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1 LO pQCD Hadroproduction

I wish to rederive the expression for do/dpr given in I. Sarcevic, S. D. Ellis and P. Carruthers,
Phys. Rev. D40 (1989) 1446 for the LO pQCD cross section of p + p — back-to-back partons.
Start with Peskin’s master formula for differential cross sections, Eq. 4.79. We will denote
the incoming hadrons as A and B (with momenta p4 and pg, respectively), and we will work
in the CM frame of the hadrons. The incoming interacting partons will be labeled a and b.
The outgoing partons will be labeled 1 and 2. Note that our ultimate expression will include
integrations over the rapidities of the outgoing partons in the lab frame (the CM frame of the
incoming hadrons), y; and ys.
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There are several important things to note. First!,
E.Ey|v, — w| = [ppi — pip}] (2)

Second, 4 fq/4(7,) gives the probability for finding a parton of type a in hadron A with
fraction z,. These are normalized such that, e.g.,
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i.e., there are two valence up quarks in a proton and no valence strange quarks. These can be
used from, e.g., MSTW, (Eur.Phys.J.C63:189-285,2009; arXiv:0901.0002).

1.1 Kinematics Expressions

The expressions for |[M|? involve the Mandelstam variables of the partons; we need to find

expressions for z,, 3, t, and @, where hats denote the partonic quantities, in terms of y1, ya,

pT, and s. Denote lightcone coordinates with square brackets, [,], and Minkowski coordinates

1 As an aside, it is worth noting that this quantity is invariant to boosts along the z-direction. This is obvious
from the construction
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but it is worth calculating out in detail. Under a boost,
pO0; —pipy — pO vi — % Py
v (2 — Brz) (i — Bry) — (0 — BpY) (P — Br7)]
=72 [pdpi — B (pipi + P2pY) + By — pipy + B (P2ph + Pipi) — B*Popi]
= papi — Papy-
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So even though the differential cross section has units of Energy ~2, it does not transform with a y~2 if boosted

along the z-direction, it is invariant.



with parentheses, (,). Four vectors will be in plain style, three vectors will have an arrow, and
two vectors will be boldface. Note the use of the p* = p® + p* normalization convention. Then
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In order to connect x,p to y; 2, consider the conservation of 4-momentum in the lab frame:
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Next consider the definition of rapidity and the outgoing momenta. In general
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Therefore, with p?" = |pT|, for massless partons

®")? »h)?
pf:[p-f'—a T 7pT] pf:[ifapfvp ]
Py Py
= p? pTetvr, (10)
Inserting Eq. (10) in Egs. (7) and (8) yields
e
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Note that Eqgs. (11) and (12) are equivalent to the expressions used in Sarcevic.
The partonic Mandelstam variables are
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= —(p7)? (1 + &2 %) (14)
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1.2 Integrating Over Phase Space

Let’s integrate over phase space to the extent possible. First, expand out the four dimensional
delta function. Noting that

g(xa + ;) = p” (cosh(y1) + cosh(ys)) = 2p” cosh u ; Y2 cosh 4 ; Y2 (16)
?(xa —x3) = p” (sinh(y;) + sinh(ys)) = 2p” sinh u ;— Y2 cosh 22 ; yz’ (17)

the energy-momentum conserving delta function becomes
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Use the 3 integrals over py to set p2 = —p? and p3 = 2p’ sinh W cosh #5¥ — pt. Using
on-shellness of the outgoing partons 1 and 2 we can rewrite the argument of the remaining delta
function (which we will ultimately integrate over pf) as

£(#7) = 29" cosh = ;yQ cosh ; 2 07)? + (p7)?

. + -
_ \/(pT)2 + (2p7 sinh Ll 5 Y2 cosh 2 5 Y2 -pi)?. (19)

After some slightly tedious algebra, we find the zeros of f(p%) are

T
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Hence the two solutions are
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More algebra shows that
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Putting the above pieces together we find that
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That the outgoing particles are on mass-shell implies that their momenta are constrained to be

pr2 = (p" coshyy 2, p’ sinhyr 2, p7). (26)

It seems that the E-M conserving delta function above leads to over counting. E-M conservation
only means that one particle emerges with y; and the other emerges with y». However, we can’t
have particle 1 emerging with particle 2’s rapidity! Therefore we take the above delta function

5(f(p7))

cosh y; cosh yo

-, coshyrcoshys 5e T iy, (27)
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1.3 Relative Velocity, Change of Variables, and the Cross Section

We need to find an expression in terms of the pertinent variables for the relative velocity de-
nominator of the cross section, Eq. (1). Using Eqs. (2) and (10) we find that

|p2p§ — p§p2|E1EQ = (zqxp5/2) p* coshy; pT coshys = (5/2)(pT)? coshy; cosh yy. (28)
Therefore the cross section becomes, after integrating over p7,

1 T, 1, ¢ coshy; coshys
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Now we just have to make a change of integration variables from xz,, =y, and p” to y1, ya,
and p’, where we will temporarily use a tilde sign on the latter p” in order to distinguish it
from the old variable. From Egs. (11) and (12), which give the old coordinates x,; in terms of
the new coordinates y; » and p7, we have that
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Using this result, canceling factors, removing the dummy tilde and dropping the T to a
subscript on the p’s, and integrating over p‘f yields

do _ bt
dedyldyZ = STés xafa/Axbfb/B |M
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where x4 fo a2 fy/B is understood to be evaluated in terms of Zap(Y1,2,P7)-

1.4 Simplest Amplitude

In order to check our result against Sarcevic, let’s evaluate the simplest amplitude, qig;- — qiq;-.
If one factors out g* = (47a)? from the amplitude, then

do 2rapr 2
Dordindss §; Tafajatufoyp M| (33)
where for, e.g., qiq;- — q,-q;- scattering properly summed and averaged over both spins and colors
s 4 (& +42
|M{QiQ;' - qifJ;-}’ =9 <£2 ) . (34)

The above equation comes from using Eq. (5.71) of Peskin for e~ + = — e~ + p~ scattering

amplitude,
1 o 2 52 4+ u?
X M et =2 (). (35)
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combined with the correct color averaging:
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The firt equality is due to the Hermiticity of the generators, the rest to color algebra. In the
final expression N, is taken to be 3.
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