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1 2-2 Scattering

1.1 Exact 2-2 Scattering

We wish to compute the exact summed and averaged over matrix element squared for the 2-2
scattering process of 2 quarks going to 2 quarks as displayed in Fig. 1. The exact, turgid formula

Figure 1: Feynman diagram for the (t-channel) 2-2 scattering process we are interested in calculating.
Each incoming and outgoing quark has an associated spin and color; i.e. particle a has spin sa and color
ca. These will ultimately be summed and averaged over.

we have is

iMs1,c1,s2,c2,sa,ca,sb,cb = ūs1,c1is1 ,ic1
(p1)igγµis1 ,jsa t

a
ic1 ,jca

usa,caisa ,ica
(pa)
−igµνδab

q2

ūs2,c2is2 ,ic2
(p2)igγνis2 ,jsb t

b
ic2 ,jcb

usb,cbisb ,icb
(pb), (1)

where the a and b superscripts on the t color matrices are color indices, implicitly summed over
(there are N2

c − 1 gluons, each of which contributes to M), not to be confused with the initial a
and b particles, and the matrix indices (such as is1 , the index associated with the spin of particle
1) have been kept explicit. The spin and color summed and averaged result is (dropping the
indices on M)

1
4

1
N2
c

∑
s1,c1,s2,c2
sa,ca,sb,cb

|M|2 =
1
4

1
N2
c

g4 gµνgαβ
q4

∑
ūs1,c1is1 ,ic1

γµtausa,caj ūs2,c2i γνtausb,cbj

ūsb,cbi γαtbus2,c2j ūsa,cai γβtbus1,c1j , (2)
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where I’ve suppressed some of the indices for brevity. In gory detail this is then equal to, noting
that the u and ū form a complete basis in color space:

1
4

1
N2
c

g4 gµνgαβ
q4

[
(/p1

)js1 ,is1γ
µ
is1 ,jsa

(/pa)jsa ,isaγ
β
isa ,js1

] [
(/p2

)js2 ,is2γ
ν
is2 ,jsb

(/pb)jsb ,isbγ
α
isb ,js2

]
[
δjc1 ,ic1 t

a
ic1 ,jca

δjca ,ica t
b
ica ,jc1

] [
δjc2 ,ic2 t

a
ic2 ,jcb

δjcb ,icb t
b
icb ,jc2

]
(3)

=
1
4

1
N2
c

g4 gµνgαβ
q4

Tr (tatb)Tr (tatb) Tr (/p1
γµ/paγ

β)Tr (/p2
γν/pbγ

α) (4)

=
1
4

1
N2
c

g4 gµνgαβ
q4

C(r)δabC(r)δab p1γpaδp2ρpbσ (4)2
[
gγµgδβ − gγδgµβ + gγβgµδ

]
[gρνgσα − gρσgνα + gραgνσ] (5)

=
1
4

1
N2
c

g4

q4
(
C(r)

)2
Nc p1γpaδp2ρpbσ (4)2

[
gγν g

δ
α − gγδgνα + gγαg

δ
ν

]
[gρνgσα − gρσgνα + gραgνσ]

(6)

=
1
4

1
N2
c

g4

q4
Nc
4
p1γpaδp2ρpbσ (4)22

[
gργgσδ + gρδgγσ

]
(7)

=
1
4

1
N2
c

g4

q4
Nc
4

(32) [p1 · p2 pa · pb + p2 · pa p1 · pb] (8)

From Fig. 1 we can see that

pb = q + p2 ⇒ q = pb − p2 ⇒ q4 = t2 (9)

and that

s = (p1 + p2)2 = 2p1 · p2 = 2pa · pb (10)

u = (p2 − pa)2 = −2p2 · pa = −2p1 · pb. (11)

Therefore we have that

1
4

1
N2
c

∑
|M|2 =

1
4Nc

2
g4

t2
(
s2 + u2

)
(12)

=
1

4Nc
32π2α2

s

t2
(
s2 + u2

)
, (13)

as
g =
√

4παs. (14)

1.2 Lightcone Convention

We will take as convention that the four momentum p is, in Minkowski and lightcone coordinates,

p = (p0, pz,p) = [p+, p−,p], (15)

p = pi, for i = 1,2, (16)

with the normalization such that

p± =
1√
2

(
p0 ± pz

)
(17)

p0,z =
1√
2

(
p+ ± pz

)
. (18)

In this case the metric becomes

gµν = gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 (19)
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Then

p · q = p+q− + p−q+ − p · q. (20)

In particular
p2 = 2p+p− − p2, (21)

and if p is on-shell and corresponds to a massless particle, then

p =
[
p+,

p2

2p+
,p

]
=
[
p2

2p−
, p−,p

]
. (22)

