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Abstract

The braneworld description of the universe considers our 4-dimensional spacetime as a membrane embedded in
a higher dimensional warped k. Maiter is confined io the brane, however the propagation of the gravitational
field in more than three dimensions changes the gravitationa! effects on the brane from those dictated by Einstein
gravity. | shall introduce briefly the simple Randail-Sundrum brane mode! setup, and discuss w...mmEEm metric
solution. Following this, I will discuss the motivations for Brens-Dicke theory which will provide a stariing
point for Chapter 2, in which this theory (with a conformal scalar field) will be further analysed. Afler this
brief primer on Brans-Dicke theory, I shall allude to examples in the literature on black hole metric solutions
- the Beckenstein solution via the conformal Einstein scalar equations, and the branelike approach sojution by
McFaddon and Turok. [ shall then draw attention to a link between the Randall-Sundrum 2-brane setup and
Brans-Dicke gravity by the work of Takeshi Chiba,

In the second section, | start with a four-dimensional Brans-Dicke action with a scalar field ansatz. Afier
proving the conformal invariance of the theory, 1 will find the field equations for this theory. Completing this, a
Schwarzschild-like solution for the metric and conformal scalar field will be found. This solution has geometry
equivalent that of an extremal Reissner Nordstrom spacetime.

The third section attempts to test the theory (and compare it to conventional Einstein gravity) by considering
the trajectories of null geodesics. Starting from the geodesic equation, the equations of motion for a photon
in a stalic isotropic black hole spacetime will be found. Using this, the expression for the solution to the
unbound orbit scenario will be derived. This leads directly to the deflection angle integral. The integral is in
general elliptical and cannot be solved explicitly. Thus, we follow the treatment prescribed by Bozza in finding
strong field limit solutions both for the Schwarzschild metric and the previously derived conformal Brans-Dicke
metric. These solutions will be used to check the accuracy of the numerical evalvations of the deflection angle.
Plots of the deflection angles and some examples of photon trajectories in high proximity to black heles will be
presented. T will then discuss the lensing applications in both spacetimes, and attempt to put a lower bound on
the telescope resolution required to observe the difference between the two spacetimes.
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Chapter 1

Initial motivations

1.1 Randall-Sundrum branes

The Randall-Sundrum brane model is arguably the barest brane model type, with matterless branes. The brane
itself however posessses a tension which induces a gravitational field. We denote this energy density per unit
volume or tension as #(1.0). The action for this model contains 5-dimensional Einstein-Hilbert terms (including
a cosmelogical constant ferm), in addition, there is a four dimensional term which effects a gravity due to the
brane tension. The action [1] is

Sps = — 1 \%H%ilm_ﬁmﬁ - b.\%a&iln.ﬁ_ - q\%ailn_ﬁ (L.1)

163 {51

Since we expect no curvature on the brane (since there is no matter on the brane), we require a condition on
the cosmological constent to ensure four dimensional flatness. This enferces a condition on the cosmological
constant, requiring a negative cosmological constant [3), related to the tension via

4
A= ]%ﬁu_..ﬂnh :Mu
This condition coresponds to a four dimensinaily flat solution with form
ds® = o® (2) g dat'de” — d2? {1.3)

where a is the warp factor which effectively changes the four dimensional curvature as a function of distance
in the z direction. In order to ensure pure minkowskian curvature on the brane, we "place’ the brane at a certain
2y Such that the warp factor is unity at z = z,,.. This warp factor has the form

a(z) = e (1.4)
with
4
3
The brane is therefore located at z = 0.To ensure {1.3) is an allowed solution in this theory, and to prove that

the warp factor is in fact given by (1.4), we substitute (1.3) into the Einstein Ficld Equations (which must hold
since the action to this theory contains an Einstein-Hilbert consideration). The Finstein tensor is

G = Ry — wm_%m =3 {a” + aa”) | (1.6a}

3



CHAPTER 1. INTTIAL MOTIVATIONS 4

G =10 {1.6b)
(7. =0 ﬁw,v.w (1.6¢)
Mow the Einstein equations here are equal to
G = 8nlimyhg,, + BaGgogud (2) (1.7a)
(7., =0 (1.7b)
G.r = BTG AGy, (1.7¢)

By substituting (1.4} into the above equations, it is a straightforward calculation to show that the the field
equations are satisfied provided {1.2) holds true and that the warp strength is given by (1.5). The brane here is
situated at z= 0, the hypersurface with minkewskian metric. There is an alternative Randall-Sundrum scenario,
which still has solution form (1.3). This approach makes the extra dimension compact by introducing a two-
brane setup, one with a positive tension situated at z = 0, the other has negative tension, and is situated atz = z,,.
This theory is usually referred to as RS1. The RS2 theory is similar, with one brane placed infinitely far away
from the first.

