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1 Delta Functions

1.1 Principal Value Representation

The Sokhotsky-Weierstrauss Theorem states that, when considered as a distri-
bution,
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For z # 0, f(x) = 1/x. For x =0, f(z) = Fioco. So it already looks like the
form of Eq. (1); we really need only check the normalization. If we integrate
f(z) we get, for a < 0 < b,
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where the Cauchy principal value is defined as the exclusion of a singular value
from a region of integration; e.g. for a <0 < b
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To be specific as to the application of Eq. (1), for a smooth function g(x)
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1.2 Integral Representation

To get the normalization correct for the integral representation of a delta func-
tion note that:
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Therefore taking f(x) = 8(z), f(k) = 1 and, we have that
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We also get, for free, another form of the delta function:
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