1.3 2-2 Scattering with Large Lightcone Momenta

Now consider the process depicted in Fig. 1 assuming that pa has a very large p+
a component

while pb has a very large p−b component (note that “large” here is with respect to their momenta
in the perpendicular direction). We can use the formulae for the Mandelstam variables, Eqs.
(10) and (11), to immediately arrive at the result using the exact result from above, Eq. (12).
Specifically, we take

pa = [p+
a , 0,0] and pb = [0, p−b ,0]. (23)

Then, to lowest order in perp momenta over large momenta,

q2 = q2 and s = 2p+
a p

−
b and u ≈ −2p+

a p
−
b . (24)

Therefore Eq. (12) becomes

1
4Nc

g4

t2
2
(
s2 + u2

)
≈ 1

4Nc
g4

q4
16
(
p+
a p

−
b

)2
. (25)

We should also be able to derive this using the eikonal approximation,

ūrγ
µuσ ≈ 2pµδσr, (26)

where σ and r denote the chirality of the incoming and outgoing particles, respectively; ultimately,
when computing a summed and averaged matrix element squared, these chiralities will have to be
summed over (chirality is either + or − depending on whether the spin is aligned or anti-aligned
with the particle’s motion). Taking care with chiralities and color indices, Fig. 1 yields

iMr1,r2,σa,σb,c1,c2,ca,cb = ūr1,c1ic1
(p1)igγµtaic1 ,jcau

σa,ca
jca

(pa)
−igµν
q2

ūr2,c2ic2
(p2)igγνtaic2 ,jcbu

σb,cb
jcb

(pb)

=
igµν
q2

2pµaδr1,σat
a
ic1 ,jca

2pνb δr2,σbt
a
ic2 ,jcb

=
4igµν
q2

p+
a p

−
b t

a
ic1 ,jca

taic2 ,jcb
(27)

Hence

1
4

1
N2
c

∑
s1,c1,s2,c2
sa,ca,sb,cb

|M|2 =
1
4

1
N2
c

42g4

q4

(
p+
a p

−
b

)2
δr1,σaδr1,σaδr2,σbδr2,σbt

a
ic1 ,jca

taic2 ,jcb
tbjca ,ic1 t

b
jcb ,ic2

=
1
4

1
N2
c

42g4

q4

(
p+
a p

−
b

)2 4
Nc
4

=
1

4Nc
g4

q4
16
(
p+
a p

−
b

)2
, (28)

where, again, the color indices a and b are implicitly summed over. We see that the final result
of Eq. (28) here is the same as the expansion of the full result above, Eq. (25).
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A B C

Figure 2: Dominant Feynman diagrams contributing to the 2-3 gluon production cross section in
high energy quark-quark scattering. The diagrams with gluons connected to the lower quark line are
suppressed by inverse powers of large momenta due to the A+ = 0 light-cone gauge choice.

2 2-3 Scattering

We now wish to calculate in gory detail the leading order contribution to 2-3 scattering in the
eikonal approximation. (One can also refer to Horowitz and Kovchegov, arXiv:1009.0545.) The
relevant diagrams are shown in Fig. 2. Let’s first compute the relevant momenta to leading
order. We will have five unknown momenta left undetermined that we will integrate over for the
cross section; we will take these five as k+, k, and q. Then using on-shell-ness for the final state
particles and 4-momentum conservation we immediately have that

pa + pb = p1 + p2 + k ⇒ pa + q = p1 + k

pa = [p+
a , 0,0] pb = [0, p−b ,0] (29)

p1 = [p+
1 ,

(q − k)2

2p+
1

, q − k] p2 = pb − q = [−q+, p−b − q
−,−q] (30)

k = [k+,
k2

2k+
,k] = [

q2

2(p−b − q−)
, pb− − q−,−q]. (31)

EM conservation can be used again to find the only remaining unknown, q−:

pa + q = p1 + k ⇒


p+
1 = p+

a + q+ − k+

q− = p−1 + k− =
(q − k)2

2p+
1

+
k2

2k+

(32)

Consistently solving for q− yields a quadratic equation. The solution of interest is found unam-
biguously by requiring that to lowest order q− ∼ k2/2k+; the incorrect solution for our set of
approximations yields q− ∼ p−b . To leading order, then, the momenta are

pa = [p,a0,0] p1 ' [p+
a ,

(q − k)2

2p+
a

, q − k]

pb = [0, p+
b ,0] p2 ' [

q2

2p−b
, p−b ,−q] (33)

k = [k+,
k2

2k+
,k] q ' [− q2

2p−b
,
k2

2k+
, q].

