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Abstract

We investigate the possibilities of the unification of the dark regime of the
universe in a shear-free spherical model. We develop a Hamiltonian formulation for
K-essence and attempt to map out the space-time numerically for the specific case
of tachyon-type models. We also derive a second order partial differential equation
for the scale factor which is solved and the solution used to determine the Hubble
parameter and the lapse function.



Introduction

Primordial nucleosynsthesis constrains the energy density of baryons to make up
only a small fraction of the universe. This implies that we only really have an
theoretical understanding of a tiny portion of the universe. The missing energy
density is thought to constitute an exotic form of matter (dark matter) and the
yet unexplained dark energy. The existence of dark matter has long been accepted
by the cosmological world, with much compelling evidence such as the rotational
speed of galaxies, orbital velocities of galaxies in clusters and gravitational lens-
ing to support it. The existence of dark energy however, was only proposed much
more recently when observations of Type 1a Supernovae revealed, quite startlingly,
that the Hubble expansion was accelerating. Although other theories, such as the
existence of large voids in the universe have been proposed to explain these obser-
vations, dark energy is one of the forerunners to provide a solution. The current
best-fit values for the fractions of closure density are ΩB = 0.04, ΩDM = 0.22 and
ΩDE = 0.74.

The unification of the dark sector in the universe remains one of the foremost
problems facing modern cosmology. The simplest such model merely combines
baryons with conventional cold dark matter (CDM) and a cosmological constant
Λ to provide the dark energy. This ΛCDM model, however neglects to provide
a satisfactory explanation of why Λ is non-zero, but such that DM and DE are
comparable today. This problem can be somewhat removed by replacing Λ with
an evolving scalar field. Models of this type are given the name quintessence-CDM
but like the ΛCDM model assumes that DM and DE are distinct entities. Another
interpretation of these results is that DM and DE are different manifestations of a
common structure. The first models of this type arose in the last few years and are
based around the Chaplygin gas, a perfect fluid which obeys the equation of state

P = −A
ρ
, (1)

This paper will attempt to provide an insight into a particular such model called
k-essence, a scalar field with noncanonical kinetic terms. This model was first
introduced in an attempt to describe early universe inflation. The cosmological
potential of equation (1) was first given by Kamenshchick et al [1], who observed
that

ρ(R) =

√
A+

B

a6
, (2)

where R is the scale factor and B is a constant of integration. Thus we see that
this potential interpolates between ρ ∼

√
Ba−3, P ∼ 0 for small values of R,

and a cosmological constant ρ ∼
√
A ∼ −P for large values of R. This gives

the picture of an inhomogeneous universe with highly overdense regions such as
galaxies and clusters providing dark matter and underdense voids which drive the
expansion of the universe and pushes ρ to its limiting value

√
A giving dark energy.

It is interesting to also note that the Chaplygin gas has an equivalent scalar field
formulation with a Lagrangian of the form [2],

L = −
√
A
√

1− gµνφ,µφ,ν . (3)
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The first important feature of equation (3) is that it exhibits the same interpolating
properties of equation (2). Secondly, tachyon models of this type appear in string
theory which points to a connection between the dark regime and fundamental
physics. Thirdly, it is apparent that to achieve dark matter and dark energy in the
same epoch, thus agreeing with observation of the universe today, they must exist
in distinct regions. For this paper, we turn to the shear-free spherical model and
show that when combined with a Hamiltonian formulation of k-essence we end up
with a simple set of equations to describe k-essence cosmology.