1.2 Brans-Dicke Theory

The Brans-Dicke theory of gravity was presented in 1961 as an alternative to Einstein gravity. Einstein gravity
describes a tensor field. Brans-Dicke theory contains, in addition to this tensor field, a scalar field which couples
to matter. This theory was originally presented as a possible resolution to Mach’s principle. Mach’s principle
perpertes that the motion or possible rest of a body has to be defined in relation to a kind of absefute space
and cannot be defined in terms of relative motion to that of other bodies. The problem here is of course, what
exacily does one mean by absoluie space. What are the possible features of such?

Consider the Newton bucket argument. We fill a bucket with water and place it in some kind of uniform
{localiy, at least) gravitational field. If one spins the bucket, the water inside will (viscosity and time allowing)
assume a parabolic shape due to the introduction of a centrifugal force. However were one to somehow rotate
the surrounding laboratory, Mach would have argued, the physics should remain unchanged, and once again,
the water would assume the parabolic shape. Mach contends that the only meaningful motion is that relative to
the rest of the matter in the universe, and that, [5] “the inertial reaction experienced in a laboratory accelerated
relative to the distant matier of the universe may be interpreted equivalently as a gravitational force acting on
a fixed laboratory due to the presence of distant accelerated matter"This absofute space therefore, refers to
distant matter in the universe. Einstein gravity does not take this rather strict Machi{velli¥)an decree on inertia
into consideration. Brans and Dicke argue that a possible theory of gravity which takes Mach’s principle into
account would require a non-constant gravitational *constant’. It would vary with space, and (very loosely)
depend on the ratie of a bodies mass to its distance from that particular point in space. Thus, the scalar field
concept was introduced to conventiona? Einstein gravity. The inertial mass of a body should depend semehow
on the particles interaction with this scalar field.

So how would this approach change the equations? The Einstein-Hilbert action with a term for the matter
lagrangian (i.e. a term which provides the inclusion of other fields into the theory, like electromagnetism) has

.n| .
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the form [8]

Here,

ot

k= T (1.9}
T
R is the Ricci scalar, and L., is the matter lagrangian. The modification that Brans-Dicke prescribes is as follows.
We let ¢ = 1/G- be the scalar field which depends on the four—coordinates, and simply associate it with the
Ricci scalar tetm, as oppesed to the constant term. The second term is simply the lagrangian density of the
scalar field, with an additional /- in the denominator to ensure the nondimensionality of the constant w». Thus
we have

mu__h \ %Hmﬁ@mu ewﬂw@ +b& :._3
with
___u.p

k= (1.11)

Upon variation with respect to the metric tensor and then with respect to the scalar field, one can obtain the
equations of motion. It is easily apparant then that as w — oc, Brans-Dicke gravity becomes Einstein Eravity
[6]. Recent measurements attempting to fix a value for the Brans-Dicke paramater give a lower bound at 40
000. in a reasonable theory, one would expect the paramater to have order of magnitude of one. These findings
weaken the strength of classicef Brans-Dicke models, and strengthen the position of Einstein gravity. !

1.3 Black Hole solutions in the literature

A theory can only be tested by considering the motion of test particles (mass or massless) in the spacetime. In
this regard, mefric solutions fo the field equations of a theory are required. Generaily, these solutions are either
black-hole like - generally isotropic, with a mass centered at the origin; or they are cosmological - homogenous
and isofropic. We aim to semehow distinguish Einstein gravity from alternative theories. In this text, we shail
seek a manifestation of these deviations by considering the way light is bent when it passes in high proximity
to a very large mass. The solutions that we require are therefore of the blackhote type.