Note that q2 ' −q2 < 0. We will do this computation in lightcone gauge such that η·A = A+ = 0;
i.e.,

ηµ = [1, 0,0] ⇒ ηµ = [0, 1,0]. (34)

In lightcone gauge the propagator for a gluon of four-momentum q with Lorentz indices µ and ν
is

−i
q2

(
gµν −

ηµqν + ηνqµ
η · q

)
. (35)

We also know that the polarization vectors ελ obey η · ε = ε+ = 0 and k · ε = 0 for λ = 1, 2.
Therefore

εµ = ε∗µ = [0,
k · ε
k+

, ε]. (36)
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We can now start evaluating matrix elements. First, let’s examine MA:

iMr1,σa,r2,σb,c1,c2,ca,cb,λ
A = ūr1,c1ic1

(p1)igγρtcic1 ,jc
i/pA
p2
A

igγµtajc,jcau
σa,ca
jca

(pa)

× ūr2,c2ic2
(p2)igγνtaic2 ,jcbu

σb,cb
jcb

(pb)
−i
q2

(
gµν −

ηµqν + ηνqµ
η · q

)
ε∗λρ

(37)

' −8(i)5g3 pµapbµ pa · ε∗λ

p2
Aq

2
tcic1 ,jct

a
jc,jca

taic2 ,jcb
δr1,σaδr2,σb (38)

'
−8ig3p+

a p
−
b

−q2

p+
a k · ελ

k+

k+

p+
a k

2 t
c
ic1 ,jc

tajc,jca t
a
ic2 ,jcb

δr1,σaδr2,σb (39)

=
8ig3 p+

a p
−
b

q2 k2 k · ελ tcic1 ,jct
a
jc,jca

taic2 ,jcb
δr1,σaδr2,σb . (40)

Let’s explain the derivation. We exploited a number of tricks in going from Eq. (37) to Eq. (38).
Specifically, we used the ū version of “Peskin’s” trick:

ū(p)/ε/p = 2p · ε ū(p) (41)

/p/εu(p) = 2p · ε u(p). (42)

Since q = pb − p2 we are able to drop the ηµqν term in the gluon propagator by noticing that it
is proportional to

ū(p2)γνu(pb)qν = ū(p2)/qu(pb) = ū(p2)
(
/pb − /p2

)
u(pb) = 0 (43)

by the Dirac equation. Eikonality was used twice. And since the dominant contribution from the
pν that comes from exploiting eikonality is its minus component, we are able to drop the ηνqµ
term in the gluon propagator as η− = 0.

To get from Eq. (38) to Eq. (39) we need p2
A. From Fig. 2 we have that

pA = pa + q ⇒ p2
A ' 2p+

a q
− ' p+

a k
2

k+
. (44)

Let’s now evaluate MB . We can see from Fig. 2 that there are two differences between A
and B: the order of the tc and one ta color matrix is switched, and the fermion propagator is
evaluated at momentum pB = pa − k instead of pA. Noting that

p2
B = −2pa · k ' −

p+
a k

k+
(45)

we can readily write down

iMr1,σa,r2,σb,c1,c2,ca,cb,λ
B ' −

8ig3 p+
a p

−
b

q2 k2 k · ελ taic1 ,jct
c
jc,ica

taic2 ,jcb
δr1,σaδr2,σb . (46)

Now let’s computeMC . From Fig. 2 we can immediately write down using the usual Feynman
rules (and noting that the outgoing gluon’s momentum is in the opposite direction of that usually
taken when using the triple-gluon vertex formula)

iMr1,σa,r2,σb,c1,c2,ca,cb,λ
C = ūr1,c1ic1

(p1)igγµtaic1 ,jcau
σa,ca
jca

(pa) ūr2,c2ic2
(p2)igγνtbic2 ,jcbu

σb,cb
jcb

(pb)

× −i
(k − q)2

[
gµα −

ηµ(k − q)α − ηα(k − q)µ
(k − q)+

]
−i
q2

[
gνβ −

ηνqβ + ηβqν
q+

]
× gfabc

[
gαβ(k − 2q)ρ + gβρ(q + k)α + gρα(q − 2k)β

]
ε∗λρ (47)

'
4g3 p+

a p
−
b

(k − q)2 q2

[
g+α −

(k − q)α
(k − q)+

]
fabc taic1 ,jca t

b
ic2 ,jcb

δr1,σaδr2,σb

×
[
gα+(k − 2q)ρ + g+ρ(q + k)α + gρα(q − 2k)+

]
ε∗λρ (48)

