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1 LO pQCD Hadroproduction

I wish to rederive the expression for dσ/dpT given in I. Sarcevic, S. D. Ellis and P. Carruthers,
Phys. Rev. D40 (1989) 1446 for the LO pQCD cross section of p + p → back-to-back partons.
Start with Peskin’s master formula for differential cross sections, Eq. 4.79. We will denote
the incoming hadrons as A and B (with momenta pA and pB , respectively), and we will work
in the CM frame of the hadrons. The incoming interacting partons will be labeled a and b.
The outgoing partons will be labeled 1 and 2. Note that our ultimate expression will include
integrations over the rapidities of the outgoing partons in the lab frame (the CM frame of the
incoming hadrons), y1 and y2.

dσ =
1

2Ea2Eb|va − vb|
d3p1

(2π)32E1

d3p2

(2π)32E2
dxadxb xafa/Axbfb/B |M|2

× (2π)4δ(4)(pa + pb − p1 − p2) (1)

There are several important things to note. First1,

EaEb
∣∣va − vb∣∣ =

∣∣p0
ap
z
b − pzap0

b

∣∣ (2)

Second, xafa/A(xa) gives the probability for finding a parton of type a in hadron A with x
fraction xa. These are normalized such that, e.g.,∫ 1

0

xfu/p(x)dx = 2;
∫ 1

0

xfs/p(x)dx = 0; (3)

i.e., there are two valence up quarks in a proton and no valence strange quarks. These can be
used from, e.g., MSTW, (Eur.Phys.J.C63:189-285,2009; arXiv:0901.0002).

1.1 Kinematics Expressions

The expressions for |M|2 involve the Mandelstam variables of the partons; we need to find
expressions for xa,b, ŝ, t̂, and û, where hats denote the partonic quantities, in terms of y1, y2,
pT , and s. Denote lightcone coordinates with square brackets, [, ], and Minkowski coordinates

1 As an aside, it is worth noting that this quantity is invariant to boosts along the z-direction. This is obvious
from the construction ∣∣p0apzb − pzap0b ∣∣ =

∣∣εµxyνpµpν ∣∣,
but it is worth calculating out in detail. Under a boost,

p0ap
z
b − p

z
ap

0
b → p0

′
a p

z′
b − p

z′
a p

0′
b

γ2
[(
p0a − βpza

) (
pzb − βp

0
b

)
−

(
pza − βp0a

) (
p0b − βp

z
b

)]
= γ2

[
p0ap

z
b − β

(
pzap

z
b + p0zp

0
b

)
+ β2pzap

0
b − p

z
ap

0
b + β

(
p0zp

0
b + pzap

z
b

)
− β2p0ap

z
b

]
= p0ap

z
b − p

z
ap

0
b .

So even though the differential cross section has units of Energy−2, it does not transform with a γ−2 if boosted
along the z-direction, it is invariant.
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with parentheses, (, ). Four vectors will be in plain style, three vectors will have an arrow, and
two vectors will be boldface. Note the use of the p± = p0 ± pz normalization convention. Then

pA = [
√
s, 0,0] pB = [0,

√
s,0]

pa = xapA = [xa
√
s, 0,0] pb = xbpB = [0, xb

√
s,0] (4)

=
xa
√
s

2
(1, 1,0) =

xb
√
s

2
(1,−1,0).

In order to connect xa,b to y1,2, consider the conservation of 4-momentum in the lab frame:

pa + pb =
√
s

2
(xa + xb, xa − xb, 0) = p1 + p2 (5)

⇒ p0
1 + p0

2 =
√
s

2
(xa + xb), pz1 + pz2 =

√
s

2
(xa − xb), pT1 = −pT2 . (6)

⇒ xa =
p0
1 + pz1 + p0

2 + pz2√
s

=
p+
1 + p+

2√
s

(7)

⇒ xb =
p0
1 − pz1 + p0

2 − pz2√
s

=
p−1 + p−2√

s
(8)

Next consider the definition of rapidity and the outgoing momenta. In general

y ≡ 1
2

ln
(
p0 + pz

p0 − pz

)
=

1
2

ln
(
p+

p−

)
. (9)

Therefore, with pT = |pT |, for massless partons

pf = [p+
f ,

(pT )2

p+
f

,pT ] pf = [
(pT )2

p−f
, p−f ,p

T ]

