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Chapter 1

Orthonormal Functions

1.1 Introduction

Previous experience:

1. College-level linear algebra: expand finite-dimensional vectors in a basis

2. Quantum Mechanics: expand a wavefunction in an eigenbasis

Today: Treatment of expanding a function in terms of an orthonormal set of functions.
(You won’t necessarily understand all the words used in this paragraph; that’s OK). We will

be thinking about expanding a function in the eigenbasis of a linear differential operator that we
don’t necessarily associate with the Hamiltonian. We are just touching upon the sophisticated
topic of spectral decomposition of self-adjoint (more restrictive than Hermitian) operators in
infinite dimensional vector spaces (see, e.g., Richtmyer’s “Principles of Advanced Mathematical
Physics”).

Why do we want to do this? We want to solve PDEs in general, the Poisson equation in
particular.

1. You will learn (today?) the very powerful technique of Separation of Variables. We will
find that SoV yields complete, orthogonal sets of basis functions

2. You will learn very powerful methods for finding Green’s functions using an orthonormal,
complete basis of functions (see Jackson chapter 3.12).

1.2 General Notions for Expanding in a Basis

1.2.1 Finite Dimensional Vector Space

Finite number of bases.
Suppose we wish to decompose a vector a in terms of a set of basis vectors, say {êi} (i runs

from 1 to N , where N is the dimensionality of the space). Let’s take as a concrete example R2.
Then

a =
2∑
i=1

aiêi. (1.1)

One property we’d like to have satisfied by our basis is that the decomposition is unique.
Specifically

ai = êi · a (1.2)

=
2∑
j=1

êiaj êj (1.3)

= ai. (1.4)
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In order to get to the last line we see that the êi have to be orthonormal ; i.e.,

êi · êj = δi,j . (1.5)

So we see that uniqueness of the decomposition requires orthonormality of the basis vectors
(really we just need orthogonality, but the normalization of orthonormality makes our lives
easier).

Note that any finite dimensional vector space is complete; i.e. any sequence of vectors in the
space converges to a vector that is still in the space.

1.2.2 Hilbert Space with a Countably Infinite Number of Basis Vec-
tors

Let’s first think about countably infinite dimensional vector spaces (really we’re thinking about
Hilbert spaces). Under very general conditions the solution set of differential equations (e.g. of
Sturm-Liouville type) on a finite domain is a vector space with only a countably infinite number
of basis functions. (The quantum mechanics of a particle in an infinite potential well is in this
class of problems.) Let’s think about spaces of functions, f(x), with a set of basis vectors, {un}
with n ∈ N. For definiteness let’s take x ∈ [a, b]. Then we will have

f(x) =
∞∑
n=1

anun(x), (1.6)

an =
∫ b

a

f(x)u∗n(x)dx. (1.7)

What properties of the basis vectors, {un}, do we want? First, uniqueness of decomposition.
Then

an =
∫ b

a

∞∑
m=1

amum(x)u∗n(x)dx (1.8)

=
∑
m

am

∫ b

a

um(x)u∗n(x)dx (1.9)

= an. (1.10)

Again, in order to get to the last line we require orthonormality of our basis functions:∫ b

a

um(x)u∗n(x)dx = δm,n (1.11)

We also want an additional condition on the basis functions, namely that we can recover our
function. Specifically

f(x) =
∑
n

anun(x) =
∑
n

∫ b

a

f(x′)u∗n(x′)dx′u)n(x) (1.12)

=
∫ b

a

f(x′)
∑
n

u∗n(x′)un(x)dx′ (1.13)

= f(x). (1.14)

In order to get to the last line we require completeness of our basis:∑
n

u∗n(x′)un(x) = δ(x− x′). (1.15)

Completeness guarantees that I can decompose in my basis any function that is continuous
almost everywhere.
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1.2.3 Hilbert Space with Uncountably Infinite Number of Bases

Often the solution set of differential equations whose domain is unbounded is an uncountably
infinitly dimensional Hilbert space. (From QM think wavepackets exp(ikx).) Now our set of
basis functions is {uk} with k ∈ R:

f(x) =
∫ ∞
−∞

dkaku
∗
k(x), (1.16)

ak =
∫ ∞
−∞

dxf(x)u∗k(x), (1.17)

where we’re now integrating over the index,k. Let’s see what uniqueness of coefficients nets us.

