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1 Introduction

Except for Einstein’s general theory of relativity, there are several alterna-
tive theories of gravitation. Examples of such theories are string theory and
braneworld theories. One possible way of distinguishing between the differ-
ent gravitational models is by observing the accretion rate of matter onto
black holes.

In this project, a perfect, spherically symmetrically test fluid accretes onto a
spherically symmetric black hole. It is assumed that there is no back reaction
in the accretion.

The spacetime metrics to be used in the project are:

• The Schwarzschild solution of general relativity [1]. It is the simplest so-
lution in that it is spherically symmetric, uncharged and non-rotating.
The solutions of the other cases will be compared to this one.

• The Reissner-Nordström solution for a charged, non-rotating black hole
[1]. In this case the black hole will have two horizons. The extremal
case (where the electric charge is large enough to merge the two hori-
zons) corresponds to the conformal Brans-Dicke theory of a scalar field
coupling to the metric. This situation emerges in certain braneworld
theories [2].

• The Reissner-Nordström dilatonic case. This case describes charged
black hole, also with two horizons arising from superstring theory [3].

• The Horava-Witten braneworld black hole. This case comes from M-
theory in which an additional spatial dimension to the 10 spacetime
dimensions already present arises. This case is interesting because the
singularity has no event horizon surrounding it [4].

In the theories where there are additional spatial dimensions to the usual
three, the metric used was the effective one in four spacetime dimensions. In
such cases there are two possible metrics related by conformal transforma-
tions (the metrics are said to correspond to different frames). We then use
the metric in which test-particle trajectories are world-lines.
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2 The critical point

In this section we derive the speed of sound at the critical point of a spher-
ically symmetric ideal test fluid, accreting on a spherically symmetric black
hole, with an arbitrary metric described by the squared line-element

ds2 = A(r)dt2 −B(r)dr2 − C(r)
(
dθ2 + sin2 θdφ2

)
(1)

2.1 Preliminary results

Under the assumption that the fluid has a stationary solution to its accretion,
and that it has an energy-momentum tensor

Tµν = (ρ + p) UµUν − pgµν (2)

(where U is the fluid’s four-velocity, ρ its mass-energy density and p is its
pressure. gµν is the spacetime metric) we obtain the relativistic continuity
and Euler equations, respectively:

Uµρ,µ + (ρ + p)Uµ
;µ = 0 (3)

U νUµ
;ν =

(gµν − UµUν)p,ν

ρ + p
(4)

Introducing some notation for convenience, we write the upper-indexed
radial component of the four-velocity as

U r = U (5)

From (1) the lower-index radial component of the four-velocity will conse-
quently be

Ur = grµU
µ = −BU (6)

We see that the identity
UµU

µ = 1 (7)

(in the units c=G=1) is satisfied for the zeroth component

U0 =

√
(1 + BU2)

A
(8)

(and therefore U0 =
√

A (1 + BU2)).

We introduce the further notation

F,r = F ′ (9)

where F is any function function of the coordinates.
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2.2 The derivation

Equations (3) and (4) lead to

√
ABC2U exp

∫ dρ

ρ + p
= −α (10)

AU0 exp
∫ c2

sdρ

ρ + p
= γ (11)

respectively. Here c2
s = dp

dρ
is the speed of sound in the accreting fluid squared,

and α and γ are positive integration constants to be determined case wise.
Note that the radial velocity U of the fluid is negative, so that equation (10)
has no contradiction.

Taking the logarithmic derivative of (11) with respect to r, we obtain

c2
sρ
′

ρ + p
+

U0′

U0
+

A′

A
= 0 (12)

From (8), we have

U0′ =
A (B′U2 + 2BUU ′)− A′ (1 + BU2)

2A
√

(1 + BU2) /A
(13)

and thus
U0′

U0
= −1

2

A′

A
+

1

2

B′U2 + 2BUU ′

1 + BU2
(14)

Substituting this in (12), we have

c2
sρ
′

ρ + p
= −1

2

A′

A
− 1

2

B′U2 + 2BUU ′

1 + BU2
(15)

Taking the logarithmic derivative of (10), we have

ρ′

ρ + p
+

(
√

ABC2U)′√
ABC2U

= 0 (16)

