Some Delta Function Representations

W. A. Horowitz

November 16, 2010

1 Delta Functions

1.1 Principal Value Representation

The Sokhotsky-Weierstrauss Theorem states that, when considered as a distribution,

$$
\lim_{\epsilon \to 0^+} \frac{1}{x \pm i\epsilon} = PV\frac{1}{x} \mp i\pi \delta(x). \tag{1}
$$

To see this consider

$$
f(x) \equiv \lim_{\epsilon \to 0^+} \frac{1}{x \pm i\epsilon} = \lim_{\epsilon \to 0^+} \frac{x}{x^2 + \epsilon^2} \mp i \frac{\epsilon}{x^2 + \epsilon^2}.
$$
 (2)

For $x \neq 0$, $f(x) = 1/x$. For $x = 0$, $f(x) = \pm i \infty$. So it already looks like the form of Eq. (1); we really need only check the normalization. If we integrate $f(x)$ we get, for $a < 0 < b$,

$$
\int_{a}^{b} dx f(x) = PV \int_{a}^{b} dx \frac{1}{x} \mp i \lim_{\epsilon \to 0^{+}} \tan^{-1} \left(\frac{b}{\epsilon}\right) - \tan^{-1} \left(\frac{a}{\epsilon}\right) \tag{3}
$$

$$
= PV \int_{a}^{b} dx \frac{1}{x} \mp i \pi,
$$
\n⁽⁴⁾

where the Cauchy principal value is defined as the exclusion of a singular value from a region of integration; e.g. for $a < 0 < b$

$$
PV \int_{a}^{b} dx \frac{1}{x} \equiv \lim_{\epsilon \to 0^{+}} \int_{a}^{-\epsilon} dx \frac{1}{x} + \int_{\epsilon}^{b} dx \frac{1}{x}.
$$
 (5)

To be specific as to the application of Eq. (1), for a smooth function $g(x)$ and $a < 0 < b$

$$
\lim_{\epsilon \to 0^+} \int_a^b dx \, g(x) \, \frac{1}{x \pm i\epsilon} = PV \int_a^b g(x) \frac{1}{x} \mp i \, \pi \, g(0). \tag{6}
$$

1.2 Integral Representation

To get the normalization correct for the integral representation of a delta function note that:

$$
\int_{-\infty}^{\infty} dx e^{ikx} f(x) = \tilde{f}(k)
$$

$$
f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{-ikx} \tilde{f}(k).
$$
 (7)

Therefore taking $f(x) = \delta(x)$, $\tilde{f}(k) = 1$ and, we have that

$$
\delta(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx e^{ikx}.
$$
 (8)

We also get, for free, another form of the delta function:

$$
\delta(k) = \lim_{\tau \to 0^{+}} \frac{1}{2\pi} \left[\int_{-\infty}^{0} dx e^{i(k-i\tau)x} + \int_{0}^{\infty} dx e^{i(k+i\tau)x} \right]
$$

\n
$$
= \lim_{\tau \to 0^{+}} \frac{1}{2\pi} \left[\frac{1}{i(k-i\tau)} - \frac{1}{i(k+i\tau)} \right]
$$

\n
$$
= \lim_{\tau \to 0^{+}} \frac{1}{2\pi} \left[\frac{1}{\tau + ik} + \frac{1}{\tau - ik} \right]
$$

\n
$$
= \lim_{\tau \to 0^{+}} \frac{1}{\pi} \frac{\tau}{\tau^{2} + k^{2}}.
$$
 (9)