' −
8g3 p+

a p
−
b

(k − q)2 q2
(k − q) · ελ fabc taic1 ,jca t

b
ic2 ,jcb

δr1,σaδr2,σb (49)
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In order to get from Eq. (47) to Eq. (48) we used, as usual, eikonality twice. We were able to drop
the ηα(k − q)µ term in the first gluon propagator as k − q = pa − p1, and ū(p1)(/k − /q)u(pa) = 0
by the Dirac equation. The ηνqβ and ηβqν terms in the second gluon propagator can also be
dropped for the same reasons they were in A: the Dirac equation and suppression by the large
p−b . Since the dominant contribution from ū(p2)γνu(pb) is proportional to p−b we can set ν = −.
The second gluon propagator, with its latter two terms dropped, then forces β = +. In the same
way, since the dominant contribution from ū(p1)γµu(pa) is proportional to p+

a we can set µ = +.
To get from Eq. (48) to Eq. (49), first notice that the gluon propagator is zero unless α = i;

i.e., unless α is in one of the perpendicular directions. This is because (k − q)+ = (k − q)− ' 0
and

g+− −
(k − q)−
(k − q)+

= 1− (k − q)+

(k − q)+
= 0. (50)

Now consider the three terms from the triple gluon vertex in turn. The first term yields nothing
as α = i and gi+ = 0. The second term also yields nothing as the g+ρ is zero unless ρ = −;
however, ε− = ε+ = 0. And so the only remaining term is the last one, for which the matrix
element receives the contribution (k − q) · ε∗ = (k − q) · ε.

To make progress the easy way notice that

i(MA +MB)r1,σa,r2,σb,c1,c2,ca,cb,λ =
8ig3 p+

a p
−
b

q2 k2 k · ελ [tc, ta]ic1 ,jca t
a
ic2 ,jcb

δr1,σaδr2,σb (51)

and

[tc, ta]ic1 ,jca t
a
ic2 ,jcb

= if cabtbic1 ,jca t
a
ic2 ,jcb

= if cbataic1 ,jca t
b
ic2 ,jcb

= −ifabctaic1 ,jca t
b
ic2 ,jcb

. (52)

Therefore

i(MA +MB)r1,σa,r2,σb,c1,c2,ca,cb,λ =
8g3 p+

a p
−
b

q2 k2 k · ελ fabc taic1 ,jca t
b
ic2 ,jcb

δr1,σaδr2,σb , (53)

and

i(MA +MB +MC)... =
8g3 p+

a p
−
b

q2

(
k

k2 −
(k − q)
(k − q)2

)
· ελ fabc taic1 ,jca t

b
ic2 ,jcb

δr1,σaδr2,σb (54)

We now want to sum and average over the result. First, let’s examine the color factor.

fabc taic1 ,jca t
b
ic2 ,jcb

→ fabcfdec Tr
(
tatd

)
Tr
(
tbte
)

= C2(r)fabcfabc = C2(r)C2(G)δcc

=
Nc(N2

c − 1)
4

. (55)

Summing and averaging the entire matrix element, noting that
∑
λ ε

i,λεj,λ = gij for i, j = 1, 2 as
the polarization vectors form an orthonormal basis in the perpendicular direction, we have that

1
4

1
N2
c

∑
|M|2 =

1
4

1
N2
c

(2g)6
(
p+
a p

−
b

)2
q4

(
k

k2 −
k − q

(k − q)2

)2
Nc(N2

c − 1)
4

4 (56)

Noting that (
k

k2 −
k − q

(k − q)2

)2

=
1
k2 −

2k · (k − q)
k2(k − q)2

+
1

(k − q)2

=
(k − q)2 − 2k2 + 2k · q + k2

k2(k − q)2

=
q2

k2(k − q)2
, (57)

we have that

1
4

1
N2
c

∑
|M|2 =

16 (N2
c − 1) g6

(
p+
a p

−
b

)2
Nc

1
k2

1
q2(k − q)2

(58)

=
210π3 (N2

c − 1)α3
s

(
p+
a p

−
b

)2
Nc

1
k2

1
q2(k − q)2

. (59)
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3 Trace of 6 Gamma Matrices

Let’s calculate
Tr (γaγbγcγdγeγf ) ≡ Tr (abcdef). (60)

From the anticommutation relations of gamma matrices, {γa, γb} = 2gab,

Tr (abcdef) = 2gabTr (cdef)− Tr (bacdef)

= 2gabTr (cdef)− 2gacTr (bdef) + 2gadTr (bcef)

− 2gaeTr (bcdf) + 2gafTr (bcde)− Tr (bcdefa). (61)

Since traces are cyclic and Tr (abcd) = 4(gabgcd − gacgbd + gadgbc), we have that

Tr (abcdef) = 4
[
gab
(
gcdgef − gcegdf + gcfgde

)
−gac

(
gbdgef − gbegdf + gbfgde

)
gad
(
gbcgef − gbegcf + gbfgce

)
(62)

−gae
(
gbcgdf − gbdgcf + gbfgcd

)
gaf

(
gbcgde − gbdgce + gbegcd

) ]
(63)

7


	1 2-2 Scattering
	1.1 Exact 2-2 Scattering
	1.2 Lightcone Convention
	1.3 2-2 Scattering with Large Lightcone Momenta

	2 2-3 Scattering
	3 Trace of 6 Gamma Matrices