The Shear-Free Spherical Model

We assume that the universe can be modeled as a perfect fluid, in comoving co-
ordinates, exhibiting spherical symmetry. Now on making the assumption of a
vanishing shear and using the line element

ds2 = N(r, t)2dt2 −R(r, t)2
[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
, (4)

where uµ = N−1δµt is the fluid’s 4-velocity, the Einstein Field equations in conjunc-
tion with the matter tensor taking the form of that of a perfect fluid we obtain the
conservation equation

ρ̇+ 3
Ṙ

R
(ρ+ P ) = 0, (5)

and the Euler Equation
N,r

N
+

P,r
ρ+ P

= 0. (6)

We continue with an analysis analogous to that of Kustaanheimo & Qvist [3] and
Wyman [4]. Using the Einstein Field Equations in the form given in Tolman [5]
we obtain a number of useful results. The Gtr component vanishes leaving, on
integration over r,

Ṙ

R
≡ 1
N

R,t
R

= H(t), (7)

where H(t) is the Hubble parameter and is a function of integration of t only. Thus
for the Gtt equation, we get

3H2 − 1
R2

[
2
R,rr
R
− (

R,r
R

)2 +
4
r

R,r
R

]
= ρ. (8)

We can the eliminate N from the Grr and the Gθθ = Gφφ equations using

N,r = (H−1R,t
R

),r = H−1(
R,r
R

),t, (9)

giving, for the r − r equation

3H2 + 2Ḣ − 1
R3H

[
(R,r)2

R
+

2
r
R,r

].
= −P (10)

and for the θ − θ equation,
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3H2 + 2Ḣ − 1
R3H

[
R,rr −

(R,r)2

R
+

1
r
R,r

].
= −P. (11)

respectively, where we have used units 8πG = c = 1. On comparing the previous
two equations and taking the integral with respect to t we obtain the equation of
pressure isotropy

1
2
b(r) = R,rr − 2

(R,r)2

R
− 1
r
R,r, (12)

where b(r) is a function of integration of r only. Using equation (12) to eleminate
R,rr for the Gtt equation we obtain an interesting form for a Friedmann-like equation
which acts as a constraint for the Hubble parameter.

H2 =
1
3

[
ρ+

b

R3

]
+

1
R2

[
(
R,r
R

)2 +
2
r

R,r
R

]
. (13)

Now, taking the r-derivative of the above equation and using equation (12) to once
again eliminate R,rr, we are left with

ρ,r +
1
R3

(b,r +
3b
r

) = 0. (14)

Thus we see that for a specified energy density ρ and b(r) and using equation (14),
it is possible to eliminate the R,r dependence of equation (13) which thus simply
reduces to a purely algebraically function which should be easily solved should it
be well-behaved. This will be shown later for the particular case of a tachyon-type
model with H =

√
p2 +R6V 2(ϕ), later in the paper. In order to determine the

t-dependence of the scale factor to obtain R = R(r, t) we need to develop a Hamil-
tonian formulation for k-essence.

A Hamiltonian Formulation of K-essence

We begin by considering a minimally coupled k-essence model [6] in which the
action is described by

S =
∫
d4x
√
−g
[
− R

16πG
+ L(ϕ, Y )

]
, (15)

where L is the most general Lagrangian involving the field ϕ and its first derivatives
and is shown in equation (3). Thus we have L = L(ϕ, Y ), where Y = gµνφ,µφ,ν .
The energy momentum tensor obtained from this action, equation(15 takes the
form of a perfect fluid with LY defined as ∂L/∂Y ,

Tµν = 2LY ϕ,µϕ,ν − Lgµν ,
= (ρ+ P )UµUν − Pgµν .

We can thus identify the fluids 4-velocity, energy density and pressure

Uµ = ϕ,µ
Y , P = L, ρ = Y ∂L

∂Y − L.
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We also note that in a comoving coordinate system we have ϕ = ϕ(t), a function
of t only and Y = ϕ̇. The above identification for ρ is reminiscent of a Legendre
transform. However, the equation for the ϕ-field in comoving coordinates

1
R3

(R3 ∂L
∂Y

). =
∂L
∂ϕ

shows the correct definition to be

L(ϕ, ϕ̇, R) = R3L,

which takes the role of the Lagrangian. Thus we see that the conjugate momentum,
p to ϕ is in fact

p = R3 ∂L
∂Y

.