ak =
∫ ∞
−∞

dxf(x)u∗k(x) (1.18)

=
∫ ∞
−∞

dx

∫ ∞
−∞

dk′ak′uk′(x)u∗k(x) (1.19)

=
∫ ∞
−∞

dk′ak′

∫ ∞
−∞

dxuk′(x)u∗k(x) (1.20)

= ak. (1.21)

So in the case of an uncountably infinite number of basis functions we see that orthogonality
now requires a Dirac as opposed to a Kronecker delta function:∫ ∞

−∞
dxuk′(x)u∗k(x) = δ(k − k′). (1.22)

As for uniqueness of functions we have that

f(x) =
∫ ∞
−∞

dkakuk(x) =
∫ ∞
−∞

dk

∫ ∞
−∞

dx′f(x′)u∗k(x′)uk(x) (1.23)

=
∫ ∞
−∞

dx′
∫ ∞
−∞

dku∗k(x′)uk(x) (1.24)

= f(x). (1.25)

We still need a Direc delta function for completeness:∫ ∞
−∞

dku∗k(x′)uk(x) = δ(x− x′). (1.26)

Notice the symmetry between the orthonormality and completeness relations. We will come
back to this later.

1.3 Specific Examples of Expanding in a Basis

1.3.1 Finite Dimensional Vector Space Example

Orthonormality

Suppose we’re again in R2, and we choose our basis vectors to be

ê1 =
(

1
0

)
ê2 =

(
0
1

)
. (1.27)

It’s clear that our basis vectors are orthonormal,

êi · êj = δi,j . (1.28)
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Decomposition Example

Suppose I have some vector a. I can find its decomposition:

ê1 · a = 3 (1.29)

ê2 · a = 4. (1.30)

Then I know that I can write
a = 3ê1 + 4ê2. (1.31)

1.3.2 Countably Infinite Dimensionality Example

Orthonormality and Completeness

We will prove that on the domain of (−a/2, a/2) the set of functions

{un(x)} =

{√
2
a

sin
2mπx
a

,

√
2
a

cos
2mπx
a

∣∣m ∈ N

}⋃{
1√
a

}
(1.32)

is a complete, orthonormal basis.
First, to make our lives easier, let’s take a→ 2. Let’s do orthnormality:∫ 1

−1

dx sin(πmx) sin(πnx) =
1
2

∫ 1

−1

[
cos
(
πx(m− n)

)
− cos

(
πx(m+ n)

)]
(1.33)

=
1
2

[
sin
(
πx(m− n)

)
π(m− n)

−
sin
(
πx(m+ n)

)
π(m+ n)

]1

x=−1

. (1.34)

The first term is clearly 0 for m 6= n. Since m, n > 0 the second term is always 0. When m = n
we may return to the original integral and see that the normalization is correct. On the other
hand we may also exploit l’Hôpital’s rule to the same effect:

lim
m−n→0

sin(π(m− n))
π(m− n)

= 1. (1.35)

Therefore we have that ∫ 1

−1

dx sin(πmx) sin(πnx) = δm,n. (1.36)

This argument follows in exactly the same way for the cosines. Sines and cosines are always
orthogonal to each other on a domain such as this; similarly sines and cosines are also orthogonal
on this domain to a constant. The constant basis funciton is clearly normalized properly.

Now let’s check completeness. We want to check that

I1 ≡
1
2

+
∞∑
n=1

sin(nπx) sin(nπy) + cos(nπx) cos(nπy) = δ(x− y). (1.37)

Note that the 1/2 our front comes from the 1/
√

2 basis function.
How would we go about proving that I1 is a delta function? Well, what are the salient

properties of a delta function? It turns out we need to show that

1. δ(x− y) = 0 for x 6= y

2.
∫
dxδ(x− y) = 1, where we require that y be within the region of integration

These two properties guarantee that the delta function behaves as we expect it; i.e., that∫
dxf(x)δ(x − y) = f(y) for any smooth function f , and where again the region of integra-

tion is taken such that it includes y. This is because we can always Taylor expand the smooth
function: ∫

dxf(x)δ(x− y) =
∫
dx
[
f(y) + f ′(y)(x− y) + . . .