The McFaddon and Turok approach considers tensionless branes with metric Ansatz [8)

ds? = g (x)detdz” + B(z)dY? {1.12)
The coefficient to the 5th component term is the Radion. Effectively, it is a measure of the size of the extra
dimension as a function of the four-coordinates. Note that in this theory, the bulk warp factor is not present.

When this metric is substituted into the five-dimensional Einstein-Hilbert action ((1.8)} only with 5-D) and
integrated over the 5th dimension, an effective four dimensional action is obtained:

5= Sw\%amﬁm {1.13)

Here rnp Is the Planck mass. Upon finding the field equations, and assuming isotropy, the following black hole

metric results: .
e\
ds? = —df* + Aw - MV dr® - r¥d0? (1.14)

't is notable to mention that there are argurmnenls against the restoration of Einstein gravity in the Fmit w — oo [7]
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with associated radion

b=qf1- 22 (1.15)

q
McFaddon and Turok then take this approach with the Randall-Sundrum two brane scenario. A warp factor is
included in the metric ansatz (1.12). The four-metric is modified to include this warp facter as a function of the
radion. In addition, the two branes have different curvature depending on sign of the tension. The changes are:
+ 1 2
G =71+ 2 g (1.16a)

1
9w = 7 (1= ®F g (1.16b)

By following a similar procedure used previously, and by making various coordinate transformations, one finds
spacetime a geometry that is extremal Reissner-Mordstrom like.

%mul T | wlmvm&f T|%v u%ui,m%u :._H_
This metric is a solution to the standard Einstein field equations when the black hole has not only a mass, but a
charge. It is this solution which is of particular interest in this project, for we shall derive a metric geometrically
equivalent, only via a completely different starting point. While McFaddon and Turok use the Randati-Sundrum
scenario to derive this effective 4-dimensional metric, there are other theories to which this metric is a solution.
In a different approach by Beckenstein [9), an argument for a metric geometrically identical to (1.17) is pre-
seated, only in a completley different theory. Beckenstein’s solution comes from the weyl invariant Einstein
scalar equations.

1.4 The Chiba connection

Of course, the simple fact that the same metric is solution to different theories under different simplifications
is of little consequence with regard to the vnderlying fundamental simularities that these different theories
may share. Mo powerful connection ai this level can be made. However, work done by T. Chiba [12] finds
a link between the Randall-Sundrum two brane scenario, and that of Brans-Dicke gravity at the action level.
Starting with the action for the RS two-brane setup (a modification of (1.1)), with similar constraints on the
consmological consiant and the brane tensions, a S-dimensional metric ansatz with warp factor and effective
radion s inserted into this action.

T 3
5 umﬂa\ odd/—as Fﬁmu — ML — oy \%H,WF — o \%?Tn- (1.18)
The metric is:
ds? = " ¥TW=lg  (x\detde” + Tix) dr’ (1.19)

where §,.. is a general non-Minkoskian metric, and T(x) is the radion. After insertion into the RS action,
and integrating over the 5-th dimension, an effective four dimensional action on the positive tention brane is

obtained:
.__-__.ﬁwﬁ i—g Inw....n..n..._.,uu_w
25

Scnita = \ dir/ =g T R+ %ﬂtflmﬂa:qﬁﬁi (1.20)
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here r. is the postiticn of the positive tension brane in the 5th dimension. [f we make the identifications w = .u%u
K = 8rGy, and identifying the combination +/{6)e*"=T{) with a scalar field 7(2}, we get

&
5= \ #i5v =g _l ? _ eﬂv R+ qﬁé.te_q_ (121)

The effective four dimensional action on the positive brane in the Randall-Sundrum model is therefore like, and
tells us that on the brane the gravitational effects have a Brans-Dicke form. We shall continue to analyse this
action.



Chapter 2

Finding a black hole metric solution

2.1 A conformal Brans-Dicke action and associated field equations

Consider as ansatz a Brans-Diche scalar-tensor theory with a conformally coupled scalar field; the action for
this theory:
NP\%HE_I Tlehv?rﬁé _F\_ (2.1
2K 6 e
with
k=Br Gy (2.2)

Before attempting to find the equations of motion, we shall prove that the above action is indeed invariant under
conformal transformations. The conformal transformation is

B — .m.E.__ = _..lem.Fc ﬁM.Wu

Where {1} is a function of the four<oordinates. The Ricci tenser transforms like:
miwn%Tgu EE&rm a ofla (2.4)

[n addition, we require the scalar field to transform like a conformal scalar field:
v =0 25

The action under this transformation is (we ignore the first term - effectively the Einstein-Hilbert contribution
to this action which is certainly conformally invarian).