Finally we see that

R3ρ = H(ϕ, p,R) = pY −R3L, (16)

which is the Hamiltonian for k-essence. Hamilton’s equations then follow from this
and are given by

ϕ̇ =
∂H
∂p

and ṗ = −∂H
∂ϕ

. (17)

From here it is convenient to choose ϕ as the the time variable and from our
definition for Y = ϕ̇, we obtain

Y =
∂H
∂p

and Y p,ϕ = −∂H
∂ϕ

. (18)

Now, using equation (7) in the form H = Y
R,ϕ
R in conjunction with equations (18)

it is possible to step forward incrementally in time and for each step calculate the
value for H from the simplified version of equation (13) for specified H(ϕ, ϕ̇, R),
b(r) and p(r, ϕ). In this way it should be possible for the entire space-time to be
mapped out.

The Tachyon-type Model

We now return to the tachyon type model as mentioned previously. Using the
relation given in equation (16) we see that the corresponding energy density for
this Hamiltonian is

ρ =

√
p2

R6
+ V 2(ϕ). (19)

Taking the r-derivative of this gives

ρ,r =
1
2ρ

[
2pp,r
R6

− 6p2R,r
R7

]
,

and using this in equation (14) yields
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Figure 1: r-dependance for the scale factor R for a constant time slice: b(r) = r2.

1
2ρ

[
2pp,r
R6

− 6p2R,r
R7

]
+

1
R3

(b,r +
3b
r

) = 0.

This can then be solved for R,r on a constant ϕ-slice giving

R,r =
Rp,r
3p

+
ρR4

3p2
(b,r +

3b
r

). (20)

We can then substitute this back into equation (13) to give

H2 =
1
3

[
ρ+

b

R3

]
+

1
R2

[
(
p,r
3p

+
ρR3

3p2
(b,r +

3b
r

))2 +
2
r

(
p,r
3p

+
ρR3

3p2
(b,r +

3b
r

))
]
. (21)

This equation was then solved numerically in order to determine the r dependance
of the scale factor R on a constant ϕ-slice using the particular case of the tachyon
model where the momentum, p is independent of the radial component r and for
V (ϕ) = V0, a constant. This energy density is thus analogous to that of the
Chaplygin gas and with the choice of b(r) = r2 equation (21) is reduced to

H2 =
1
3

[
ρ+

r2

R3

]
+

1
R2

[
(
5
3
ρR3

p2
r)2 +

10
3
ρR3

p2

]
. (22)

The result of this numerical analysis as shown in Figure 1 for R(r) versus r. This
result fails to fall in line with that of which was expected. The graph has a sin-
gularity and the scale factor takes on an unphysical negative value at r = 57. On
returning to equation (20) we notice, that with the same choices for p and b(r) and
in the limiting case for very large R such that ρ→ ρ∞ = constant that

R,r =
ρ∞R

4

3p2
(5r). (23)
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Figure 2: r-dependance for the scale factor R for a constant time slice b(r) = −r2.

It is clear that R,r must be positive as it depends only on quantities which are
themselves positive and also increasing as r increases which is clearly in contradic-
tion with the plotted graph. We run into even more problems when attempting to
solve equation (23) for R(r). A simple separation of variables results in

R(r) =
[
− 2p

5ρ∞r2

] 1
3

. (24)

which implies a scale factor R that is negative and which once again tends to zero
for large r. The ambiguity created by equations (23) and (24) can be somewhat
ameliorated by changing the definition of b(r) to b(r) = −r2. The numerical analysis
performed with this new definition for b(r) is given in Figure 2. This transforms
equation (23) to

R,r = −ρ∞R
4

3p2
(5r), (25)

and equation (24) to

R(r) =
[

2p
5ρ∞r2

] 1
3

, (26)

both of which agree with the numerical analysis performed on equation (21) with
the new definition for b(r). These results agree for a large part with those obtained
in the following section where we determine an expression for the scale factor alge-
braically and are able to plot it as a function of both the t and r coordinates. In
theory one should now be able to time step forward using equations (7) and (18)
and thus plot the scale factor for both the r and t-dependance. This was attempted
for this project but no satisfactory results were obtained and should perhaps be left
to an expert in the field of computational physics.
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Analytic Determination of the Scale Factor