]
δ(x− y) (1.38)

= f(y). (1.39)
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Let’s get back to I1. We have that

I1 =
1
2

+
∞∑
m=1

cos
(
mπ(x− y)

)
= −1

2
+

1
2

∞∑
m=0

eimπ(x−y) + e−imπ(x−y). (1.40)

Examine
∞∑
m=0

[
eiπ(x−y)

]m
= lim
ε→0

∞∑
m=0

[
eiπ(x−y+iε)

]m
(1.41)

= lim
ε→0

1
1− eiπ(x−y+iε) (1.42)

=
1

1− eiπ(x−y) . (1.43)

Therefore

I1 = −1
2

+
1
2

[
1

1− eiπ(x−y) +
1

1− e−iπ(x−y)

]
(1.44)

= −1
2

+
1
2

[
1− e−iπ(x−y) + 1− eiπ(x−y)

1− eiπ(x−y) − e−iπ(x−y) + 1

]
(1.45)

= 0 for x 6= y (1.46)

So we know that the function is 0 everywhere that x 6= y. Now we just have to show that
it has the right normalization to prove that it’s a delta function. To make our lives easier, let’s
take y = 0. Then we need to integrate I1 over a region in x that contains 0. We could integrate
from −ε to ε; it turns out our lives will be even easier still if we simply integrate from -1 to 1:∫ 1

−1

I1dx =
∫ 1

−1

1
2

+
1
2

∞∑
m=1

cos(mπx)dx (1.47)

= 1 +
1
2

∞∑
m=1

sin(mπx)
mπ

∣∣∣∣1
−1

(1.48)

= 1. (1.49)

Note that with the integration region we chose the entire weight of the delta function came from
the constant 1/2; if we decided to shrink the integration region down the contribution from the
constant would decrease with the contribution from the infinite sum compensating exactly.

Check notes online for a hint for HW problem 2.15.

Decomposition Example

Let’s do an example where we explicitly determine the coefficients for a specified function using
the previous basis. Suppose we have the function

f(x) = 1− |x| (1.50)

on the domain x ∈ (−1, 1). Since f is an even function the coefficients of the sines are identically
0. The coefficient of the constant function is

a0 =
∫ 1

−1

(
1− |x|

) 1√
2
dx =

2√
2

∫ 1

0

(1− x)dx (1.51)

=
1√
2

(
2x− x2

)∣∣1
0

=
1√
2
. (1.52)

The coefficients an, n > 0 are found from

an = 2
∫ 1

0

(1− x) cos(nπx)dx. (1.53)
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The 1 of the 1 − x is identically 0 after integration over the cosine. For the contribution from
the x, I don’t like doing integration by parts so I’ll use Feynman’s trick. Consider

g(α) ≡
∫ 1

0

sin(αx)dx. (1.54)

Note that by differentiating under the integral sign

∂αg(α) =
∫ 1

0

dx∂α
(

sin(αx)
)

(1.55)

=
∫ 1

0

x cos(αx)dx (1.56)

gives us exactly the definite integral we wish to evaluate. Simple integration yields

g(α) = − cos(αx)
α

∣∣∣∣1
0

=
1− cos(α)

α
. (1.57)

The value of the definite integral is then

∂αg(α) = − 1
α2
− sin(α)

α
+

cos(α)
α2

(1.58)

=
cos(nπ)− 1

(nπ)2
=

(−1)n − 1
(nπ)2

, for α = nπ. (1.59)

Plugging in the factor of -2 in the original integral we find then that

an =


4

(nπ)2
, n odd

0, n even

(1.60)

Putting everything together we find that

1− |x| = 1
2

+
4
π2

∞∑
m=1

cos
(
(2m+ 1)πx

)
(2m+ 1)2

. (1.61)

1.3.3 Uncountably Infinite Basis Example

Orthonormality and Completeness

An example of a set of basis functions for the unbound interval of x ∈ (−∞,∞) is

u(x, k) =
{

1√
2π
eikx

∣∣k ∈ R
}
. (1.62)

These are so important we call the coefficients we find using u Fourier Transforms. Specifically

f(x) =
1√
2π

∫ ∞
−∞

f̃(k)eikxdx (1.63)

f̃(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdk (1.64)

One can think of Fourier Transforms as the continuum limit of Discrete Fourier Transforms,
in which the (countably) infinite complete orthonormal basis is taken to be

um(x) =
{

1√
a
ei2πmx/a

∣∣m ∈ Z
}
. (1.65)

This DFT basis is intimately related to the basis example given in the previous section; unlike
the previous section the use of exponentials the nonconstant basis functions here have the same
normalization as the constant basis function.
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Let’s check orthonormality.

