigenstate:

|E(1)n 〉 =
∑

n′ 6=n

〈E(0)n′ |Ŵ |E
(0)
n 〉

E
(0)
n − E(0)n′

|E(0)n′ 〉.

Finally, we calculate the second-order correction E
(2)
n to the energy eigenvalues. Multiply equation (6) on

the left by 〈E(0)n |:

〈E(0)n |Ŵ |E(1)n 〉+ 〈E(0)n |Ĥ0|E(2)n 〉 = E(2)n 〈E(0)n |E(0)n 〉+ E(1)n 〈E(0)n |E(1)n 〉+ E(0)n 〈E(0)n |E(2)n 〉.
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Therefore

E(2)n = 〈E(0)n |Ŵ |E(1)n 〉

=
∑

n′ 6=n

〈E(0)n |Ŵ |E(0)n′ 〉〈E
(0)
n′ |Ŵ |E

(0)
n 〉

E
(0)
n − E(0)n′

and the second-order energy eigenvalue correction is thus

E(2)n =
∑

n′ 6=n

|〈E(0)n |Ŵ |E(0)n′ 〉|2(
E
(0)
n − E(0)n′

) .

11 Bell’s Theorem

A profound question is the following: why is quantum mechanics probabilistic?. In the 1930’s, Einstein,
Podolsky and Rosen (EPR) put forth a hypothesis to answer this question. They believed that the proba-
bilistic nature of quantum mechanics was due to incompleteness in the theory. The hypothesis was that the
state of any system is completely specified by giving

{|ψ〉, λ1, . . . , λN}

where λ1, . . . , λN are some “hidden variables” not accounted for in quantum mechanics. The hypothesis
says that every outcome of any observable Q̂ is exactly predictable when the hidden variables are taken into
account. That is, the outcome q of measurement of Q̂ is given by

q = f(|ψ〉, λ).

Since quantum mechanics doesn’t account for the hidden variables, we have to assign a probability distribu-
tion to the possible values of λ:

w(λ1, . . . , λN ) = probability the hidden variables take values λ1, . . . , λN .

These probabilities must sum to 1: ∫

λ

w(λ)dλ = 1.

Then along came John Bell. He proved that if EPR were right about the hidden variables, then there is
an experimentally testable inequality for correlations. In fact, the experiments have been done extensively
since Bell’s time, and they have confirmed beyond any doubt that EPR were wrong, and there are no such
hidden variables.

Consider two spin- 12 particles in a maximally entangled state:

|ψ〉 = 1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉)

where | ↑〉 is an eigenvector to Ŝ
(i)
3 with eigenvalue +~

2 and | ↓〉 is an eigenvector to Ŝ
(i)
3 with eigenvalue −~

2 .
Now consider two observables:

Q̂(1)a =
2

~
Ŝ
(1) · a Q̂

(2)
b =

2

~
Ŝ
(2) · b where a,b are unit vectors.

The following are easy consequences:

Q
(1)

a = 〈ψ|Q̂(1)a |ψ〉 = 0

Q
(2)

b = 〈ψ|Q̂(2)b |ψ〉 = 0.
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An ensemble of n runs of measurements of these observables on (identical copies of) the given state would

some sequence of pairs of 1s and -1’s: {(q(1)1 , q
(2)
1 ), (q

(1)
2 , q

(2)
2 ), . . . , (q

(1)
n , q

(2)
n )}. Consider the expectation for

the correlation between the outcomes of the two observables.

Definition 27

K(a, b) = lim
N→∞

1

N

∞∑

n=1

q(1)n q(2)n .

The quantum mechanical prediction for K is

K(a,b) = 〈ψ|Q̂(1)a Q̂
(2)
b |ψ〉.

For example, suppose we choose

a = (0, 0, 1)T , b = (sin(θ), 0, cos(θ))T .

Then

K(a,b) =
4

~2
〈ψ|Ŝ(1)3

(
sin(θ)Ŝ

(2)
1 + cos(θ)Ŝ

(2)
3

)
|ψ〉

= − cos(θ)

In general, we have
K(a,b) = −a · b.

This is experimentally confirmed.

Remark: Choose for example a = b. Then K(a,b) = −1, and so spins are always found anti-aligned in
this state if a = b is chosen.

If EPR were correct, then all outcomes would be predetermined:

q(1) = A(a, λ) , q(2) = B(b, λ).

