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1 Active and Passive Transformations

1.1 1D Scalar Transformations

Suppose φ(x) = e−x2

, Fig. 1.

Figure 1: φ(x).

1.1.1 Passive

Now suppose we have a Passive Transformation, Fig. 2. We’re taking φ(x) →

Figure 2: Visualization of a Passive Transformation.

φ′(y), where x are our original coordinates and y are the new coordinates.
Suppose, for instance, that y = x + a = f(x). Then

φ′(y) = e−(y−a)2 = φ
(

x(y)
)

= φ
(

f−1(y)
)

. (1)

So we see that
φ′

Passive(y) = φ
(

f−1(y)
)

. (2)
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1.1.2 Active

An Active Transformation takes φ(x) → φ′(x), Fig. 3. Then

Figure 3: Visualization of an Active Transformation.

φ′
Active(x) = φ

(

f−1(x)
)

. (3)

We can see that the Active and Passive give the exact same result when we
change labels x ↔ y:

φ′
Active(y) = φ′

Passive(y); φ′
Active(x) = φ′

Passive(x). (4)

1.2 2D Scalar Transformation

Suppose we have φ(x1, x2) = x2
1 + x2

2 and we undertake a transformation with
y1 = x1 + a1 and y2 = x2 + a2. Then the Passive Transformation gives

φ′(y1, y2) = (y1 − a1)
2 + (y2 − a2)

2. (5)

In general for ~y = ~f(~x), and hence ~x = ~f−1(~y), we have that

φ′
Passive(~y) = φ

(

~f−1(~y)
)

. (6)

The Active Transformation gives

φ′
Active(~x) = φ

(

~f−1(~x)
)

. (7)

Suppose we do a less trivial example. Let φ(x1, x2) = x1 + x2
1 + x2

2 and
let’s effect the coordinate transformation x1 = r cos(θ), x2 = r sin(θ). This is
necessarily Passive, as it is a coordinate transformation. Then

φ′(r, θ) = r cos(θ) + r2. (8)

However I can still think of this as an active transformation:

φ′(~x) = φ
(

~f−1(~x)
)

(9)

= x1 cos(x2) + x2
1. (10)

We can then distinguish between Passive and Active transformations by

φ(~x) → φ′(~x′) [Passive] (11)

φ(~x) → φ′(~x) [Active]. (12)

In fact for a Passive transformation

φ′(~x′) ≡ φ(~x). (13)
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1.3 Derivatives

Let’s first brush up on the chain rule. If I take the derivative of a composition
of functions I get

∂

∂xµ

[

f
(

~g(~x)
)]

=

(

∂gν

∂xµ

)

(~x)

(

∂f

∂gν

)

(

~g(~x)
)

. (14)

Our somewhat confusing notation for the RHS should be interpreted as ∂µgν

evaluated at ~x multiplied by ∂νf evaluated at ~g(~x).
As an example take the scalar function f(z, w) = z2 + w2 acting on ~z =

~g(x, y) = (xy, x3). Then

∂xf
(

~g(~x)
)

= ∂x(x2y2 + x6) = 2xy2 + 6x5. (15)

This is the same result as from the Chain Rule (again with somewhat confusing
notation):

∂xf
(

~g(~x)
)

=

(

∂gz

∂x

)

(~x)

(

∂f

∂gz

)

(

~g(~x)
)

+

(

∂gw

∂x

)

(~x)

(

∂f

∂gw

)

(

~g(~x)
)

=

(

∂z

∂x

)

(~x)

(

∂f

∂z

)

(

~z(~x)
)

+

(

∂w

∂x

)

(~x)

(

∂f

∂w

)

(

~z(~x)
)

=
(

y
)

(

2z
)∣

∣

∣

z=xy
+
(

3x2
)

(

2w
)∣

∣

∣

w=x3

= 2xy2 + 6x5. (16)

In general we have that

∂

∂xµ

∣

∣

∣

∣

~x

=
∂yν

∂xµ

∣

∣

∣

∣

~x

∂

∂yν

∣

∣

∣

∣

~y=~y(~x)

. (17)

Let’s consider the Passive and Active transformations of the derivative of a
scalar function.