⇒ p±f = pT e±yf . (10)

Inserting Eq. (10) in Eqs. (7) and (8) yields

xa =
pT√
s

(ey1 + ey2) (11)

xb =
pT√
s

(
e−y1 + e−y2

)
(12)

Note that Eqs. (11) and (12) are equivalent to the expressions used in Sarcevic.
The partonic Mandelstam variables are

ŝ ≡ (pa + pb)2 = 2pa · pb = p+
a p
−
b = xaxbs = 2(pT )2

(
1 + cosh(y2 − y1)

)
(13)

t̂ ≡ (p1 − pa)2 = −2p1 · pa = −p−1 p+
a = −xa

√
spT e−y1

≡ (p2 − pb)2 = −2p2 · pb = −p+
2 p
−
b = −xb

√
spT ey2

= −(pT )2
(
1 + ey2−y1

)
(14)

û ≡ (p2 − pa)2 = −2p2 · pa = −p−2 p+
a = −xa

√
spT e−y2

≡ (p1 − pb)2 = −2p1 · pb = −p+
1 p
−
b = −xb

√
spT ey1

= −(pT )2
(
1 + ey1−y2

)
(15)
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1.2 Integrating Over Phase Space

Let’s integrate over phase space to the extent possible. First, expand out the four dimensional
delta function. Noting that

√
s

2
(xa + xb) = pT

(
cosh(y1) + cosh(y2)

)
= 2pT cosh

y1 + y2
2

cosh
y1 − y2

2
(16)

√
s

2
(xa − xb) = pT

(
sinh(y1) + sinh(y2)

)
= 2pT sinh

y1 + y2
2

cosh
y1 − y2

2
, (17)

the energy-momentum conserving delta function becomes

δ(4)(pa + pb − p1 − p2) = δ
(

2pT cosh
y1 + y2

2
cosh

y1 − y2
2

− p0
1 − p0

2

)
× δ
(

2pT sinh
y1 + y2

2
cosh

y1 − y2
2

− pz1 − pz2
)
δ(2)
(
pT1 − pT2

)
(18)

Use the 3 integrals over ~p2 to set pT2 = −pT1 and pz2 = 2pT sinh y1+y2
2 cosh y1−y2

2 − pz1. Using
on-shellness of the outgoing partons 1 and 2 we can rewrite the argument of the remaining delta
function (which we will ultimately integrate over pz1) as

f(pz1) ≡ 2pT cosh
y1 + y2

2
cosh

y1 − y2
2

−
√

(pT )2 + (pz1)2

−
√

(pT )2 + (2pT sinh
y1 + y2

2
cosh

y1 − y2
2

− pz1)2. (19)

After some slightly tedious algebra, we find the zeros of f(pz1) are

pz1,± =
pT

2
(sinh y1 + sinh y2 ± | sinh y1 − sinh y2|) . (20)

Hence the two solutions are

pz1,+ =
{
pT sinh y1, y1 ≥ y2
pT sinh y2, y1 < y2

(21)

pz1,− =
{
pT sinh y2, y1 ≥ y2
pT sinh y1, y1 < y2

(22)

More algebra shows that∣∣∣∣1/ ∂f

∂pz1

∣∣∣∣
pz1=pT sinh y1,2

=
∣∣∣∣ cosh y1,2 cosh y2,1
sinh y1,2 cosh y2,1 − sinh y2,1 cosh y1,2

∣∣∣∣ =
cosh y1 cosh y2∣∣ sinh(y2 − y1)

∣∣ (23)

Putting the above pieces together we find that

δ
(
f(pz1)

)
=

cosh y1 cosh y2∣∣ sinh(y2 − y1)
∣∣ [θ(y1 − y2)δ(pz1 − pT sinh y1) + θ(y2 − y1)δ(pz1 − pT sinh y2)

+θ(y1 − y2)δ(pz1 − pT sinh y2) + θ(y2 − y1)δ(pz1 − pT sinh y1)
]

=
cosh y1 cosh y2∣∣ sinh(y2 − y1)

∣∣ [δ(pz1 − pT sinh y1) + δ(pz1 − pT sinh y2)
]
. (24)

Note that since pz2 = 2pT sinh y1+y2
2 cosh y1−y2

2 − pz1 = pT (sinh y1 + sinh y2)− pz1,

pz1 = pT sinh y1,2 ⇒ pz2 = pT sinh y2,1. (25)