This simplifies to

ρ′

ρ + p
= −

(
U ′

U
+

1

2

A′

A
+

1

2

B′

B
+

C ′

C

)
(17)

Combining (15) and (17), we have
(

U ′

U
+

1

2

A′

A
+

1

2

B′

B
+

C ′

C

)
c2
s =

1

2

A′

A
+

1

2

B′U2 + 2BUU ′

1 + BU2
(18)
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This equation can be simplified by separating U ′
U

on the left-hand side of
the equation. After some algebra, we have

U ′

U
=

(
−1

2

A′

A
(1− c2

s)−
c2
sB

′

2B
− c2

sC
′

C
+

B′U2

2 (1 + BU2)

)

×
(

1 + BU2

c2
s + BU2(c2

s − 1)

)
(19)

We now define the radial four-velocity U in terms of the radial function
u as follows:

U = − u√
B
√

1− u2
(20)

The new function u corresponds to the four-velocity in flat Minkowsky
space. It can be naturally compared to the speed of sound cs in the accreting
fluid, since both are quantities in locally flat coordinates.

From (20), the left-hand side in (19) becomes

U ′

U
=

u′

u(1− u2)
− 1

2

B′

B
(21)

while the right-hand side simplifies to

U ′

U
=

1

2

A′

A

c2
s − 1

u2 − c2
s

− 1

2

B′

B
+

C ′

C

c2
s

u2 − c2
s

(22)

Combining these two equations and multiplying on both sides by c2
s−u2,

we have
c2
s − u2

1− u2

u′

u
=

1

2

A′

A

(
1− c2

s

)
− C ′

C
c2
s (23)

At the critical radius r∗, where the speed of sound in the fluid equals its
flow velocity, we have u∗ = cs∗. Then (23) simplifies to give

c2
s∗

1− c2
s∗

=
1

2

A′

A

C

C ′ (24)

This is the equation we will be using in the following sections for deter-
mining the critical points.
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3 Critical quantities in accretion

The critical point in the accreting fluid is the radius at which the (local)
accretion velocity (in locally flat coordinates) equals the speed of sound in
the fluid (u2 = c2

s). It is important to find the speed of sound and radial
accretion four-velocity at the critical point as well as the critical radius itself.
This information, in conjunction with the equation of state, can be used to
find the parameter α in (10), which will be seen to be the parameter that
determines the accretion rate.

In this section we attempt to find these quantities at the critical points for
accretion onto black holes in different models. We start with the simplest
case – the Schwarzschild solution – of Einstein’s equations and work our way
through the more exotic models.

3.1 The Schwarzschild case

In this case the line element (1) will have the form [1]

A(r) = 1− rs

r
(25)

B(r) =
(
1− rs

r

)−1

(26)

C(r) = r2 (27)

where rs = 2m in the units G = c = 1. rs is known as the Schwarzschild
radius, the radius of the event horizon of the Schwarzschild black hole.

From (24), substituting in for A and C we find, after calculating the deriva-
tives and simplifying,

c2
s∗

1− c2
s∗

=
rs

4(r∗ − rs)
(28)

Now from (20), evaluated at the critical point, we have

U2
∗ =

1

B

c2
s∗

1− c2
s∗

(29)

=
rs

4r∗
(30)

Using (29) to solve for c2
s∗, we find

c2
s∗ =

U2
∗

1
B

+ U2∗
(31)
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=
U2
∗

1− 2m
r∗

+ U2∗

=
U2
∗

1− 4U2∗ + U2∗

So c2
s∗ =

U2
∗

1− 3U2∗
(32)

or c2
s∗ =

rs

4r∗ − 3rs

(33)

Equations (30) and (32) correspond to those presented in [5].

Another quantity that will turn out to be important in finding the mass
accretion rate onto the black hole is the critical radius r∗, which is found
simply by solving for it from equation (33):

r∗ =
(1 + 3c2

s∗)rs

4c2
s∗

(34)

3.2 The (extremal) Reissner-Nordström case

The Reissner-Nordström case arise when a black hole carries charge. Its line
element components are [1]

A(r) = 1− 2m

r
+

q2

r2
=

(
1− r+

r

) (
1− r−

r

)
(35)

B(r) =
[(

1− r+

r

) (
1− r−

r

)]−1

(36)

C(r) = r2 (37)

This metric leads to two distinct horizons, namely

r± = m±
√

m2 − q2 (38)

which merge in the extremal case when q2 = m2. Then

r+ = r− = m (39)

in the appropriate units.