1.3.1 Passive

∂µ′ [φ′(~x′)] =
∂

∂yµ
[φ(~x)]

=
∂xν

∂yµ
(~y)

∂

∂xν
[φ(~x)]

=
∂xν

∂yµ
(~y)
(

∂νφ
)

(~x)

=
∂xν

∂yµ
(~y)
(

∂νφ
)

(

~f−1(~y)
)

. (18)

Take as an example our previous scalar function, φ(x1, x2) = x2
1x

2
2 + x6

1

and the transformation to (y1, y2) = (x2
1, x2). Note how this can be confusing
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because of the double usage of ~x in both the argument of φ and in ~y. We can
check Eq. (18) by evaluating ∂y1

φ′(~y) two ways. First we evaluate by direct
subsitution:

∂y1
φ′(~y) = ∂y1

φ
(

~f−1(~y)
)

= ∂y1
[φ(

√
y1, y2)]

= ∂y1

[

y1y
2
2 + y3

1

]

= y2
2 + 3y2

1 . (19)

Now let’s use our transformation machinery with Eq. (18):

∂y1
φ′(~y) =

∂xν

∂y1
(~y)
(

∂νφ
)

(

~f−1(~y)
)

=
1

2

1
√

y1

[

2x1x
2
2 + 6x5

1

]

x1=
√

y1,x2=y2

= y2
2 + 3y2

1, (20)

where to get from the first to the second line we differentiated the inverse of the
transformation, ~x = (

√
y1, y2).

1.3.2 Active

Now consider an active transformation. By a simple application of the Chain
Rule we have that

∂µ [φ′(~x)] = ∂µ

[

φ
(

~f−1(~x)
)

]

=
∂ f−1 ν

∂xµ
(~x)
(

∂νφ
)

(

~f−1(~x)
)

. (21)

We see that, as must happen, Eq. (18) and Eq. (21) are the same when we

take ~f−1 ↔ ~x and ~x ↔ ~y (note that even the argument of the second term is

the same because ~f−1(~y) = ~x(~y).

1.4 Jacobians

Ultimately we will use our transformation results for the derivative of a scalar
function to derive the transformation rule for vector fields. To do so we will
have to know how the inverse of objects like ∂xν/∂yµ: we need to understand
Jacobians and their inverses.

1.4.1 Passive

The Jacobian of a (Passive) coordinate transformation ~y = ~f(~x) is usually
denoted

∂yµ

∂xν
=







∂y1

∂x1

. . . ∂y1

∂xn

...
. . .

...
∂yn

∂x1

. . . ∂yn

∂xn

.






(22)
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We may find its inverse from

∂yµ

∂yν
=

∂

∂yν

[

yµ = fµ
(

~f−1(~y)
)

]

(23)

=

(

f−1
)ρ

∂yν
(~y)

∂fµ

∂ (f−1)ρ

(

~f−1(~y)
)

(24)

=
∂xρ

∂yν
(~y)

∂yµ

∂xρ

(

~f−1(~y)
)

(25)

=
∂xρ

∂yν

(

~f(~x)
)∂yµ

∂xρ
(~x) (26)

= δµ
ν . (27)

Therefore
(

∂yµ

∂xν

)−1
(

~f−1(~y)
)

=

(

∂xν

∂yν

)

(~y), (28)

and the same equation only evaluating both matrices simultaneously at a dif-
ferent point

(

∂yµ

∂xρ

)−1

(~x) =

(

∂xρ

∂yν

)

(

~f(~x)
)

. (29)

Expressed as matrix multiplication

J(~x)J−1
(

~f(~x)
)

=
∂yµ

∂xρ
(~x)

∂xρ

∂yν

(

~f(~x)
)

= I. (30)

We may also derive expressions by differentiating ~x:

∂xµ

∂xν
=

∂

∂xν

[

xµ =
(

f−1
)µ

(~y)
]

=
∂yρ

∂xν
(~x)

∂
(

f−1
)µ

∂yρ
(~y)

=
∂yρ

∂xν
(~x)

∂xµ

∂yρ

(

~y = ~f(~x)
)

= δµ
ν .