The λ have a distribution w(λ) with
∫
λ
w(λ)dλ = 1. So EPR’s claim demands

K(a,b) =

∫

λ

w(λ)A(a, λ)B(b, λ)dλ.

We know already that K(a,a) = −1. So A(a, λ) = −B(a, λ) (except possibly for aset of λ of measure 0).
So this means

K(a,b) = −
∫

λ

w(λ)A(a, λ)A(b, λ)dλ.

Now, we eliminate w(λ) from the equation:

K(a,b)−K(a, c) = −
∫

λ

w(λ)A(a, λ) (A(b, λ)−A(c, λ)) dλ

= −
∫

λ

w(λ)A(a, λ)A(b, λ) (1−A(b, λ)A(c, λ)) dλ.

Since A(b, λ)2 = 1, and A(a, λ)A(b, λ) ≤ 1, we get

|K(a,b)−K(a, c)| ≤
∫

λ

w(λ) (1−A(b, λ)A(c, λ)) dλ
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which leads immediately to Bell’s Inequality :

|K(a,b)−K(a, c)| ≤ 1−K(b, c).

Now, recall the experimentally confirmed quantum mechanical prediction that K(a,b) = −a ·b, and choose
θ = π

4 . Then, in Bell’s inequality we would have

∣∣∣∣−
1√
2
− 1√

2

∣∣∣∣ ≤ 0

which is clearly false. So Bell’s inequality is violated, proving that EPR must have been wrong. This results
is called Bell’s Theorem.

Remark: Bell’s Theorem does not imply information transmission faster than the speed of light, since each
subsystem of |ψ〉 is in a maximally mixed state whose density matrix is the identity, and the identity is the
same in any basis.

12 The Adiabatic Theorem

12.1 Dynamical Phase for a Time-Independent Hamiltonian

First consider a system with a time-independent Hamiltonian Ĥ. Suppose at time t0 we have a system
initially in an eigenstate |En(t0)〉 = |En〉 of Ĥ, with energy eigenvalue En. Now, let U(t) be the time-
evolution operator for the system. Since Ĥ is time-independent, we have

Û(t) = e
1
i~ (t−t0)Ĥ , U(t0) = 1.

Consider the eigenstate |En(t0)〉 time-evolved for time t.

|En(t)〉 = Û(t)|En(t0)〉
= e

1
i~ (t−t0)Ĥ |En(t0)〉

=

∞∑

r=1

(
1
i~ (t− t0)Ĥ

)r

r!
|En(t0)〉

=

∞∑

r=1

(
1
i~ (t− t0)

)r

r!
Ĥr|En(t0)〉

=

∞∑

r=1

(
1
i~ (t− t0)

)r

r!
Ern|En(t0)〉

=

∞∑

r=1

(
1
i~ (t− t0)En

)r

r!
|En(t0)〉

= e−
i
~ (t−t0)En |En(t0)〉

So we see that for any time t the system remains in the eigenstate |En〉 = |En(t0)〉 of Ĥ, only picking-up a
phase factor of − 1~ (t− t0)En. As we know, such phase factors cancel out in the calculation of measurement
expectations, and so are physically insignificant. A phase like this, which arises as a result of the time-
evolution of the system, is called a dynamical phase.
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12.2 The Adiabatic Theorem

Consider now the case of a time-dependent Hamiltonian Ĥ(t), with eigenvectors |En〉 and eigenvalues {En}.
We make the following assumptions about Ĥ(t).

Assumptions

1) Ĥ(t) is varying continuously over the time interval of interest, so E1(t), E2(t), . . . and |E1(t)〉, |E2(t)〉, . . .
are continuous functions of t.

2) The spectrum of Ĥ(t) is discrete and nondegenerate throughout the time 0 ≤ t ≤ 1 during which the
Hamiltonian is changing.

Consider assumption (2). If there is a degeneracy at time tc, then at that time there is an ambiguity in the
ordering of the eigenvalues. It is to resolve such ambiguities that we must use the time-ordering symbol T
in the time-evolution operator for a general time-dependent Hamiltonian. If, however, we assume that the
spectrum remains nondegenerate for all ti ≤ t ≤ tf , we have a well-defined ordering of the eigenvalues and
we can write the time-evolution operator as

Û(t) = e
1
i~
∫
t
t0
Ĥ(t′)dt′

, U(t0) = 1

without the need for the time-ordering symbol.