Following the procedure in the Schwarzschild case, by substituting for A
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and C, we find for the critical speed

c2
s∗

1− c2
s∗

=
r∗(r+ + r−)− 2r+r−
4(r∗ − r+)(r∗ − r−)

⇒ c2
s∗ =

r∗(r+ + r−)− 2r+r−
4r2∗ − 3(r+ + r−)r∗ + 2r+r−

(40)

or, in the extremal case

c2
s∗ =

2r+r∗ − 2r2
+

4r2∗ − 6r+r∗ + 2r2
+

(41)

simplifying to c2
s∗ =

r+

2r∗ − r+

(42)

Also as in the Schwarzschild case, we find the critical radial four-velocity
to be

U2
∗ =

1

B

c2
s∗

1− c2
s∗

=
r∗(r+ + r−)− 2r+r−

4r2∗
(43)

and in the extremal case

=
r+(r∗ − r+)

2r2∗
(44)

Equations (40) and (43) correspond to those given in [6].

The two cases we will investigate are q = 1
2
m and q = m. In the first

case, r+ = 2+
√

3
4

rs and r− = 2−√3
4

rs. In the second case, the extremal case,
r+ = r− = rs

2
. In these two cases then, the critical radius solves to be

r∗ =
1 + 3c2

s∗ +
√

1 + 4c2
s∗ + 7c4

s∗
8c2

s∗
rs (45)

and

r∗ =
1 + c2

s∗
4c2

s∗
rs (46)

respectively.

3.3 Reissner-Nordström dilatonic case

The metric in this case arises from string theory. It is one of two possible
forms related by a conformal transformation. The reason we work with this
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specific metric is that test particles follow geodesics when the metric is writ-
ten in this form.

This type of black hole is similar to the normal Reissner-Nordström in that
it is charged and has two horizons. Extra factors arise, due to a (maximal)
dilaton coupling constant, causing additional spacetime curvature and al-
tered geodesics for particle trajectories.

The effective four-dimensional metric that arises is [3]

A(r) =
(
1− r+

r

) (
1− r−

r

)
(47)

B(r) =
(
1− r+

r

)−1 (
1− r−

r

)
(48)

C(r) = r2
(
1− r−

r

)2

(49)

Here r− and r+ are the inner and outer horizons of the black hole, respec-
tively.

r+ = 2m ≡ rs (50)

r− =
q2

m
(51)

or, in the case where q2 = m2,

r− = m (52)

It is interesting to note that in the chargeless case, the metric becomes pre-
cisely the Schwarzschild metric and the dilatonic influence on particle trajec-
tories disappears.

After much simplification, we find that

c2
s∗ =

r∗(r− + r+)− 2r−r+

4r2∗ + (r− − 3r+)r∗ − 2r−r+

(53)

U2
∗ =

r∗(r− + r+)− 2r−r+

4r∗(r∗ − r−)
(54)

We will investigate the cases with q = 1
2
m and q = m. In the first case

r− = rs

8
and r− = rs

2
in the second case. We note that the horizons do not

merge for q = m, as in the extremal Reissner-Nordström case. In these cases
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the critical radius solves to be

r∗ =
9 + 23c2

s∗ +
√

81 + 158c2
s∗ + 785c4

s∗
64c2

s∗
rs (55)

and

r∗ =
3 + 5c2

s∗ +
√

9− 34c2
s∗ + 89c4

s∗
16c2

s∗
rs (56)

respectively.

3.4 Horava-Witten braneworld case

The Horava-Witten braneworld occurs in M-theory. An extra extended spa-
tial dimension (in addition to the nine already occurring in the usual super-
string theory) makes this theory similar to the braneworld theories. Our uni-
verse lives” on a brane (a 9-dimensional spatial sheet) in the 11-dimensional
bulk.