Therefore the inverse of the Jacobian (coordinate transformation) matrix is

(

∂yµ

∂xν

)−1

(~x) =
∂xµ

∂yν

(

~y = ~f(~x)
)

. (31)

Similarly
(

∂yµ

∂xν

)−1
(

~x = ~f−1(~y)
)

=
∂xµ

∂yν
(~y). (32)

Because left inverses and right inverses are the same for matrices we have
that

∂yµ

∂xρ

(

~x
)∂xρ

∂yν

(

~y = ~f(~x)
)

=
∂yµ

∂xρ

(

~x = ~f−1(~y)
)∂xρ

∂yν

(

~y
)

= δµ
ρ , (33)
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where one has to worry about the subtlety of ultimately evaluating the Jacobian
and in its inverse in the same set of coordinates.

As an example take the coordinate transformation

~y = f(~x) ~x = f−1(~y)

y1 =
√

x2
1 + x2

2 x1 = y1 cos(y2)
y2 = tan−1(x2/x1) x2 = y1 sin(y2)

(34)

Then

∂yµ

∂xν

(

~x
)∂xν

∂yρ

(

~y = ~f(~x)
)

=

=

( x1√
x2

1
+x2

2

x2√
x2

1
+x2

2

−x2

x2

1
+x2

2

x1

x2

1
+x2

2

)

(

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)∣

∣

∣

∣ y1=
√

x2

1
+x2

2
,

y2=tan−1(x2/x1)

=

( x1√
x2

1
+x2

2

x2√
x2

1
+x2

2

−x2

x2

1
+x2

2

x1

x2

1
+x2

2

)( x1√
x2

1
+x2

2

−x2

x2

x2

1
+x2

2

x1

)

=

(

1 0
0 1

)

,

(35)
where we have used

cos
(

tan−1(x2/x1)
)

=
x1

√

x2
1 + x2

2

sin
(

tan−1(x2/x1)
)

=
x2

√

x2
1 + x2

2

.

We can also see that this works when ultimately evaluating in the ~y coordinates:

∂yµ

∂xν

(

~x = ~f−1(~y)
)∂xν

∂yρ

(

~y
)

=

=

( x1√
x2

1
+x2

2

x2√
x2

1
+x2

2

−x2

x2

1
+x2

2

x1

x2

1
+x2

2

)∣

∣

∣

∣

∣ x1=y1 cos(y2),

x2=y1 sin(y2)

(

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)

=

(

cos(y2) sin(y2)
− sin(y2)

y1

cos(y2)
y1

)

(

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)

=

(

1 0
0 1

)

,

(36)

1.4.2 Active

Since
∂xµ

∂xν
= ∂ν

[

fµ
(

~f−1(~x)
)

]

=

(

f−1
)ρ

∂xν
(~x)

∂fµ

∂xρ

(

~f−1(~x)
)

= δµ
ν , (37)
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we have that Jacobian (“coordinate transformation”) matrix’s inverse is

(

∂fµ

∂xν

(

~f−1(~x)
)

)−1

=

(

f−1
)µ

∂xν
(~x). (38)

Similarly
(

∂fµ

∂xν
(~x)

)−1

=

(

f−1
)µ

∂xν

(

~f(~x)
)

. (39)

Note how correctly evaluating the Jacobians and inverses at the same “point”
has become a subtlety due to clumsy notation.

As an example take ~f(~x) = (x2
1x2, x2). Then ~f−1(~x) = (

√

x1/x2, x2). We
can now check that

∂
(

f−1
)ρ

∂xν
(~x)

∂fµ

∂xρ

(

~f−1(~x)
)

=

=

(

1
2

1√
x1x2

− 1
2

√

x1

x3

2

0 1

)

(

2x1x2 x2
1

0 1

)∣

∣

∣

∣

~x=~f−1(~x)=(
√

x1/x2,x2)

=

(

1
2

1√
x1x2

− 1
2

√

x1

x3

2

0 1

)

(

2
√

x1x2
x1

x2

0 1

)

=

(

1 0
0 1

)

.

(40)

1.5 Vector Transformations

In order to determine the transformation law for Rank 1 tensors we will consider
the transformation of the scalar

(∂µφ)Aµ. (41)

We will follow Carroll’s notation and prime indices of transformed vector
components.