In order to take this analysis further we now turn to an alternative method in which
we are able to determine the scale factor R(r, t) from which we can determine the an
expression for the equation of pressure isotropy and thus obtain the lapse function
and Hubble parameter. Returning to the Einstein Field Equations, most specifically
the Grr and Gθθ = Gφφ equations we note that on equating equations (10) and (11)
we see that [

(R,r)2

R

].
+
[

1
r
R,r

].
=
[[
R,rr
R
− (

R,r
R

)2
]
R

].
. (27)

Rearranging the terms we get[
R,rr − 2

(R,r)2

R
− 1
r
R,r

].
= 0.

Dividing through by r2 yields[
R,r
r3

+
2
r2

(R,r)2

R
− R,rr

r2

].
= 0,

from which it follows that

0 =
[
R,r
r3
− R2

r2
(
R,r
R2

),r

].
,

0 =

[
−R2 1

r

[
1
r

R,r
R2

]
,r

].
,

0 =
[
R2 1

r

∂

∂r

[
1
r

(
∂R

∂r
)

1
R2

]].
. (28)

Now on making the substitution x = r2

2 , we get[
R2 ∂

2

∂2x

1
R

].
= 0.

This can then be integrated to give

R2 ∂
2

∂2x

1
R

= C(x), (29)

where C(x) is a function of integration of x only. We now consider the case where
C(x) is just a constant (C(x) = Cα2). In the analysis of Kustaanheimo and Qvist,
it is shown that for C(x) = (ax2 + bx+ c)−

5
2 it is possible to obtain solutions which

are expressible in terms of elementary functions. Since we are considering in the
x-derivative of R, we may consider equation (40) simply as an ordinary differential
equation

R2 d
2

d2x

1
R

= C(x). (30)

This can then be integrated by making a substitution Z = 1
R leaving

d2

dx2
Z = Cα2Z2. (31)
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By making a further substitution, v = dZ
dx and using the chain rule we obtain

v
dv

dz
= Cα2Z2,

which can be trivially integrated to give

v =
dz

dx
=

√
2
3
Cα2Z3 + σ1(t), (32)

where σ1(t) is a function of integration of t only. Thus we have

dx

dz
=
[

2
3
Cα2Z3 + σ1(t)

]− 1
2

,

which can be integrated to give

x− x0(t) =
∫ [

2
3
Cα2Z3 + σ1(t)

]− 1
2

dZ. (33)

This equation has a solution in terms of the Weierstrass elliptic function as we
shall show, without loss of generality, for the particular case where σ1(t) = 0.
Equation (32) thus reduces to

dz

dx
= α

√
2
3
CZ

3
2 . (34)

This can now be rearranged and integrated to give

−2Z−
1
2 = α

√
2
3
Cx+ σ2(t).

Thus we have that

Z =
1
R

=
1[

α
√

1
24Cr

2 + σ(t)
]2 . (35)

We now return to the Gtt equation, equation (8) and rewrite it in terms of Z and
its derivatives.

ρ = 3H2 − Z2
[
2Z(2AZ−

1
2 + 2A2r2)− Z2(4A2r2Z−1) + 4Z(2AZ−

1
2 )
]
,

= 3H2 − Z2
[
4AZ

1
2 + 4A2r2Z − 4A2r2Z + 8AZ

1
2

]
,

= 3H2 − 12AZ
5
2 , (36)

where we have set A =
√

C
24α. In order to determine an explicit expression for the

Hubble parameter H(t) we return to equation (7). We note that

Ṙ =
1
N
R,t. (37)

Using the results obtained for R(r, t) in equation (35) in the above equation we see
that
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H(t) =
Ṙ

R
=

1
N

2σ,t
[
Ar2 + σ(t)

]
[Ar2 + σ(t)]2

. (38)

Now we see that in order for H(t) to depend only on t we must have that N =
f(t)

[
Ar2 + σ(t)