Note that assumption (2) may be relaxed, but it makes the analysis quite a bit more complicated, as we
need something like the time-ordering symbol to allow us to “track” the eigenstates.

Now, suppose Ĥ is changing in compliance with above assumptions over the time interval ∆t = tf − ti.
Suppose the initial Hamiltonian is Ĥ(ti) = Ĥi and the final Hamiltonian is Ĥ(tf ) = Ĥf . Note that ∆(t)
provides a measure of how fast the Hamiltonian varies between ti and tf . We introduce a new time variable
s, which is offset to s = 0 at time ti, and scaled by ∆t:

s =
t− ti
∆t

.

Note the time-correspondences

s = 0⇔ t = ti, and

s = 1⇔ t = tf .

Notice that the assumptions (1) and (2) above for the functions of t imply the equivalent conditions for
the corresponding functions of s. There is one more technical assumption that must be made; that is, we
assume that the first and second derivatives of |Ej(s)〉〈Ej(s)| with respect to s are well-defined and piecewise

continuous throughout the time 0 ≤ s ≤ 1. We express Ĥ(s) and Û(s) as functions of the new time variable
s. Our present goal is to determine the dependence of U(s) on ∆t. To emphasize this, we write U∆t(s). In
the limiting case ∆t→ 0 (i.e. a sudden change in the Hamiltonian) we have

lim
∆t→0

U∆t(1) = 1.

So the state of the system remains unchanged between ti and tf .

We are interested in very gradual changes in the Hamiltonian, which are called adiabatic changes. These
correspond to the limiting case ∆t→∞. We consider this case in more detail. Suppose the eigenvalues of Ĥ
are E1, E2, . . ., and the eigenvectors are |E1〉, |E2〉, . . .. These are, of course, all functions of t, and therefore
also of s.
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Theorem 27 (Adiabatic Theorem)

lim
∆t→∞

Û∆t(s)|Ej(0)〉〈Ej(0)| = |Ej(s)〉〈Ej(s)| lim
∆t→∞

Û∆t(s) j = 0, 1, 2, . . .

Now, to see consider what the theorem is saying, multiply on both sides by the j th eigenstate of Ĥi (namely
|Ej(0)〉).

lim
∆t→∞

Û∆t(s)|Ej(0)〉〈Ej(0)|Ej(0)〉 = |Ej(s)〉〈Ej(s)| lim
∆t→∞

Û∆t(t)|Ej(0)〉

=⇒ lim
∆t→∞

Û∆t(s)|Ej(0)〉 = P̂j(s) lim
∆t→∞

Û∆t(s)|Ej(0)〉 (∗)

The operator P̂j(t) = |Ej(s)〉〈Ej(s)| is the projector onto the jth eigenspace of Ĥ(s). If we think in the

Scrödinger picture of the eigenstates as time-dependent Schrödinger states, then Û∆t(s)|Ej(0)〉 is the jth

eigenstate of Ĥi time-evolved to time s. So what equation (∗) is saying is that, in the limit, once we evolve
the eigenstate forward to time s, the projector onto the jth eigenspace of Ĥ(s) acts on the new state as
the identity. This means that the new state is the jth eigenstate of Ĥ(s). So the adiabatic theorem can be
stated more informally as follows.

Theorem 28 (Adiabatic Theorem (restated)) For a slowly varying Hamiltonian, a system in the j th

eigenstate of the initial Hamiltonian follows to the jth eigenstate of the new Hamiltonian.

Loosely speaking, what is meant by “slowly varying Hamiltonian” is that the characteristic time for a no-
ticeable change in the Hamiltonian is very large compared to the characteristic time required for a transition
from one eigenstate to the next. The adiabatic theorem, when used in practice, is often called the adiabatic
approximation.

12.3 Example

Consider an electron e− in a magnetic field B = (Bx, By, Bz). Considering only the spin degree of freedom,

the Hamiltonian is Ĥ = βŜ ·B, where S = (Ŝx, Ŝy, Ŝz). Suppose the magnetic field has constant magnitude
|B| = B0, and is precessing about the z-axis with a constant angular-momentum ω, sweeping out a cone
with constant opening angle α.

The time-dependent magnetic field vector is

B(t) = B0 (sin(α) cos(ωt), sin(α) sin(ωt), cos(α)) .