That the outgoing particles are on mass-shell implies that their momenta are constrained to be

p1,2 =
(
pT cosh y1,2, pT sinh y1,2, pT

)
. (26)

It seems that the E-M conserving delta function above leads to over counting. E-M conservation
only means that one particle emerges with y1 and the other emerges with y2. However, we can’t
have particle 1 emerging with particle 2’s rapidity! Therefore we take the above delta function

δ
(
f(pz1)

)
→ cosh y1 cosh y2∣∣ sinh(y2 − y1)

∣∣δ(pz1 − pT sinh y1). (27)
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1.3 Relative Velocity, Change of Variables, and the Cross Section

We need to find an expression in terms of the pertinent variables for the relative velocity de-
nominator of the cross section, Eq. (1). Using Eqs. (2) and (10) we find that∣∣p0

ap
z
b − pzap0

b

∣∣E1E2 = (xaxbs/2) pT cosh y1 pT cosh y2 = (ŝ/2)(pT )2 cosh y1 cosh y2. (28)

Therefore the cross section becomes, after integrating over pz1,

dσ =
1

23(2π)2ŝ(pT )2 cosh y1 cosh y2
pT dpT dpφ1

cosh y1 cosh y2∣∣ sinh(y2 − y1)
∣∣ dxadxb xafa/Axbfb/B |M|2 (29)

Now we just have to make a change of integration variables from xa, xb, and pT to y1, y2,
and p̃T , where we will temporarily use a tilde sign on the latter pT in order to distinguish it
from the old variable. From Eqs. (11) and (12), which give the old coordinates xa,b in terms of
the new coordinates y1,2 and p̃T , we have that

|J(y1, y2, p̃T ; xa, xb, pT )| =

∣∣∣∣∣∣∣∣∣∣∣∣

∂xa
∂y1

∂xa
∂y2

∂xa
∂p̃T

∂xb
∂y1

. . . . . .

∂pT

∂y1
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

p̃T√
s
ey1

p̃T√
s
ey2 .

− p̃
T

√
s
e−y1 − p̃

T

√
s
e−y2 .

0 0 1

∣∣∣∣∣∣∣∣∣∣
(30)

=

(
p̃T
)2
s

∣∣ey2−y1 − ey1−y2 ∣∣ = 2

(
p̃T
)2
s

∣∣ sinh(y2 − y1)
∣∣. (31)

Using this result, canceling factors, removing the dummy tilde and dropping the T to a
subscript on the p’s, and integrating over pφ1 yields

dσ

dpT dy1dy2
=

pT
8πŝs

xafa/Axbfb/B
∣∣M∣∣2, (32)

where xafa/Axbfb/B is understood to be evaluated in terms of xa,b(y1,2, pT ).

1.4 Simplest Amplitude

In order to check our result against Sarcevic, let’s evaluate the simplest amplitude, qig′j → qiq
′
j .

If one factors out g4 = (4παs)2 from the amplitude, then

dσ

dpT dy1dy2
=

2πα2
spT
ŝs

xafa/Axbfb/B
∣∣M∣∣2, (33)

where for, e.g., qiq′j → qiq
′
j scattering properly summed and averaged over both spins and colors∣∣M{qiq′j → qiq

′
j}
∣∣2 =

4
9

(
ŝ2 + û2

t̂2

)
. (34)

The above equation comes from using Eq. (5.71) of Peskin for e− + µ− → e− + µ− scattering
amplitude,

1
4

∑
spins

∣∣M{e−µ− → e−µ−}
∣∣2 = 2

(
s2 + u2

t2

)
, (35)

combined with the correct color averaging:
1
N2
c

∑
ac,bc,1c,2c

ta1c,act
a
2c,bc

(
tb1c,ac

)∗ (
tb2c,bc

)∗
=

1
N2
c

∑
ac,bc,1c,2c

ta1c,act
b
ac,1ct

a
2c,bct

b
bc,2c

=
1
N2
c

Tr tatbTr tatb =
1
N2
c

1
2
δab

1
2
δab

=
N2
c − 1
4N2

c

→ 2
9

(36)

The firt equality is due to the Hermiticity of the generators, the rest to color algebra. In the
final expression Nc is taken to be 3.
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