\%He‘wlﬁ R+ ctfv (2.6)

Sunstituting (2.3), (2.4) and (2.5) into (2.6} we get

\%Ha\lm- ﬁlsﬁ T+mh &ﬂm__v |mmw: o: E +:Mmt;:.&,__ 5&# n.q_._
i

Q, g 0, 0,0,
?ﬁ ﬁ Ry mﬂv Bk :m,: ot T% Wy TV : i
He

B
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Simplifying further:

32 mw
= \.%fﬂm Tﬂmguéaﬁl Anm& 5 v % =5 (2.9)
wm.

The third term will give no contribution to the equations of motion because it is a surface term - so will vanish
upon integration. The action (2.1} is therefore conformally invariant. We will now proceed to find the field
equations. Two equations of motion will be obtained, the first from the variation of (2.1} with respect to the
conformal scalar, the second with respect to the metric tensor. Variating with respect to the scalar field:

538 = W\ &/ =g —wml (g™ ). g v 210
K 6 TR
Requiring
48 =0, {2.11)
the relationship between the metric and the scalar field is obtained:
(g} .= ._mm (2.12)

And variating with respect to the metric tensor gives

g ool ) o (-8)_ (1)

+v ¥, Iﬂmée P glag™ (2.13)

Using (2.11), we get the matter analogue to (2.12), and let it represent a source term. This source term is a
resuli of taking the functional derivative of S with respect to the metric tensor. So the source term by definition
represents the energy-momentun: tensor.

o2 Iy P2 P2
ot __ _ _ Hue o fa3v) =
kT AH g v thq > v T 5 th_..,_ + 97 g T G vmﬁm.f

—T LT, + me ¢*0T T (2.14)
Taking derivatives and noting that the covariant derivative of a scalar is simply reduces to the gradient,
Y o2 " oy T Y I 2
KTH = AH - 1m|v ﬁmr: - ..u% v -9 mm_fcme o + m%. Vol s+ MG.&% - ME&EE (2.15}
Taking the trace, we find
2
-R T - ,umtv Vg™V o5 = kT (2.16)

Now using our first equation of motion (2.12), and expanding the covariant derivative, recalling thai the covari-
ant derivative of the metric tensor is zero in every frame; we substitute into 2.16 and obtain

R=—kT¥ 217

A most useful metric solution for this spacetime is one which can be compared with a known solution to the
Einstein field equations. The Schwarzschild metric is a spherically symmetric, static and isotropic solution to
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the Einstein field equations in empty space. By restricting our solution to be of this type, we aim to obtain a
Schwarzschild analogue to our conformal Brans-Dicke theory. The energy-momentum tensor is zero for such
an empty spacetime, giving & = 0 and reducing the equations of motion to

{g¥¥,), =0 (2.18)

and

.eu = e q% e m
T | ﬂv ?E% &m ?1@%+ume_pea+ wei:|me.te.cnu ﬁ._E
An isotropic metric, as a function of the radial coordinate only, with the angular dependence equivalent to a

2-sphere metric has the general form
ds® = eA00dr? — e®har? — 12 (447 + sin® §dg®) (2.20)

We can quickly find the equation of motion for the scalar field (2.18). ¢**¥ , is a contravariant tensor, so (2.18)
is the covariant divergence of a contravariani tensor. The covariant divergence of a contravariant tensor ¥ can
be shown [6] to be equal to:

|
VEh = ﬂ% # (2.21)
where g = d,,5"". This gives for (2.18)
1 -
5 Elm T oy mE..m__,..L =10 222)
Giving
r2efF ey = (2.23)