So the Hamiltonian in the eigenbasis of Ŝz (spin operator in the z-direction) is

Ĥ(t) = βŜ ·B =
~βB0
2

(sin(α) cos(ωt)σx + sin(α) sin(ωt)σy + cos(α)σz) ,

where σx, σy, σz are the Pauli matrices. As a matrix (in the Ŝz-eigenbasis), this is

Ĥ(t) = −~ω1
2

(
cosα e−iωt sinα

eiωt sinα − cosα

)

where ω1 = −βB0. Its normalised eigenvectors (still in the Ŝz-eigenbasis) are

|µ↑(t)〉 =
(

cos
(
α
2

)

eiωt sin(α2 )

)
, |µ↓(t)〉 =

(
sin
(
α
2

)

−eiωt cos(α2 )

)

with corresponding eigenvalues

µ↑ = −
~ω1
2

, µ↓ =
~ω1
2
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respectively. These eigenvectors represent spin-up and spin-down along the instantaneous direction of B(t).
In the language we used in the discussion of the adiabatic theorem above, |µ↑(t)〉 is the j = 1st eigenstate

of Ĥ(t), and |µ↓(t)〉 is the j = 2nd eigenstate of Ĥ(t). Suppose the electron is initially in the first (spin-up)

eigenstate of Ĥ(t0) (to simplify the expression, let t0 = 0):

|µ(0)〉 =
(
cos
(
α
2

)

sin
(
α
2

)
)
.

In general, there will be some positive probability that a transition occurs to the second eigenstate (spin-
down) of Ĥ(t), but in the adiabatic limit, we should find that this probability goes to zero.

The exact solution to the Schrödinger equation can be found to be

|µ(t)〉 =




[
cos
(
λt
2

)
+ i (ω1+ω)

λ
sin
(
λt
2

)]
cos(α2 )e

−iωt
2

[
cos
(
λt
2

)
+ i (ω1−ω)

λ
sin
(
λt
2

)]
sin(α2 )e

iωt
2


 ,

where λ =
√
ω2 + ω21 + 2ωω1 cosα. In terms of the eigenvectors |µ↑(t)〉, |µ↓(t)〉, this is

|µ(t)〉 =
[
cos

(
λt

2

)
+ i

(ω1 + ω cosα)

λ
sin

(
λt

2

)]
e
−iωt

2 |µ↑(t)〉

+ i

[
ω

λ
sinα sin

(
λt

2

)]
e
−iωt

2 |µ↓(t)〉.

So the probability of a transition to spin-down at any time t (along the current direction of B(t)) is

|〈µ(t)|µ↓(t)〉|2 =
[
ω

λ
sinα sin

(
λt

2

)]2
.

The adiabatic approximation is valid when the characteristic time for changes in the Hamiltonian is much
greater than the characteristic time for a state-transition from one eigenstate to another. The characteristic
time for changes in the Hamiltonian in the present example is 1/ω (since the B-field is changing at the
rate ω). The characteristic time for a phase change from spin-up to spin-down is 1/ω1. So the adiabatic
approximation is valid when ω ¿ ω1. In this case λ ≈ ω1, and so

|〈µ(t)|µ↓(t)〉|2 =
[
ω

ω1
sinα sin

(
λt

2

)]2
→ 0

and so we see that in the adiabatic limit the probability of a transition from spin-up to spin-down is 0. This
is exactly what the adiabatic theorem tells us; the system will remain in the first (spin-up) eigenstate |µ↑(t)〉
as long as the Hamiltonian is changing adiabatically.

13 The Berry Phase

13.1 Geometric Phase

Suppose we are standing at the North Pole holding a (ideal, frictionless) pendulum. Say we set the pendulum
in motion at the north pole, so that it swings directly along the longitudinal line passing through Waterloo.
If we want to carry the pendulum without disturbing its natural oscillation, we must do so adiabatically. Any
quick or sudden movements could disturb the orientation of the plane in which the pendulum is swinging.
Now suppose we (adiabatically) carry the Pendulum down the longitudinal line, keeping the pendulum
swinging north-south. We walk through Waterloo, and keep heading south, until we reach the equator.
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Then, we walk (still adiabatically) along the equator, still keeping the pendulum swinging north-south. We
walk some distance along the equator (say 1000 km) and finally walk north again directly back to the north
pole. During the entire journey, the motion has been adiabatic, and the pendulum has been swinging north-
south. It is fairly easy to see that when we return to the north pole, the pendulum is swinging in a different
plane than it was originally; now it swings in the direction of the longitudinal line along which we travelled
back to the north pole. Let θ be the angle between the original plane of the pendulum’s oscillation, and the
plane of it’s oscillation after the motion.