1
2π

∫ ∞
−∞

dxeix(k−k
′) =

1
2π

lim
ε→0

[∫ ∞
0

dxeix(k−k
′+iε) +

∫ 0

−∞
dxeix(k−k

′−iε)
]

(1.66)

=
1

2π
lim
ε→0

 eix(k−k
′+iε)

i(k − k′ + iε)

∣∣∣∣∣
∞

0

+
eix(k−k

′+iε)

i(k − k′ + iε)

∣∣∣∣∣
0

−∞

 (1.67)

=
1

2π
lim
ε→0

[
− 1
i(k − k′ + iε)

+
1

i(k − k′ − iε)

]
(1.68)

= 0, for k 6= k′. (1.69)

Now let’s check the normalization to finish the proof that it’s a delta function. We can do this
quite easily using contour integration (see, e.g., Brown and Churchill’s “Complex Variables and
Applications”). Let’s set k′ = 0 again. Then by choosing to close the contour above (we can
just as easily close below),

1
2π

∫ ∞
−∞

dk

∫ ∞
−∞

dxeixk =
1

2πi

∮
dk lim

ε→0

[
1

k − iε
− 1
k + iε

]
= 1. (1.70)

A less sophisticated, but no less correct, derivation uses common denominators:

1
2πi

lim
ε→0

∫ ∞
−∞

dk
2iε

k2 + ε2
=

1
π

lim
ε→0

tan−1

(
k

ε

)∣∣∣∣∞
k=−∞

= 1. (1.71)

Symmetry between x and k demands that the completeness relation also holds; i.e.

1
2π

∫ ∞
−∞

dkeik(x−x
′) = δ(x− x′). (1.72)

This symmetry between x and k means there’s a complete equivalence between working with
f(x) and f̃(k).

Note that in the process above we’ve found two (very) useful expressions for the delta func-
tion:

δ(x) =


1

2π

∫ ∞
−∞

dkeikx

1
2π

lim
ε→0

[
1

x− iε
− 1
x+ iε

]
.

(1.73)

Decomposition Example

Let
f(x) = e−x

2
. (1.74)

Then
f̃(k) =

1√
2π

∫ ∞
−∞

dxe−ikxe−x
2

=
1√
2π

√
πe−k

2/4. (1.75)

Therefore we can write

f(x) =
∫ ∞
−∞

dk
1√
2π
eikx

1√
2
e−k

2/4 =
1

2
√
π

∫ ∞
−∞

dkeikxe−k
2/4. (1.76)

Note that, as must be true, performing the last integral returns f(x) = exp(−x2).
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1.4 Aside

In higher dimensions

δ(n)(x− x′) = δ(x1 − x′1) · · · δ(xn − x′n) (1.77)

=
∫
dk1

2π
eik1(x1−x′

1) · · ·
∫
dkn
2π

eikn(xn−x′
n) (1.78)

=
∫

dnk

(2π)n
eik·(x−x′). (1.79)

1.5 Fourier Transforms for Solving ODEs and PDEs

As an example, let’s use FT to find the Green’s function for the Laplacian in Cartesian coordi-
nates in 3 dimensions:

∇2
xG(x,x′) = −4πδ(3)(x− x′). (1.80)

Let’s begin by Fourier transforming G. Ordinarily we’d have to perform a double FT:

G(x,x′) =
∫

d3k

(2π)3/2
eik·x

∫
d3k′

(2π)3/2
eik

′·x′
G̃(k,k′). (1.81)

However we notice that the RHS of Eq. (1.80) is symmetric with respect to x− x′; therefore G
must respect this symmmetry: G(x,x′) = G(x − x′). Therefore we can get away with only a
single FT:

G(x,x′) =
∫

d3k

(2π)3/2
eik·(x−x′)G̃(k). (1.82)

Plugging this expression for G back in to Eq. (1.80) and simultaneously expressing the delta
function in the wavepacket basis yields

∇2
x

∫
d3k

(2π)3/2
eik·(x−x′)G̃(k) = −4π

∫
d3k

(2π)3
eik·(x−x′) (1.83)∫

d3k

(2π)3/2
G̃(k)∇2

xe
ik·(x−x′) =

∫
d3k

(2π)3/2
[
− k2G̃(k)

]
=
∫

d3k

(2π)3/2
eik·(x−x′)

[ −4π
(2π)3/2

]
. (1.84)

In finite-dimensional vector spaces you know that for two vectors to be equal, their compo-
nents in an orthnormal basis must be the same. Similarly, we showed that in infinite dimensional
vector spaces the components of a function are unique. Therefore we can simply set the inte-
grands in the last equation equal.