]−1. We now consider the most simple case, when f(t) = σ,t and
thus H(t) is a constant in time. Taking the t-derivative of equation (36) we get

ρ̇ = −30AZ
3
2 Ż,

= 30AZ
5
2H,

= −30
12
ρH +

30
4
H3. (39)

Using equation (5), the conservation equation, we have

P = −ρ− ρ̇

3H
,

= −ρ+
10
12
ρ− 30

12
H2,

= −1
6
ρ− 30

12
H2, (40)

which can be identified as the equation of state for the system and the adiabatic
speed of sound is thus found to be

c2s ≡
∂P

∂ρ
= −1

6
. (41)

Now, on making the choice σ(t) = t2 in order to obtain a scale factor and lapse
function similar to that obtained by Wyman we see that f(t) is a constant and

Z =
1
R

=
1

[A(t2 − r2)]2
. (42)

This is plotted in Figure 3 for R = R(r, t). We note that we only need consider that
part of the graph to the left of the line r = t if we look only within our past null
cone. Using this we can calculate the lapse function and the Hubble parameter

N = R−
1
2 =

1
[A(t2 − r2)]

, (43)

H = 4At. (44)

We now return to equation (12) and substitute the relevant terms for the scale
factor and its derivatives calculated from equation (35). Thus we calculate

b(r) = 24A2r2 − 8A2t2 − 64A2r2 + 8A2t2 − 8A2r2,

= −48A2r2. (45)

Thus we have the equation of pressure isotropy to be dependent only on r as
required and it is negative for all real values of the constant A. We can now write
the Einstein Field Equations in terms of b(r) for the Gtt and Grr components giving
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Figure 3: r and t-dependance of the scale factor, R(r, t).

ρ = 3H2 − 1
R2

[
b

R
+ 3(

R,r
R

)2 +
6
r

R,r
R

]
,

= 3H2 − 12AR−
5
2 ,

for the Gtt equation and using equation (7),

P = 3H2 + 2Ḣ − 1
R3HN

2
r

(R,r),t,

= 3H2 + 2Ḣ + 4AR−
5
2 .

A comparison of equations (46) and (46) we see that

P = ρ+ 16AR−
5
2 + 2Ḣ. (46)

We can now use these to ‘look’ along the past null cone, given by tGtt + rGrr = 0.
For the Einstein Field Equations above we obtain

0 = ρt+ Pr,

= tρ− 1
3
rρ+ 4H2 + 2Ḣ,

= (t+
r

3
)ρ+

16A2t2

RN2
+

8Ar
N2

[
At2

R
1
2

(1− tN,t

N
)
]
. (47)

where we used equation (7) to eliminate H and Ḣ. We can now use equation (47)
to determine the lapse function and hence the Hubble parameter.
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Looking Forward

We now attempt to to determine constraint and evolution equations for the Hubble
parameter. Returning to the Einstein Field Equations, equations (8) and (10) and
using the equation of pressure isotropy in the t − t equation we note that we can
eliminate the H2 terms by subtracting the two field equations leaving

−(ρ+ P )− b(r)
R3

= 2Ḣ − 1
R3H

[
(R,r)2

R
+

2
r
R,r

].
+

3
R3

[
(R,r)2

R
+

2
r
R,r

]
,

= 2Ḣ − 1
H

[
1
R3
{(R,r)2

R
+

2
r
R,r}

].
+

1
H

(
1
R3

).
[

(R,r)2

R
+

2
r
R,r

]
+

3
R3

[
(R,r)2

R
+

2
r
R,r

]
(48)

This can then be simplified by making use of equation (7), leaving

−(ρ+ P )− b(r)
R3

= 2Ḣ − 1
H

[
(
R,r
R2

)2 +
2
rR

(
R,r
R2

)
].
.