An interesting and unusual type of black hole” occurs in this theory, differ-
ing from other types of black holes in that there is no event horizon keeping
the central singularity cut off from the outside.

The effective four-dimensional metric that occurs on the brane is [4]

A(r) =
1− 2rs

r

1− rs

r

(57)

B(r) =
(
1− rs

r

)−1

(58)

C(r) = r2 1− 2rs

r

1− rs

r

(59)

Following the same procedure as before we find at the critical point

c2
s∗ =

rsr∗
4r2∗ − 9rsr∗ + 8r2

s

(60)

U2
∗ =

1

2

rs(r∗ − rs)

2r2∗ − 5rsr∗ + 4r2
s

(61)

In this case, the critical radius solves to be

r∗ =
1 + 9c2

s∗ +
√

1 + 18c2
s∗ − 47c4

s∗
8c2

s∗
rs (62)
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4 The accretion rate

The accretion rate (the rate of change of the mass of the black hole) of the
fluid onto the black hole is given by [5] as

ṁ = 4παm2(ρ∞ + p(ρ∞)) (63)

m being the mass of the black hole.

As will be seen, the accretion rates onto the various black hole examples
mentioned in the previous section can be determined without solving for the
energy density of the accretion in the different metrics. This is lucky, since
the solution of the energy density in the extremal Reissner-Nordström as
well as the Horava-Witten cases becomes infinite at some radius for those
equations of state that are solvable. Additionally, for most equations of state
the energy densities are not analytically solvable.

The accretion rate depends only on the energy density and pressure of the
accretion an infinite distance from the black hole, the mass of the black hole
and the parameter α. The quantity that must stay well-behaved is α, which
we calculate in this section. If the accretion rate is well-behaved, it could
possibly serve as a prediction for observational distinctions between the dif-
ferent types of black holes.

Since ṁ ∝ α, we will only solve for and plot α in each case. This is the
distinguishing factor in the accretion rates of the different black holes. In
order to compare the accretion rates, we will assume the black holes to have
the same mass.

To keep the calculations simple, we will use the equation of state

p = ηρ (64)

with 0 ≤ η ≤ 1. Since c2
s = dp

dρ
,

c2
s = η = constant (65)

This equation of state is physically reasonable at least in that the speed of
sound remains less than the speed of light. An example is the accretion of
electromagnetic radiation, for which η = 1

3
.

Once again we work our way through the different examples, after which
we will compare the results.

12



4.1 The Schwarzschild case

By substituting in for A, B and C and evaluating equations (10) and (11) at
the critical point, we obtain

U∗r2
∗ exp

[∫ ρ∗

ρ∞

dρ′

ρ′ + p(ρ′)

]
= α (66)

and
ρ∗ + p(ρ∗)

ρ∞ + p(ρ∞)

(
1− rs

r∗
+ U2

∗

) 1
2

= exp

[∫ ρ∗

ρ∞

dρ′

ρ′ + p(ρ′)

]
(67)

respectively.

Evaluating the integral in the exponent:

exp

[∫ ρ∗

ρ∞

dρ′

ρ′ + p(ρ′)

]

= exp

[
1

1 + η

∫ ρ∗

ρ∞

dρ′

ρ′

]

=

(
ρ∗
ρ∞

) 1
1+η

(68)

By substituting p = ηρ, U2
∗ = rs

4r∗
and (68) into (67), we have

ρ∗
ρ∞

(
1− 4U2

∗ + U2
∗
) 1

2 =

(
ρ∗
ρ∞

) 1
1+η

(69)

Using the fact that 1− 3U2
∗ = 1

1+3c2s∗
from [5] and using c2

s∗ = η, we get

ρ∗
ρ∞

= (1 + 3η)
1+η
2η (70)

Squaring equation (66), and substituting U2
∗ = η

1+3η
, we get

α2 = r4
∗

η

1 + 3η

(
ρ∗
ρ∞

) 2
1+η

= r4
∗η(1 + 3η)

1
η
−1

⇒ α = η
1
2 r2
∗(1 + 3η)

1−η
2η (71)

Substituting the critical radius into (71) we have

α =
1

16η
3
2

(1 + 3η)
1+3η
2η (72)

Here we have chosen the scale such that rs = 1.