The movement of the pendulum around the path while keeping the plane of its oscillation oriented in the
north/south direction is an example of parallel transport. Consider the area A bounded by the path along
which the pendulum was carried. It is a fraction θ

2π of the northern hemisphere of the earth:

A =

(
4πr2

2

)(
θ

2π

)
= θr2

where r is the earth’s radius. So we can write the angle θ by which the plane of the pendulums motion has
rotated in terms of the area bounded by the path of the parallel transport:

θ =
A

r2

(notice that this expression for θ is independent of the shape of the path, and depends only on the area
enclosed by the path). This angle θ is an example of a geometric phase. In this (classical) example, it arises
because of the intrinsic curvature of the sphere (the geometric phase would not occur for parallel transport
on the surface of a flat manifold).

13.2 Development of the Berry Phase

It is crucial to note that the adiabatic theorem leaves open the possibility that the eigenstate may accumulate
an additional phase factor, on top of the dynamical phase we saw earlier. This is because “the j th eigenstate”
multiplied by some extra phase-factor is still “the jth eigenstate”. Let |Ej(t)〉 denote the jth eigenstate of

Ĥ(t), with eigenvalue Ej(t). For a system initially in state |Ej(t0)〉, the adiabatic theorem tells us that at
time t the state is approximated by (and in the adiabatic limit is equal to)

|ψ(t)〉 = eiγj(t)e
− i

~
∫
t
t0
Ej(t

′)dt′ |Ej(t)〉. (1)

Here − 1~
∫ t
t0
Ej(t

′)dt′ is the dynamical phase. It is obtained in a manner analogous to what we did in Section

12.1 to find the dynamical phase 1
~ (t − t0)En for time-independent Ĥ. Where in that derivation we used

Û(t) = e
1
i~ (t−t0)Ĥ , we now have Û(t) = e

1
i~
∫
t
t0
Ĥ(t′)dt′

(recall that our assumptions allow us to ignore the
time-ordering symbol in the expression for Û(t)). The factor γj(t) in equation (1) is the additional phase
allowed by the adiabatic theorem. This γj(t) is a geometric phase like the type we saw in Section 13.1, and
is called the Berry phase. We wish to obtain an expression for γj(t). To simplify the calculations, let θj(t)
denote the dynamical phase:

θj(t) := −
1

~

∫ t

t0

Ej(t
′)dt′ (2).

To evaluate the Berry phase, plug equation (1) into the Schrödinger equation, and use the eigenvalue equation,
obtaining

i~
∂

∂t

[
eiγj(t)eiθj(t)|Ej(t)〉

]
= Ĥ(t)

[
eiγj(t)eiθj(t)|Ej(t)〉

]

=⇒ i~
[
i
dγj
dt
eiγj(t)eiθj(t)|Ej(t)〉 −

i

~
Ej(t)e

iγj(t)eiθj(t)|Ej(t)〉+ eiγj(t)eiθj(t)
∂

∂t
|Ej(t)〉

]

= eiγj(t)eiθj(t)Ej(t)|Ej(t)〉
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which simplifies to
∂

∂t
|Ej(t)〉+ i|Ej(t)〉

∂γj
∂t

= 0.

Multiply this equation by 〈Ej(t)| to obtain

∂γj
∂t

= i〈Ej(t)|
∂

∂t
|Ej(t)〉,

and an expression for the Berry phase

γj(t) = i

∫ t

t0

〈Ej(t′)|
∂

∂t′
|Ej(t′)〉dt′ (3).