Now, making use of the substitution Z = 1
R , as in the previous section, we get

3H2 − 3
[
Z2
,r −

2
r
ZZ,r

]
= ρ+ Z3b(r), (49)

for the Gtt equation, and

2Ḣ − 1
H

[
Z2
,r −

2
r
ZZ,r

].
= −(ρ+ P )− Z3b(r) (50)

for equation (48). These two equations may be regarded as a constraint and an
evolution equation for the Hubble parameter respectively. We can now obtain and
expression for Z,r and thus eliminate it from the Gtt equation and equation (50)
and the equation of pressure isotropy becomes

b(r)
2

=
1
r
Z,r − Z2Zrr. (51)

Dividing this through by 4r2 and choosing b(r) = 4α
5 r

2, we get

1
4r2

Z,rr −
1

4r3
Z,r +

αZ2

10
= 0.

Now, substituting x = r2 we get

∂2Z

∂x2
+
α

10
Z2 = 0,

and multiplying by ∂Z
∂x gives

∂

∂x

[
1
2

(
∂Z

∂x
)2 +

α

30
Z3

]
= 0,
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which on integrating with respect to x gives

1
2

(
∂Z

∂x
)2 +

α

30
Z3 = C(t). (52)

We can now use this to obtain and expression for the first derivative of Z

Z,r = 2r
√
C(t)− α

15
Z3. (53)

Now using the same choice for b(r) in equation (14) and substituting Z = 1
R , we

get

ρ,r + Z34αr = 0, (54)

which, on making the substitution x = r2 becomes

∂ρ

∂x
+ 2αZ3 = 0. (55)

We are now in a position to obtain expressions for the constraint and evolution
equations of the Hubble parameter in terms of Z only and none of its derivatives.
We should be able to map the scale factor and Hubble parameter for the entire
space-time. Using equation (53) in equation (49) and taking C(t) = C =constant,
we get

3H2 − 12
[
r2(C − α

15
Z3)− Z

√
C − α

15
Z3

]
= ρ+ Z3b(r),

which on substituting for b(r) and rearranging terms becomes

3H2 − 12Cr2 − Z
√
C − α

15
Z3 = ρ.

Thus we have

H2 =
ρ

3
+ 4Cr2 +

Z

3

√
C − α

15
Z3, (56)

for the constraint on the Hubble parameter which can also be given in terms of the
scale factor R,

H2 =
ρ

3
+ 4Cr2 +

1
3R

√
C − α

15
1
R3

. (57)

Similarly, the evolution equation becomes

2Ḣ − 1
H

[
4r2(C − α

15
Z3)− 2

r
Z2r

√
C − α

15
Z3

].
= −(ρ+ P )− Z3 4α

5
r2,

which in terms of R is just

2Ḣ − 1
H

[
4r2(C − α

15
1
R3

)− 4
R

√
C − α

15
1
R3

].
= −(ρ+ P )− 1

R3

4α
5
r2.
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Applying the time-derivative where applicable this becomes

2Ḣ − 1
H
{4αr2

5
Ṙ

R4
+

4Ṙ
R2

[
C − α

15
1
R3

] 1
2

− 4α
10

Ṙ

R5

[
C − α

15
1
R3

]− 1
2

},

= 2Ḣ − 1
H
{4αr2

5
H

R3
+

4H
R

[
C − α

15
1
R3

] 1
2

− 4α
10

H

R4

[
C − α

15
1
R3

]− 1
2

},

where we have used equation (7) to remove the Ṙ dependance. Thus for the evolu-
tion equation we obtain

2Ḣ − 4αr2

5
1
R3

+
4
R

[
C − α

15
1
R3

] 1
2

− 4α
10

1
R4

[
C − α

15
1
R3

]− 1
2

= −(ρ+ P )− 1
R3

4αr2

5
. (58)

In principle we should now be able to specify a particular model, such as a tachyon
type model and use the energy density in equation (57) for a constant time slice
from which we can obtain the r-dependance of R for constant time.

Now returning the the Hamiltonian formulation for k-essence, in particular equa-
tion (16) from which we derived Hamilton’s equations, equations (17) and (18), we
note that we can use the solution for equation (57) in conjunction with equation
(58) to determine the evolution of the Hubble parameter in time. In this way we
should be able to map out the entire space-time.
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