To find the solution for the scalar field as a fenction of the radial coordinate, we require the solutions to the
metric coeflicients Afx} and Br). We shall find these by solving the second field equation (2.19). Using the
relation:

oo = Vo =V, — W? (2.24)

we are able to express the covariant derivatives in terms of the Christoffel symbals. In addition, the second field
equation depends on the Ricci tensor, which is defined by an index contraction over the Riemann tensor :

Ry=Rl,=T%, —T% +TLTY —TLTS (2.25)

pye T g T e T eyl e
Both (2.24) and (2.25) depend on the affine connection, which can be expressed in terms of the metric tensor

1
Iz, = mm& (Gasy + Gov.g — G5v5) (2.26)

The nonvanishing Christoffel symbols for the metric {2.20) are

M_M...
Th=Ti=% (2.27a)
!
I, = Lw e*=8 (2.27b)
=5 (2.27¢)
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[5 = —re® (2.27d)
o = —rsin® fe~ 8 (2.27%)
1
Iy =T5 =T% =T% = - (2.276)
rf,= —sinfcosf (2.27g)
IS, =T, =coté (2.27h)

where the dash denotes the partial derivative with respect to r The components of the Ricci tensor are:

m;nwamT=+W&+|_..“m WL (2.28a)
R =1 ﬁ w2 S-m) (2.28)
Ry = &P m (B - &) -1] +1 (2.28¢)
Ry = sin’ 0 Ry (2.28d)

R =0u#v (2.28¢)

Since both the Ricci tensor and the metric tensor are diagonal, and since 3% = ¢ (r), the second equation of
motion (2.19) has four non-triviaily satisfied components. Substituting the Christoffels and the Ricei tensor, we
find four second order differential equations with unknowns 15, 4 and B. The t-t component:

_m 1 -B " 24 A ' 1 —B, 12 em_.ew_.. FoA—8
Tlﬂvm% T += IE m&_|w% P — mmm =0 {2.29)

The 1-r component:

h_ _ gld L Tf L mi et (v vy v @30)

G f2 T

8- i , 2 R

(-5 BE—o-d e St an
¢ — ¢

() B e efasens

Note that the last equation is simply sin® # times the # — # equation. We have an overdetermined system of
differeatial equations, and the last one gives us nothing new, so we therefore ignore it. Since we are dealing
with an empty spacetime, the Ricci scafar is 0.

= g Rog = ¢" Rus + g Rer + ¢ Roo + g% Rgs = 0 (2.33)

Writing the Ricci scalar in terms of the metric coefficients:

mnm|mT=+wnE m_u+|ﬁh B _ — =0 {234)

w2
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Now taking the partial derivative of the first order differential equation for the scalar field (2.23) with respeci io

r, we obtain
o Am —8, mv W =0 2.35)
2 r
We can substitute equations (2.34) and 2.35) into the components of the field equatien in order to eliminate the
second derivatives. 2 B 5 7 gy
B W ot B 1 H_c el
L I - _ = 2.
-DEEH) L
2 ' B 2 . r
s AT AN R AL
- - L _ T 4] = 2.
c ? LT# u (L] =0 237)
2 B - A B _1 ! Sl
m-m:HrﬁﬂVA - +mu1M u+ﬁ.mla+ﬁm£n¢ (2.38)

Because R = @, and since the ricci scalar is the trace (because of the symmetry), there is a lincar dependency
in (2.38), so we discard it. We have three unknowns - two metric coefficients and the scalar field, and we have
reduced our averdetermined systen: to three coupled differential equations - (2.23), (2.36) and (2.37).

2.2 Finding a Schwarzschild-like solution

Racall the Schwarzschild seluticn has the form

—1
s’ = T - m@:v a4 - ? _26GM v dr? - 202 (2.39)

T r

with d{¥* the metric on the two-sphere, and the speed of light set to unity.
A0 = d¢* + sin® 9d¢? {2.40)

Note that the Schwarzschild solution has A = -8. In our search for an analogous metric in our space-time with
a conformally coupled scalar, we will enforce this on the field equations. So {2.23) becomes

! ._mth
This restriction also reduces (2.36) and {2.37) to
2 A1
—¢ | +{ =+ =)yl =0 (242)
3 2 r
This DE gives two sets of soluticns, the first is the trivial solution for ¢/ and,
A= _2 met=eFP=1- 2GM (243)
r r
The second solution to (2.42) is
o2
Y=g (2.44)