13.3 When is the Berry Phase Nonzero?

The Hamiltonian Ĥ is dependent on time through some parameters {Qi(t)} which we assume are changing
(adiabatically) in time. First, suppose there is only one such parameter Q which changes from Q0 at time
t0 to Qf at some later time tf . Then Ej and |Ej〉 are both dependent on time through Q, and we have

∂

∂t
|Ej(t)〉 =

∂

∂Q
|Ej(Q)〉dQ

dt

Plugging this expression into equation (3) we get

γj(tf ) = i

∫ tf

t0

〈Ej(Q)| ∂
∂Q
|Ej(Q)〉dQ

dt
dt

= i

∫ Qf

Q0

〈Ej(Q)| ∂
∂Q
|Ej(Q)〉dQ

In particular, if the Hamiltonian returns to its original form at time tf , then Q0 = Qf and we have

γj(tf ) = i

∫ Q0

Q0

〈Ej(Q)| ∂
∂Q
|Ej(Q)〉dQ = 0

and so the Berry Phase is 0. So in the case that only a single parameter in the Hamiltonian is changing in
time, the Berry phase equals 0.

Now suppose that there are N such adiabatically-changing parameters
Q1(t), Q2(t), . . . , Qn(t). Then Ĥ, Ej , and |Ej〉 are dependent on t through
Q = (Q1(t), Q2(t), . . . , Qn(t)), and we have

∂

∂t
|Ej(t)〉 =

∂

∂Q1
|Ej(Q)〉dQ1

dt
+

∂

∂Q2
|Ej(Q)〉dQ2

dt
+ · · ·+ ∂

∂QN
|Ej(Q)〉dQN

dt

= (∇Q|Ej(Q)〉) · dQ
dt
,

where ∇Q is the gradient with respect to these parameters. So now we have

γj(tf ) = i

∫ Qf

Q0

〈Ej(Q)|∇Q|Ej(Q)〉 · dQ

for the Berry phase. If the parameters of the Hamiltonian return to their initial form after time tf , then this
becomes

γj(tf ) = i

∮
〈Ej(Q)|∇Q|Ej(Q)〉 · dQ (4)

which is a line integral around a closed loop in this parameter space. From complex analysis, we know that
such an integral is not in general equal to zero. Note that γj(tf ) depends only on the path taken, and not on
the speed at which the parameters changed along that path. This is in contrast with the dynamical phase
θj(tf ) = − 1~

∫ tf
t0
Ej(t

′)dt′ which depends on the elapsed time tf − t0.
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13.4 The Berry Phase is Real

Note also that we can show that the Berry phase is real. If it were purely imaginary, then eiγj(t) would be
an exponential factor and would be lost in the normalisation of |Ej(t)〉.

Proof that θj(t) ∈ R:

∇Q (〈Ej(Q)|Ej(Q)〉) = 0

=⇒ (∇Q〈Ej(Q)|) |Ej(Q)〉+ 〈Ej(Q)| (∇Q|Ej(Q)〉)
= 〈Ej(Q)|∇Q|Ej(Q)〉∗ + 〈Ej(Q)|∇Q|Ej(Q)〉 = 0

=⇒ 〈Ej(Q)|∇Q|Ej(Q)〉 is imaginary

=⇒ γj(t) = i

∫ Qf

Qi

〈Ej(Q)|∇Q|Ej(Q)〉 · dQ is real. ¤

13.5 Alternative Expression for γj(t)

Recall equation (4) expresses γj(t) after a complete cycle as a line-integral around a closed loop C in the
parameter space:

γj(tf ) = i

∮
〈Ej(Q)|∇Q|Ej(Q)〉 · dQ.

The assumption we made in Section 12.2 about the piecewise continuity of the first and second derivatives
of |Ej(s)〉〈Ej(s)| with respect to s will ensure that the curve C is piecewise-smooth. If we assume that the

parameter space is three-dimensional (so only parameters Q1, Q2, Q3 of Ĥ are changing in time) then C is
the boundary of some orientable surface S in the parameter space. Recalling vector calculus we can apply
Stoke’s theorem, and write γj(tf ) as a surface integral

γj(tf ) = i

∫

S

[∇Q × 〈Ej(Q)|∇Q|Ej(Q)〉d] · a,

where ∇Q × 〈Ej(Q)|∇Q|Ej(Q)〉 is the curl of 〈Ej(Q)|∇Q|Ej(Q)〉.

Analogous results can be stated for parameter spaces with higher dimensions, but we will not pursue these
here.

13.6 Example

Recall the example in Section 12.3, illustrating the adiabatic evolution of a spin- 12 particle (an electron) in
an adiabatically rotating magnetic field. We assumed the electron was initially in the spin-up eigenstate at
time t0 = 0, with the corresponding eigenvalue µ↑ = −~ω1

2 . Recall equation (2) for the dynamical phase:

θj(t) := −
1

~

∫ t

t0

Ej(t
′)dt′.