− k2G̃(k) =
−4π

(2π)3/2
⇒ G̃(k) =

4π
(2π)3/2

1
k2 . (1.85)

Therefore

G(x,x′) =
∫

d3k

(2π)3/2
eik·(x−x′) 4π

(2π)3/2
1
k2

(
+ F (x,x′) with ∇2

xF = 0
)
. (1.86)
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We have exchanged a nasty PDE for an unpleasant integral, which we’ll now evaluate.

G(x,x′) =
1

2π2

∫
k2dk sin θdθdφ

1
k2
eik|x−x′| cos θ (1.87)

=
1

2π2
2π
∫ ∞

0

dk

[
−e

ik|x−x′| cos θ

ik|x− x′|

]π
θ=0

(1.88)

=
1
π

∫ ∞
0

dk
1

ik|x− x′|

[
eik|x−x′| − e−ik|x−x′|

]
(1.89)

=
2
π

∫ ∞
0

dk
sin
(
k|x− x′|

)
k|x− x′|

(1.90)

=
2
π

1
|x− x′|

∫ ∞
0

dt
sin t
t

(1.91)

=
1

|x− x′|
. (1.92)

Note that in the first line we use the physicist’s trick of choosing to align the z axis along the
direction of x−x′, and in the last line we used a definite integral derived in HW1 (after changing
variables to t = k|x− x′|.

Here’s a nice proof that
∫∞
0

sin(t)/tdt = π/2 without resorting to contour integration.∫ ∞
0

sin(t)
t

dt = lim
ε→0

∫ ∞
0

dt
sin(αt)

t

∣∣∣∣1+iε
iε

dt = lim
ε→0

∫ ∞
0

dt

∫ 1

0

dα cos
(
(α+ iε)t

)
dt (1.93)

= lim
ε→0

Re
∫ ∞

0

dt

∫ 1

0

dα e(iα−ε)t = lim
ε→0

Re
∫ 1

0

dα

∫ ∞
0

dt e(iα−ε)t (1.94)

= lim
ε→0

Re
∫ 1

0

dα
1

ε− iα
= lim
ε→0

∫ 1

0

dα
ε

ε2 + α2
(1.95)

= lim
ε→0

tan−1(α/ε)
∣∣∣1
α=0

(1.96)

=
π

2
. (1.97)
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Chapter 2

Separation of Variables

Separation of variables is a very powerful tool for solving PDEs (e.g. Poisson’s Equation). Gener-
ically the method is as follows. Once you have your PDE, choose a coordinate system (e.g.
Cartesian coordinates in 3D, x, y, z; there are generally 11 different coordinate systems which
permit the use of Separation of Variables for the Poisson Equation). Assume the solution fac-
torizes into functions that depend on only one coordinate (e.g. φ(x, y, z) = X(x)Y (y)Z(z)).
Then the PDE turns into a system of ODEs. The differential operators that one finds are usu-
ally of the Sturm-Liouville type; more generally speaking they are usually self-adjoint, which
is in fact more restrictive in infinite dimensional spaces than Hermitian (see, e.g. Richt-
myer’s “Principles of Advanced Mathematical Physics,” Hassani’s “Mathematical Physics,”
or www.math.ohio-state.edu/~gerlach/math/BVtypeset for information on Sturm-Liouville
theory, Hermitian, and self-adjointness). As a result the eigenfunctions of these differential
operators, which are themselves solutions to the ODEs, will form a complete, orthonormal set.
Therefore we will be able to describe any separable solution with boundary conditions consistent
with the PDE.

