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1 Active and Passive Transformations

1.1 1D Scalar Transformations

Suppose ¢(z) = e, Fig. 1.

Figure 1: ¢(z).

1.1.1 Passive

Now suppose we have a Passive Transformation, Fig. 2. We're taking ¢(z) —

Figure 2: Visualization of a Passive Transformation.

@'(y), where x are our original coordinates and y are the new coordinates.
Suppose, for instance, that y =+ a = f(z). Then

¢'(y) = eV = p(a(y)) = ¢(f 1 (W) (1)
So we see that

Dpassive W) = 0(f (). (2)



1.1.2  Active
An Active Transformation takes ¢(x) — ¢'(x), Fig. 3. Then

Figure 3: Visualization of an Active Transformation.

Phctive(®) = ¢(F 71 (2)). (3)
We can see that the Active and Passive give the exact same result when we
change labels x < y:

(b/Active(y) = (bi:’assive (y)7 ¢{Active (‘T) = ¢19assive (‘T) (4)

1.2 2D Scalar Transformation

Suppose we have ¢(z1,72) = 2% + x3 and we undertake a transformation with
y1 = x1 + a1 and y2 = x2 + az. Then the Passive Transformation gives

¢'(y1,92) = (y1 — a1)? + (y2 — a2)*. (5)
In general for 7 = f(), and hence Z = f~(§), we have that
Obassive () = &(F (@) (6)
The Active Transformation gives
Fretive(@) = (S 71 (@)). (7)

Suppose we do a less trivial example. Let ¢(x1,72) = @1 + 27 + 23 and
let’s effect the coordinate transformation x; = rcos(f), 2 = rsin(f). This is
necessarily Passive, as it is a coordinate transformation. Then

¢ (r,0) = rcos(0) + 2. (8)
However I can still think of this as an active transformation:
§@ = o(f (@) (9)
= 1z cos(xg) + 2. (10)
We can then distinguish between Passive and Active transformations by
o) — 9T [Passive] (11)
o(T) — ¢'(T) [Active]. (12)
In fact for a Passive transformation
¢' (@) = ¢(7). (13)



1.3 Derivatives

Let’s first brush up on the chain rule. If I take the derivative of a composition
of functions I get

7o 109 = (555) 9 (57) 69) (1)

Our somewhat confusing notation for the RHS should be interpreted as d,¢"
evaluated at & multiplied by 9, f evaluated at g(Z).

As an example take the scalar function f(z,w) = 2% + w? acting on Z =
G(z,y) = (vy,2%). Then

axf(ﬁ(f)) = 0, (2%y* + 2%) = 229* 4 62°. (15)

This is the same result as from the Chain Rule (again with somewhat confusing
notation):

0.10@) = (%)@ (52) @)+ (%) @ (51 ) @)
- (F)@(3) o+ (5) @ (L) )
) (22)]_,, + (%) (20)]

= 2xy? + 62°. (16)

w=z3

In general we have that
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Let’s consider the Passive and Active transformations of the derivative of a
scalar function.

1.3.1 Passive

0 0@ = 5

ox¥ .
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Take as an example our previous scalar function, ¢(x1,72) = 2323 + 2§
and the transformation to (y1,y2) = (2%, 72). Note how this can be confusing



because of the double usage of & in both the argument of ¢ and in . We can
check Eq. (18) by evaluating 0,,¢'(¥) two ways. First we evaluate by direct
subsitution:

0@ = 00(f (@)
= Oy [6(Vy1,92)]
= Oy [11953 + 1]
= ¥5+ 3y, (19)
Now let’s use our transformation machinery with Eq. (18):

oz¥

5@ (0,0) (7 @)

= 11 [2x1:17§ + Gx‘ﬂ

Oy, ¢'(§) =

21 T1=/U1,T2=Y2
= v +3u5, (20)

where to get from the first to the second line we differentiated the inverse of the
transformation, & = (\/y1, y2).

1.3.2 Active

Now consider an active transformation. By a simple application of the Chain
Rule we have that

Oy [¢(2)]

Ou[o(F @)
_ 0 fﬁly(f) (8,,¢) (f(@)). (21)

Oz

We see that, as must happen, Eq. (18) and Eq. (21) are the same when we
take f~! < 7 and ¥ < ¥ (note that even the argument of the second term is

the same because f~1(7) = (7).

1.4 Jacobians

Ultimately we will use our transformation results for the derivative of a scalar
function to derive the transformation rule for vector fields. To do so we will
have to know how the inverse of objects like 9z¥ /0y*: we need to understand
Jacobians and their inverses.

1.4.1 Passive

—

The Jacobian of a (Passive) coordinate transformation § = f(&) is usually
denoted
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We may find its inverse from

= g = @) (23)
O PN T
o7 (y)a(f,l)p(f () (24)
O oyt o o5
= a—yu(y)@(f (7)) (25)
0P o Oyt
ay,,( (x))%( ) (26)
= o~ (27)

Therefore

(gii)_l (f'@) = @Z) @), (28)

and the same equation only evaluating both matrices simultaneously at a dif-

ferent point B
(52) @-(52) (. (29)

Expressed as matrix multiplication

. oy* . 0xf , >
N T—1 =) _ YYoT )
J(Z)J (f(:v)) = 30 T Dy (f(:v)) =1 (30)
We may also derive expressions by differentiating z:
ozt 0
i e N T
oxv oxv [w (f ) (y)}
_ooyr oY)
= o (x)TM(y)
oyf ,_ oxt o
= o (x)a—yp (y = f(fl?))
= &b
Therefore the inverse of the Jacobian (coordinate transformation) matrix is
S T
(5%) @ =5 =f@). 31)
Similarly
P\ L L Oat
(55) @=7@) =55 (32)
Because left inverses and right inverses are the same for matrices we have
that
oyt , \0xP , o oyt o\ 0xP
@(@a—yy(y:f(w))Z@(x:f 1(y))3—y,,(y)=55= (33)



where one has to worry about the subtlety of ultimately evaluating the Jacobian
and in its inverse in the same set of coordinates.
As an example take the coordinate transformation