-
Note that we now have two constants associated with ¢, kand g. To find the relationship between the two, we

differentiate (2.44) and equate it with {2.41).

|m _1 ..m____m
A mm + J % ﬁ.aw.
i 2 T T
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Which has solution r C
eM2 o 2 (2.46)
g r

We require that the leading termns in the expansion of (2.43) are identical to the newtonian case. This forces

k=—g (2.47)

and

C=GM (2.48)
To find the constant q, we substitute, (2.41), (2.44), (2.47) and {2.48) in (2.43). This sets

9= VBGM (2.4%)
Finally we have,
ds® = A_ - .n%vu&m - T - @J-ﬁm - r2df? 2.50)
with associated scalar field oM
i = c_\w_. — {2.51)

This metric is geometrically equivalent to an extremal Reissner-Nordstrom black hole, and is of the same type as
those discussed in section 1, only derived from yet another starting point. At first glance, we note that the radius
at which the singularity occurs is at r = GM as opposed to the Schwarzschild radius of r = 2GM. To analvse the
geemetry of this manifold in more detail, we shall consider the geodesics made by null test particles (photons)
in the vicinity of a black hole. We shall investigate therefore the lensing of light in this Conformal Brans-Dicke
spacetime, and compare it with light propagating in its clasgic Einstein analogue - the Schwarzchild spacetime.



Chapter 3

Testing the theory - Strong lensing by black holes

3.1 Geodesics in static isotropic gravitational fields

Because | intend to show the effects of matter on both CBD and Schwarzschild null geodesics, I shall derive a
general formula for the defiection angle for photons in an isotropic spacetime. The general metric has the form

ds® = e*(r)di® — eB(r)dr? — v?d8? — r¥sin? fdg? (3.)

Since the metric solutions that I wish to investigate both have angular metric dependence equal to that on the
two-sphere, we do not lose genemslity by imposing r? as the metric angular terms coefficients. The geodesic
equation is
i Vot
ﬂw + _JFHM, _WM -0 (32)
where the affine paramater on the manifold is A. The Chrisoffel symbols for this metric have already been
calculated (2.27a)-(2.27h}. Substituting these into {3.2), an equation of motion for each of the four-coordinates

is acquired:

¢ by 2 2 2
Wulq. + B(r) ﬁ&,v — re Bl A&v —re B gin? ¢ h@v + Wm,ﬁlmk&lmi ﬁm“v =0 (33a)

a2 \dx dx dX dx
L9 2d8dr d¢\*
& 2ddd dr e 48
%+MMHMM+DD_U%WMM|D (3.3c)
d* v o OF dr

Due to the metric isotropy, without losing generality we can confine the photon to the equatorial plane, setting
£ = 3. This warrants {3.3b) to be trivially satisfied. Dividing (3.3c) by d¢/d), and (3.3d) by dt/d;, we find two
constanis of motion:

d dif 2

MMOHPE.TF:;VIQ (3.4a)

d dt

4 ? &, _.H_Ev =0 (3.45)
14

L . a3

' !
I"-—m- —— Nep— —— P — m........
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{3.4a) yields conservation of angular momentum:

J= wm% (3.5}
(3.4b) gives
dt
Ty = e~ (3.6)
Substituting (3.5}, and (3.6) into (3.3a) gives the radial equation of motion as
r dr e~ B0 - AR B
T+ B @ ~ P YL A ) = o @)
Multiplying this equation with 2A¢ridr/dA:
_nm B{r .&_ﬂ .._‘.M —Afr
mL :+A&..u +g e :_nc (3.8)
We identify this constant of motion as the energy:
d Je
—E=¢P + h mu + o — e (39)
From (3.1}, (3.3), {3.6) and (3.9) we find that
ds?
E= Fiv] (3.10)

Since we are interested in the motion of massless particles only, the constant of proportionality between the
affine paramater A and proper distance s vanishes. Hence, the energy for a photon is zero. Mow, by solving (3.6)
for dA, and inserting this inte (3.5) we get

298 _ 4 A 111
T Je (311
This is independent of the affine parameter. Similarly using (3.6} in (3.9) we find
dr J2
Bir1-24{) I Al 3.1
A n_..wv tFe (3.12)