13



0.2 0.4 0.6 0.8
Η

1.5

2

2.5

3

3.5

4

4.5

Α

Figure 1: α plotted as a function of η in the Schwarzschild case

4.2 The Reissner-Nordström case

By substituting in for A, B and C and evaluating equations (10) at the
critical point, we again obtain

U∗r2
∗ exp

[∫ ρ∗

ρ∞

dρ′

ρ′ + p(ρ′)

]
= α (73)

Substituting in for A, B and C at the critical point, and evaluating the
integral in (11), we get

(
r2
∗ − (r+ + r−)r∗ + r+r−

r2∗
+ U2

∗

) 1
2

=

(
ρ∗
ρ∞

)− η
1+η

(74)

Substituting in for U2
∗ from (43), we have

(
ρ∗
ρ∞

)− η
1+η

=

(
r2
∗ − (r+ + r−)r∗ + r+r−

r2∗
+

r∗(r+ + r−)− 2r+r−
4r2∗

) 1
2

⇒
(

ρ∗
ρ∞

) 2
1+η

=

(
4r2
∗

4r2∗ − 3(r+ + r−)r∗ + 2r+r−

) 1
η

(75)

Evaluating the square of the of (73):

α2 = U2
∗ r

4
∗

(
ρ∗
ρ∞

) 2
1+η

=
r2
∗
4

(r∗(r+ + r−)− 2r+r−)

(
4r2
∗

4r2∗ − 3(r+ + r−)r∗ + 2r+r−

) 1
η

(substituting η in)
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=
r2
∗
4

(r∗(r+ + r−)− 2r+r−)

(
4r2
∗η

r∗(r+ + r−)− 2r+r−

) 1
η

⇒ α = r2
∗η

1
2

(
4r2
∗η

r∗(r+ + r−)− 2r+r−

) 1−η
2η

(76)

Substituting the values for the critical radius as well as r+ and r−, we find
explicit expressions for α in terms of η in the various cases. Little meaning
is apparent in the complicated formulae, and they are omitted. The figures
for the cases q = 1

2
m and q = m are plotted below.
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Figure 2: α vs. η in the Reissner-Nordström case with q = 1
2
m
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Figure 3: α vs. η in the extremal Reissner-Nordström case (q = m)
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4.3 The Reissner-Nordström dilatonic case

Following the same steps as in the previous two subsections, we obtain from
the relativistic Euler equation

(
ρ∗
ρ∞

)− 2η
1+η

= (r∗ − r−)
4r2
∗ + (r− − 3r+)− 2r−r+

4r3∗

=
1

η

(r∗ − r−)[r∗(r− + r+)− 2r−r+]

4r3∗
(77)

Squaring the continuity equation, as before, we get

α2 =
(r∗ − r−)6

r2∗
U2
∗

(
ρ∗
ρ∞

) 2
1+η

=
(r∗ − r−)5[r∗(r− + r+)− 2r−r+]

4r3∗

[
4r3
∗

(r∗ − r−)[r∗(r− + r+)− 2r−r+]

] 1
η

simplifying to

α =
r2
∗η

1
2

(
1− r−

r∗

) 1−5η
2η

[
4r2
∗η

r∗(r− + r+)− 2r−r+]

] 1−η
2η

(78)

As in the above two cases, we find uninteresting expressions for α. The
figures for the two cases considered are plotted below.

0.2 0.4 0.6 0.8
Η

2

3
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Α

Figure 4: α vs. η in the Reissner-Nordström Dilatonic case with q = 1
2
m

4.4 The Horava-Witten braneworld case

Following the steps of the previous cases, we find
(

ρ∗
ρ∞

) 2
1+η
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Figure 5: α vs. η in the Reissner-Nordström Dilatonic case with q = m

=

[
2(r∗ − rs)(2r

2
∗ − 5rsr∗ + 4r2

s)

(r∗ − 2rs)(4r2∗ − 9rsr∗ + 8r2
s)

] 1
η

=

[
2η(r∗ − rs)(2r

2
∗ − 5rsr∗ + 4r2

s)

r∗rs(r∗ − 2rs)

] 1
η

(79)

by substituting η.
By once again squaring the continuity equation and substituting in for