¥ =f(@) ="'
Y1 = \/:17% + a3 x1 = y1 cos(y2) (34)
y2 = tan™ ! (z2/21) xg = y1sin(yz)
Then
oy* ,_\ Ox .

y1=y/a3+z3,

ya=tan~! (z2/z1)

sin(yz)  y1 cos(y2)
1 T2 L1
—T9
— \/I%Jrz% \/I%Jrz% x%Jrz%
— T Ty T2 T
zi+x3 zi+a3 z3+x3

where we have used

T T2 .
_ ( VaitaE /et ) (COS(yz) —y1sin(y2) )

(35)
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We can also see that this works when ultimately evaluating in the g coordinates:

cos (tan™'(z2/71)) =

sin (tan™' (22/71)) =

O g 02 )
@(a@ =f (y)) dyP (y) =
- ( Vaitad  feital )

( cos(yz2) —yisin(yz) )
z1=y1 cos(yz2), Sin(yQ) Y1 COS(yQ)
z2=y1 sin(yz2)

cos(y2)  sin(y2) cos(y2) —y1sin(y2)

T ) coe) )(Sin(yz) Y1 cos(yz) >
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1.4.2 Active

Since
ox#

oxv

o (@) = L Lol (= e




we have that Jacobian (“coordinate transformation”) matrix’s inverse is

o -1 PN
(L) =Y @ (39)

Similarly

or N\ _ U
(@) =G, (39)
Note how correctly evaluating the Jacobians and inverses at the same “point”
has become a subtlety due to clumsy notation.

—

As an example take f(Z) = (2222, 25). Then f~Y(Z) = (\/21 /72, 72). We
can now check that

()"

T=f-1(2)=(y/z1/22,22) (40)
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1.5 Vector Transformations

In order to determine the transformation law for Rank 1 tensors we will consider
the transformation of the scalar

(Oug)A*. (41)

We will follow Carroll’s notation and prime indices of transformed vector
components.

1.5.1 Passive
From Eq. (18) we have that

(@ @) A4 @) = S5 (0,0) (P @) 4 (F@). (12)
Therefore
T Oy A av( Pl
A (&) = (i = @) A (). (43)

This leads to the useful mnemonic

’ IJ/
_ 0 (44)

[
A Ozv "’




where z# are the new coordinates and z* are the old; then we see that conser-
vation of indices is extended to transformed coordinates, too.
As a trivial example, let’s transform the vector field

A7) = (i;)ml —a)0(by — 21)0(x2 — as)0(bs — x2) (45)

by taking 21 — —y2 and xo — y1, a rotation of the axes by w/2, Fig. 4.

X1|[ X2

22
22
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Figure 4: Visualization of a Passive Transformation on a Vector Field.

Using Eq. (43) we find that
< 0 1 —Y2
A(y) = 1 0 0 O(—y2 — a1)0(b1 + y2)0(y1 — a2)f(b2 — y1)

B = ()0 - @) + 5600 - a2~ ) (46)
We can see by eye that this is the correct answer. The box where the vector field
exists is in the proper quadrant (a2 < y; < by, and a1 < —y2 < b1), and the
vectors are pointing in the correct direction (because yo < 0 they are pointing
in the —go direction).

Let’s do a less trivial example. Take

A@) = (2) (47)

and let’s change to polar coordinates. First note that

y=[(@) i =f"1()
r= /2% + 2} x1 = rcos(f) (48)
0 = tan=! (2o /21) x9 = rsin(f)

Therefore the coordinate transformation matrix

MY, (§) = ( a1/\/2] a3 w2/ /1] + a3 )

—zo/22 + 23 31 /23 + 23

_ < cos(f) sin(f) > .
F—f1() —sin()/r cos(8)/r
(49)



Then we have that

A(r,0) = (_Zioj((g))/r cf);I(lg)Q}T ) (:?r?((z;)
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Figure 5: Visualization of a nontrivial Passive Transformation of a Vector Field.

1.5.2 Active

—

Under an Active Transformation f(Z) our vector field transforms according to
o OFT  av(e—1
an(@) = S0 (7 @) 4 (1 @), (51)
Let’s repeat the nontrivial example of above. Then
fl@) = (/22 + 22, tan™ (22 /21)) (52)

FH@) = (z1cos(x2),z1sin(zs)). (53)

And, in admittedly somewhat confusing notation,

X1 T2
E/(.Il,xg) = < \/If-i—w% \/151"”3% )

—xo

wf-l—m% w?-{-;ﬂg
x1 cos(xz)
x1 sin(zg)
T1
= . 54
(%) 54)
Fig. 6 shows are resulting transformed vector field (which is in the same coor-

dinates as the untransformed field).
Again we see that, as we must, we get that for a trivial relabeling

Allyassive (g) = Axbctive (37), A$assive (f) = Axbctive (‘/Z:) . (55)

(11,12) :(acl cos(z2),z1 sin(z2))



NNN VL L Lt
N \ '/ /.
NN ! 4 A
—_—— R X £ 7 -
Ll ol S \\‘;1‘
L NN
d ~
AR

Figure 6: Visualization of a nontrivial Active Transformation of a Vector Field.
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