1.5.1 Passive

From Eq. (18) we have that

(

∂µ′φ′(~x′)
)

Aµ′

(~x′) =
∂xν

∂yµ
(~y)
(

∂νφ
)

(

~f−1(~y)
)

Aµ′(~f−1(~y)
)

. (42)

Therefore

Aµ′

(~x′) =
∂yµ

∂xν

(

~x = ~f−1(~y)
)

Aν
(

~f−1(~y)
)

. (43)

This leads to the useful mnemonic

Aµ′

=
∂xµ′

∂xν
Aν , (44)
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where xµ′

are the new coordinates and xµ are the old; then we see that conser-
vation of indices is extended to transformed coordinates, too.

As a trivial example, let’s transform the vector field

~A(~x) =

(

x1

x2

)

θ(x1 − a1)θ(b1 − x1)θ(x2 − a2)θ(b2 − x2) (45)

by taking x1 → −y2 and x2 → y1, a rotation of the axes by π/2, Fig. 4.

Figure 4: Visualization of a Passive Transformation on a Vector Field.

Using Eq. (43) we find that

~A′(~y) =

(

0 1
−1 0

)(

−y2

0

)

θ(−y2 − a1)θ(b1 + y2)θ(y1 − a2)θ(b2 − y1)

~A′(~y) =

(

0

y2

)

θ(−y2 − a1)θ(b1 + y2)θ(y1 − a2)θ(b2 − y1). (46)

We can see by eye that this is the correct answer. The box where the vector field
exists is in the proper quadrant (a2 ≤ y1 ≤ b2, and a1 ≤ −y2 ≤ b1), and the
vectors are pointing in the correct direction (because y2 < 0 they are pointing
in the −ŷ2 direction).

Let’s do a less trivial example. Take

~A(~x) =

(

x1

x2

)

(47)

and let’s change to polar coordinates. First note that

~y = f(~x) ~x = f−1(~y)

r =
√

x2
1 + x2

2 x1 = r cos(θ)
θ = tan−1(x2/x1) x2 = r sin(θ)

(48)

Therefore the coordinate transformation matrix

Mµ
ν(~y) =

(

x1/
√

x2
1 + x2

2 x2/
√

x2
1 + x2

2

−x2/x2
1 + x2

2 x1/x2
1 + x2

2

)∣

∣

∣

∣

~x=f−1(~y)

=

(

cos(θ) sin(θ)
− sin(θ)/r cos(θ)/r

)

.

(49)
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Then we have that

~A′(r, θ) =

(

cos(θ) sin(θ)
− sin(θ)/r cos(θ)/r

)(

r cos(θ)

r sin(θ)

)

=

(

r

0

)

. (50)

We can visualize this (passive) coordinate transformation as in Fig. 5.

Figure 5: Visualization of a nontrivial Passive Transformation of a Vector Field.

1.5.2 Active

Under an Active Transformation ~f(~x) our vector field transforms according to

A′µ(~x) =
∂fµ

∂xν

(

f−1(~x)
)

Aν
(

f−1(~x)
)

. (51)

Let’s repeat the nontrivial example of above. Then

~f(~x) =
(

√

x2
1 + x2

2, tan−1(x2/x1)
)

(52)

~f−1(~x) =
(

x1 cos(x2), x1 sin(x2)
)

. (53)

And, in admittedly somewhat confusing notation,

~A′(x1, x2) =

( x1√
x2

1
+x2

2

x2√
x2

1
+x2

2

−x2

x2

1
+x2

2

x1

x2

1
+x2

2

)∣

∣

∣

∣

∣
(

x1,x2

)

=
(

x1 cos(x2),x1 sin(x2)
)

×

(

x1 cos(x2)

x1 sin(x2)

)

=

(

x1

0

)

. (54)

Fig. 6 shows are resulting transformed vector field (which is in the same coor-
dinates as the untransformed field).

Again we see that, as we must, we get that for a trivial relabeling

A′µ
Passive(~y) = A′µ

Active(~y); A′µ
Passive(~x) = A′µ

Active(~x). (55)
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Figure 6: Visualization of a nontrivial Active Transformation of a Vector Field.
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