ABC2 and U2
∗ , we have

α2 =
r5
∗(r∗ − 2rs)

3

(r∗ − rs)3
× 1

2

rs(r∗ − rs)

2r2∗ − 5rsr∗ + 4r2
s

(
ρ∗
ρ∞

) 2
1+η

= ηr4
∗
(r∗ − 2rs)

2

(r∗ − rs)2

[
2η(r∗ − rs)(2r

2
∗ − 5rsr∗ + 4r2

s)

r∗rs(r∗ − 2rs)

] 1
η
−1

⇒ α = η
1
2 r2
∗
r∗ − 2rs

r∗ − rs

[
2η(r∗ − rs)(2r

2
∗ − 5rsr∗ + 4r2

s)

r∗rs(r∗ − 2rs)

] 1−η
2η

(80)

Note in this case, for values of η larger than approximately 1
3
, α is no

longer real. This may be an indication that linear equations of state aren’t
possible for η > 1

3
.
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Figure 6: α vs. η in the Horava-Witten braneworld case

5 Discussion
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Figure 7: α vs. η for the Schwarzschild (orange), Reissner-Nordström (green)
and Reissner-Nordström dilatonic (blue) cases is plotted

The first five cases of the previous section are plotted in figure (7) on the
same set of axes to make it easier to draw comparisons between them. As
stated in the caption, the Schwarzschild case is plotted in orange, the two
Reissner-Nordström cases in green (the upper one being the q = 1

2
m case and

the lower one being the q = m case) and the the two Reissner-Nordström
dilatonic cases in blue (the upper one being the q = 1

2
m case and the lower

one being the q = m case).

Qualitatively we find a hyperbolic dependence on η of α. We see that the
Schwarzschild and the two q = 1

2
m cases group together, while the two

q = 1
2
m cases group together at a somewhat lower value toward the right of

the graph. We see that for lower values of η the two q = m graphs move
apart, while the top three graphs stay closely grouped.
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Therefore we could potentially distinguish between the the two groups of
cases observationally, possibly by the radiation emitted by the accreting
fluid. At lower η we could also distinguish between the extremal Reissner-
Nordström and the q = m dilatonic case, as seen in the figure. The top three
graphs stay together and the q = m dilatonic case joins up with them to the
left. Distinguishing between these cases becomes a matter of the resolving
power of the measuring device. It should be remembered that the actual
accretion rate ṁ depends on the black hole mass m squared as well as the
accreting fluid’s energy density and pressure at infinity. If these factors are
large enough, and the accretion is luminous enough, the differences between
the accretion rates may well become measurable.

Regarding the charged black holes, in both the general relativity and the
string theory black holes there is little difference in α from the Schwarzschild
case even for the unreasonably large charge of q = 1

2
m. The extremal

Reissner-Nordström, however, is more easily distinguished from the Schwarzschild
case and is more reasonable, since it can occur in certain braneworld theories
[2] without being charged at all.

In the Horava-Witten case plotted in figure (6), we also obtain a hyper-
bolic behaviour. It stops abruptly at a value of about η = 1

3
, where alpha

is no longer well-behaved. It could be that for accretions exerting pressure
per energy density greater than that of radiation, a linear relationship is not
possible close to the singularity. One possible explanation for this could be
a back reaction in the fluid.
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6 Conclusion

In this project distinctions were made between different types of black holes
by considering their respective accretion rates. This was partially achieved.
It was applied to an idealised case with a perfect test-fluid accretion and an
unrealistic equation of state. The charges of the black holes were exaggerated
in the Reissner-Nordström and dilatonic cases to what one would expect in
nature. The test-fluid assumption (that the mass of the fluid is negligible
compared to the mass of the black hole) at least seems like a reasonable one
in most cases. With these simplifications reasonable theoretical differences
were seen in the accretion rates in some of the cases.

To make this theoretical technique more useful for the comparison with ob-
servations, the analysis should be extended to accretions with more realistic
equations of state and to non-ideal fluids that could feel back reactions and
strong internal forces. Extensions to rotating black holes could also be inves-
tigated. With such modifications, observations of accretion onto black holes
may eventually discover the existence of more exotic objects in the universe.
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