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1 2-2 Scattering

1.1 Exact 2-2 Scattering

We wish to compute the exact summed and averaged over matrix element squared for the 2-2
scattering process of 2 quarks going to 2 quarks as displayed in Fig. 1. The exact, turgid formula
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Figure 1: Feynman diagram for the ({-channel) 2-2 scattering process we are interested in calculating.
Each incoming and outgoing quark has an associated spin and color; i.e. particle a has spin s, and color
Cq. These will ultimately be summed and averaged over.
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where the a and b superscripts on the ¢ color matrices are color indices, implicitly summed over
(there are N2 — 1 gluons, each of which contributes to M), not to be confused with the initial a
and b particles, and the matrix indices (such as i, , the index associated with the spin of particle
1) have been kept explicit. The spin and color summed and averaged result is (dropping the
indices on M)
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where I’ve suppressed some of the indices for brevity. In gory detail this is then equal to, noting

that the u and u form a complete basis in color space:
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From Fig. 1 we can see that
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1.2 Lightcone Convention

We will take as convention that the four momentum p is, in Minkowski and lightcone coordinates,

p=0%p"p)=Dp",p,p),
p=rp', fori=1,2,

with the normalization such that
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Then
pa=pTq +p g —pq (20)
In particular
p?=2p"p —p’, (21)
and if p is on-shell and corresponds to a massless particle, then
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1.3 2-2 Scattering with Large Lightcone Momenta

Now consider the process depicted in Fig. 1 assuming that p, has a very large p} component
while p, has a very large p, component (note that “large” here is with respect to their momenta
in the perpendicular direction). We can use the formulae for the Mandelstam variables, Eqs.
(10) and (11), to immediately arrive at the result using the exact result from above, Eq. (12).
Specifically, we take

pa = [pl,0,0] and s = [0,p,,0]. (23)

Then, to lowest order in perp momenta over large momenta,

¢ =q* and s=2pip, and um —2pip, . (24)
Therefore Eq. (12) becomes
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We should also be able to derive this using the eikonal approximation,
Uy Uy = 2pM 545y, (26)

where o and r denote the chirality of the incoming and outgoing particles, respectively; ultimately,
when computing a summed and averaged matrix element squared, these chiralities will have to be
summed over (chirality is either + or — depending on whether the spin is aligned or anti-aligned
with the particle’s motion). Taking care with chiralities and color indices, Fig. 1 yields
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where, again, the color indices @ and b are implicitly summed over. We see that the final result
of Eq. (28) here is the same as the expansion of the full result above, Eq. (25).
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Figure 2: Dominant Feynman diagrams contributing to the 2-3 gluon production cross section in
high energy quark-quark scattering. The diagrams with gluons connected to the lower quark line are
suppressed by inverse powers of large momenta due to the AT = 0 light-cone gauge choice.

2 2-3 Scattering

We now wish to calculate in gory detail the leading order contribution to 2-3 scattering in the
eikonal approximation. (One can also refer to Horowitz and Kovchegov, arXiv:1009.0545.) The
relevant diagrams are shown in Fig. 2. Let’s first compute the relevant momenta to leading
order. We will have five unknown momenta left undetermined that we will integrate over for the
cross section; we will take these five as kT, k, and gq. Then using on-shell-ness for the final state
particles and 4-momentum conservation we immediately have that
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EM conservation can be used again to find the only remaining unknown, ¢~ :
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Consistently solving for ¢~ yields a quadratic equation. The solution of interest is found unam-
biguously by requiring that to lowest order ¢= ~ k? /2k™; the incorrect solution for our set of
approximations yields ¢~ ~ p, . To leading order, then, the momenta are
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Note that ¢> ~ —g? < 0. We will do this computation in lightcone gauge such that -4 = AT = 0;
ie.,

n. = [1,0,0] = n* =1[0,1,0]. (34)
In lightcone gauge the propagator for a gluon of four-momentum ¢ with Lorentz indices p and v
is
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We also know that the polarization vectors e* obey n-€ = et =0 and k-e =0 for A = 1,2.
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http://arxiv.org/abs/1009.0545

We can now start evaluating matrix elements. First, let’s examine M 4:
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Let’s explain the derivation. We exploited a number of tricks in going from Eq. (37) to Eq. (38).
Specifically, we used the @ version of “Peskin’s” trick:

u(p)gp = 2p - eu(p) (41)
pfu(p) = 2p - eu(p). (42)

Since ¢ = py — p2 we are able to drop the 7,¢, term in the gluon propagator by noticing that it
is proportional to

a(p2)y"u(py)q, = u(p2)qu(ps) = ﬂ(]?z)(?b - PQ)U(pb) =0 (43)

by the Dirac equation. Eikonality was used twice. And since the dominant contribution from the
p” that comes from exploiting eikonality is its minus component, we are able to drop the 7,q,
term in the gluon propagator as n_ = 0.

To get from Eq. (38) to Eq. (39) we need p%. From Fig. 2 we have that

2
_ Pk
==
Let’s now evaluate Mp. We can see from Fig. 2 that there are two differences between A
and B: the order of the ¢ and one t* color matrix is switched, and the fermion propagator is
evaluated at momentum pg = p, — k instead of p4. Noting that

pPA=Dpa+q = pi=2pq (44)
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Now let’s compute M. From Fig. 2 we can immediately write down using the usual Feynman
rules (and noting that the outgoing gluon’s momentum is in the opposite direction of that usually
taken when using the triple-gluon vertex formula)
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In order to get from Eq. (47) to Eq. (48) we used, as usual, eikonality twice. We were able to drop
the 7, (k — ¢),, term in the first gluon propagator as k — ¢ = p, — p1, and a(p1) (k¥ — d)u(pa) =0
by the Dirac equation. The 7,g3 and ngg, terms in the second gluon propagator can also be
dropped for the same reasons they were in A: the Dirac equation and suppression by the large
p, - Since the dominant contribution from @(p2)y”u(psy) is proportional to p,” we can set v = —.
The second gluon propagator, with its latter two terms dropped, then forces 8 = +. In the same
way, since the dominant contribution from (p;)y*u(p,) is proportional to p/ we can set u = +.
To get from Eq. (48) to Eq. (49), first notice that the gluon propagator is zero unless o = i;
i.e., unless « is in one of the perpendicular directions. This is because (k—¢)y = (k—¢)” =0
and N
g+__@:1_u:(). (50)
(k—q)* (k—q)*
Now consider the three terms from the triple gluon vertex in turn. The first term yields nothing
as @ = i and ¢'* = 0. The second term also yields nothing as the g*” is zero unless p = —;
however, . = ¢ = 0. And so the only remaining term is the last one, for which the matrix
element receives the contribution (k —¢q)-e¢* = (k—gq) - €.
To make progress the easy way notice that
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We now want to sum and average over the result. First, let’s examine the color factor.
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Summing and averaging the entire matrix element, noting that Y, € e/* = g% for i,j = 1,2 as

the polarization vectors form an orthonormal basis in the perpendicular direction, we have that
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3 Trace of 6 Gamma Matrices

Let’s calculate
Tr (*4"yv%y°y?) = Tr (abede f).
From the anticommutation relations of gamma matrices, {y%,7%} = 2¢%°,
Tr (abedef) = 2g°°Tr (cdef) — Tr (bacdef)
= 2¢°"Tr (cdef) — 2g°°Tr (bdef) + 2g**Tr (beef)
— 29T (bedf) 4 29% Tr (bede) — Tr (bedefa).

Since traces are cyclic and Tr (abed) = 4(g?g°? — g2¢g®® + g29gb¢), we have that
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