For the present example, the state is the j = 1st eigenstate (the spin-up eigenstate), and the eigenvalue Ej(t)
is a constant value −~ω1

2 . So the dynamical phase is found to be

θ↑(t) = −
1

~

∫ t

0

(
−~ω1

2

)
dt′

=
ω1t

2
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Now recall equation (3) for the Berry phase:

γj(t) = i

∫ t

t0

〈Ej(t′)|
∂

∂t′
|Ej(t′)〉dt′.

Recalling the development of the example in Section 12.3, we have the j = 1st eigenstate written in the
Ŝ3-eigenbasis:

|µ↑(t)〉 =
(

cos
(
α
2

)

eiωt sin
(
α
2

)
)
,

and so
∂

∂t
|µ↑(t)〉 =

(
0

iωeiωt sin
(
α
2

)
)

and

〈µ↑(t)|
∂

∂t
|µ↑(t)〉 = iω sin2

(α
2

)
.

A complete cycle of the magnetic field takes time t = 2π/ω, and so equation (3) now becomes

γ↑(t) = i

∫ 2π
ω

0

iω sin2
(α
2

)

= π(cosα− 1)
(
using the identity 2 sin2

(α
2

)
= 1− cosα

)
.

Now, consider the more general case in which the magnetic field vector B traces out an arbitrary closed
path C (while |B| = B0 remains constant), returning to its starting position at time tf . Now the angular
momentum ω is not assumed to be constant; nor is there a constant “opening-angle” α. The spin-up
eigenstate along B(t) is now

|µ↑(t)〉 =
(

cos
(
θ
2

)

eiϕ sin
(
θ
2

)
)
,

where ϕ(t) and θ(t) are functions of time. From vector calculus, we recall how to write the gradient in
spherical coordinates:

∇|µ↑〉 =
∂

∂r
|µ↑〉r̂ +

1

r

∂

∂θ
|µ↑〉θ̂ +

1

r sin θ

∂

∂ϕ
|µ↑〉ϕ̂

=
1

r

(
− 12 sin

(
θ
2

)

1
2e
iϕ cos

(
θ
2

)
)
θ̂ +

1

r sin θ

(
0

ieiϕ sin
(
θ
2

)
)
ϕ̂.

So we get

〈µ↑|∇|µ↑〉 =
1

2r

[
− sin

(
θ

2

)
cos

(
θ

2

)
θ̂ + sin

(
θ

2

)
cos

(
θ

2

)
θ̂ + 2i

sin2
(
θ
2

)

sin θ
ϕ̂

]

= i
sin2

(
θ
2

)

r sin θ
ϕ̂.

The curl is

∇× 〈µ↑|∇|µ↑〉 =
1

r sin θ

∂

∂θ

[
sin θ

(
i sin2

(
θ
2

)

r sin θ

)]
r̂

=
i

2r2
r̂.
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Recalling Section 〈µ↑|∇|µ↑〉, we can write γ↑(tf ) as a surface integral over the surface S bounded by the
curve C swept-out by the the magnetic field vector B:

γ↑(tf ) = −
1

2

∫
1

r2
r̂ · da.

By the geometry of this example da = r2dΩr̂, where Ω is the angle subtended at the origin, and so our
integral becomes

γ↑(tf ) = −
1

2

∫
dΩ = −1

2
Ω.
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14 APPENDIX: The δ-Function and Fourier Transforms

Here we give a brief summary of some aspects of δ-functions and Fourier Transforms which are relevant to
quantum mechanics.

14.1 Definition of δ(x)

The “Dirac delta function” δ(x) is a continuous generalization of the Kronecker delta symbol:

δn,m =

{
0 if m 6= n

1 if m = n
.

Suppose f(x) is a function which is well-defined at the point x = x0. Then the dirac delta function δ(x) is
defined by ∫ ∞

−∞

f(x)δ(x− x0)dx = f(x0).

Thus δ(x) is a function which satisfies

δ(x− x0) =
{

0 if x 6= x0

∞ if x = x0

and ∫ ∞

−∞

δ(x− x0)dx = 1.

14.2 Properties of δ(x)

The following properties can be proved rigorously by means of distribution theory. We just state the prop-
erties without proof.