2.1 Example: Poisson’s Equation in 3D Cartesian Coor-
dinates

This will often provide a very good means for solving box problems.
The partial differential equation we wish to solve is

∇2
xφ(x, y, z) = ∂2

xφ(x, y, z) + ∂2
yφ(x, y, z) + ∂2

zφ(x, y, z). (2.1)

Now suppose that the solution is separable. Then

φ(x, y, z) = X(x)Y (y)Z(z). (2.2)

Pluggin this back in to the original PDE yields

∆φ(x, y, z) = Y (y)Z(z)X ′′(x) +X(x)Z(z)Y ′′(y) +X(x)Y (y)Z ′′(z). (2.3)

Dividing by φ gives us

1
X(x)

X ′′(x) +
1

Y (y)
Y ′′(y) +

1
Z(z)

Z ′′(z) = 0. (2.4)

Since each of these terms depends only on x, y, or z, and these coordinates are all allowed to
vary freely, each term must be equal to a constant. If a term, say the x one, was not equal to a
constant, then in order for the whole to sum to zero the other terms would have to have some
dependence on x, too; we assumed this not to be the case so it is not a possibility. Let’s choose
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these constanst such that

1
X(x)

X ′′(x) = −α2 (2.5)

1
Y (y)

Y ′′(y) = −β2 (2.6)

1
Z(z)

Z ′′(z) = α2 + β2 ≡ γ2. (2.7)

Note that α, β ∈ C are at this point completely arbitrary. We will find that their values become
restricted once we impose boundary conditions (for instance if the box is of finite volume then
they take on only discrete values). The solutions of these differential equations are trivially

X(x) = Aαe
iαx +Bαe

−iαx (2.8)

Y (y) = Aβe
iβy +Bβe

−iβy (2.9)

Z(z) = Aγe
γz +Bγe

−γz, (2.10)

where the Aµ and Bν will be set uniquely by the boundary conditions. The general solution to
our problem is

φ(x, y, z) = “
∫
dαdβ ”

(
Aαe

iαx +Bαe
−iαx) (Aβeiβy +Bβe

−iβy) (Aγeγz +Bγe
−γz) , (2.11)

where the integration is in quotes because it’s meant to represent a sum over all possibilities for
the constants α and β; in some cases this will result in an integral, in others a discrete sum.
Technically, then, it’s a Stieltjes integral (without the quotes), which allows one to incorporate
both summation over discrete terms and integration over the continuous terms in a single formula
(see Richtmyer).

Example of Determining Aµ and Bµ for a Specific Box

Suppose we take our box problem and assume that it is of finite extent—x ∈ [0, a], y ∈ [0, b],
and z ∈ [0, c]—and we set all sides to have potential 0 except for the top, for which we take
V (x, y, z = c) = V (x, y) and leave V (x, y) unspecified. What is the solution? Immediately we
know that

X(0) = 0 ⇒ X(x) ∼ sin(αx) (2.12)

X(a) = 0 ⇒ X(x) ∼ sin
(nπx

a

)
(2.13)

Y (0) = 0 ⇒ Y (y) ∼ sin(βy) (2.14)

Y (b) = 0 ⇒ Y (y) ∼ sin
(mπy

b

)
(2.15)

Z(0) = 0 and α, β ∈ R ⇒ Z(z) ∼ sinh(γn,mz), (2.16)

where

γn,m =
√
α2
n + β2

m =

√(nπ
a

)2

+
(mπ
b

)2

> 0. (2.17)

The general solution is then

φ(x, y, z) =
∞∑

n,m=1

An,m sin(αnx) sin(βmy) sinh(γn,mz). (2.18)

We need to solve for An,m. We will have one boundary condition left:

φ(x, y, z = c) =
∑

n,m = 1∞An,m sin(αnx) sin(βmy) sinh(γn,mc) = V (x, y). (2.19)
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Let’s use the orthonormality of sines. Integrate both sides by∫ a

0

dx

(
2
a

)
sin
(
n′πx

a

)∫ b

0

dy

(
2
b

)
sin
(
m′πy

b

)
. (2.20)

Then we will have that

An′,m′ sinh(γn,mc) =
4
ab

∫ a

0

dx

∫ b

0

dy sin
(
n′πx

a

)
sin
(
m′πy

b

)
V (x, y) (2.21)

∴ An′,m′ =
4

ab sinh(γn,mc)

∫ a

0

dx

∫ b

0

dy sin
(
n′πx

a

)
sin
(
m′πy

b

)
V (x, y). (2.22)
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