δ(x) = δ(−x)
δ(ax) = 1

|a|δ(x) a 6= 0

δ[g(x)] =
∑
n:g(xn)=0,g′(xn)6=0

1
|g′(xn)|

δ(x− xn)

xδ(x) = 0

f(x)δ(x− a) = f(a)δ(x− a)
∫∞
−∞

δ(x− y)δ(y − a)dy = δ(x− a)

δ(x) = a
2π

∫∞
−∞

eikxdx

Also, the first derivative δ′(x) of δ(x) has the following properties:

∫∞
−∞

δ′(x)f(x)dx = −f ′(0)
δ′(x) = −δ′(−x)
∫∞
−∞

δ′(x− y)δ(y − a)dy = δ′(x− a)
xδ′(x) = −δ(x)
x2δ′(x) = 0

δ′(x) = i
2π

∫∞
−∞

keikxdk
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14.3 The Fourier Transform

If the “Fourier Transform” of a function f(x) exists, it is the function

F (u) ≡ F [f ] =
√

α

2π

∫ ∞

−∞

e−iαuxf(x)dx

where α is a fixed constant. In quantum mechanics, α is taken to be 1~ , and so the Fourier transform for us
is

F (u) ≡ F [f ] =
√

1

2π~

∫ ∞

−∞

e
−iux

~ f(x)dx.

The inverse fourier transform is

f(x) ≡ F−1[F ] =
√

1

2π~

∫ ∞

−∞

e
iux

~ F (u)du.

Generally, if f(x1, . . . , xn) is a function of n variables, its Fourier Transform is

F (u1, . . . , un) ≡ F [f ] =
(

1

2π~

)n
2
∫ ∞

−∞

· · ·
∫ ∞

−∞

e
−i(u1x1+...+unxn)

~ f(x1, . . . , xn)dx1 . . . dxn

and the inverse Fourier Transform is

f(x1, . . . , xn) ≡ F [F ] =
(

1

2π~

)n
2
∫ ∞

−∞

· · ·
∫ ∞

−∞

e
i(u1x1+...+unxn)

~ F (u1, . . . , un)du1 . . . dun.

14.4 Properties of the Fourier Transform

An integrable function f(x) is one satisfying

∫ ∞

−∞

|f(x)|dx <∞.

Any integrable function has a Fourier transform.

In the following, we assume the Fourier Transforms of f and g exist, and F (u) = F [f ], G(u) = F [g].

14.4.1 Important Limit Property

lim|u|→∞F (u) = 0

14.4.2 Linearity

F [af(x) + bg(x)] = aF (u) + bG(u)
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14.4.3 Fourier Transform of Derivatives

If f(x) is differentiable, and its derivative is integrable, then

F [f ′(x)] =
(
iu

~

)
F (u).

Suppose f(x) is m-times continuously differentiable, and its derivatives are integrable, then

F
[
dmf

dxm

]
=

(
iu

~

)m
F (u).

The property is essentially that derivatives of f(x) get transformed into multiplication by iu
~ . The converse

is essentially the same:

F [xmf(x)] =
(
i

~

)m
dm

dum
[F (u)].

14.4.4 Multiplication ⇐⇒ Convolution

The convolution of two functions f(x), g(x) is defined as

(f ∗ g)(x) =
∫ ∞

−∞

f(t)g(x− t)dt =
∫ ∞

−∞

f(x− t)g(t)dt

The following properties essentially say that multiplication of functions Fourier Transforms to convolution
of functions (and vice-versa).

F [(f ∗ g)(x)] =
√
2π~F (u)G(u)

F [f(x)g(x)] = 1√
2π~

(F ∗G)(u)

14.4.5 Scaling and Shifting Properties

For a constant c, we have

F [f(cx1, . . . , cxn)] =
1

|c|nF (
u1
c
, . . . ,

un
c
)

and

F−1[F (cu1, . . . , cun)] =
1

|c|n f(
x1
c
, . . . ,

xn
c
)

We give the shifting properties for the case of a function in one variable:

F [f(x− a)] = e−iuaF (u)

and
F [e−iλxf(x)] = F (u− λ)

14.4.6 Fourier Transform of δ(x)

F [δ(x− a)] = 1

2π~

∫ ∞

−∞

δ(x− a)e−iuxdx =
1

2π~
eiua.