If one uses (3.11) and (3.9) to eliminate the temporal component, we have a differential equation for ¢ as a
function of the radial component only.

e fadrt 1 AR
= - = .1
pr ﬁmﬁv +,Lh 7 0 (3.13)
This is a seperable first order differential equation, so the solution can be written as an integral:
w0 G BIrlf2 ¢ LAl 1 -3
$r} = \_. 72 ﬁ 7z yv (3.14)

This means that given a radial distance from the black hole, its angular displacement at that radius can be found
subject to initial conditions. [t is J that so/ds the content given by the initial conditions. Since we are interested
in the lensing applications only, we need consider only the case of wnbownd orbits. We therefore assume that
the particle approaches the black hele form infinity. In this limit, the metric becomes Minkowskian, that is,
Aloo) = B(cc) = 1. The impact parameter & is {see figure 3.1)
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Figure 3.1: Basic deflection of light setup in the proximity of a large mass.

b rin(g — fuo) & 7 — duo) (3.15)

where ¢, is the incident photon direction. Also, because the field s infinitly weak here, the velocity is constant,
se o i

—u HT.S@E — o)) R H (3.16)
Inserting these into (3.11) and (3.12) we find v = 1 and J = V2 = b. So for photons, the impact paramater is
the angular momentum. We now have found an equation for this unbound orbit (3.14) as a function of impact
parameter. For our purposes, it is more useful to give the orbit equation as a function of the distance of closest
approach ry, rather than the impact parameter. To this end, we substitute r = rg ittto (3.12), and use the fact that
at this point, the rate of change of the radius with angle is 0. m.rw = 0 (The photon has approached its maximum

proximity to the black hole, and will now begin its recession from the black hole.) This gives
J=rge" 2 (3.17)

Note that (3.14} describes half of the photons complete geodesic. There is a complete symmetry in ¢ arcund
r = vp. In other words, if one changes from a radial distance ry + I to ry — D, the deflection angle is the
same for a particular 1. This implies then, that the total deflection angle, i.e. the deflection of the photon from
a straight line is

o= Ad=2¢(rg) — ¢| — 7 (3.18)

A ——r

— —— i— gy gpe—
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For sake of accordance with the notation usually used in the literature, and indeed for the purpose of simplicity,
before proceeding to the analysis of lensing in the CBD spacetime, 1 shall take this oppertunity to make a slight
change to the metric coefficients, namely a(r) = e and b{r) = 3"}, Inserting (3.17) into the orbit equation
and making the notation change, we have finally for the orbit:

Hr) = 6o + \ " @:HE ?@M ﬁﬂ& - L ™ dr (3.19)

3.2 Deflection angles for CBD and SCH

Before proceeding with the deflection angle calculations explicitly in terms of the CBD or Schwarzschild metric
coeflicients, we shall find the photon spheres. While the event horizons of the CBD and Schwarzschild black
holes are vopp = 1 and rss = 2 (letting GM = ¢ = 1), the photon sphere radii are greater. The photon sphere
is an unstable photon orbit. Any incident photon with an impact paramater such that the distance of closest
approach is less than the photon sphere will be sucked into the black hole, never to emerge. Because the photon
sphere is effectively infinitly thin, this orbit is unstable - no photon will stay just above or below it for long.
Those grazing the photon sphere will - because of their high proximity to the black hole, experiance maximum
deflection, possibly even circling the black hole multiple times before emerging. The photon sphere is given by
the largest solution to [15]

2lr) _ i) (3.20)

alr)  clr)

where a(r) is the temporal metric coefficient and e(v} the angular coefficient, {for both our black hole cases,
cfr) = r*). Recall the Schwarzschild and CBD and metrics are given by (2.39) and (2.50} respectivly. The
simpie photon sphere calculation gives ry, = 3 and r,,. = 2. The CBD photon sphere radius is therefore equal
to the Schwarzschild event horizon radius. It is not completely imprudent to at this stage remark the following:
Since the Schwarzschild photon sphere is smaller than the CBD one, we can expect the total deflection angle
for photons incident on either black hole to be greater in the CBD case than in the Schwarzschild case. This is
due to the higher proximity that the CBD black holes allow the incident photons.

From a lensing perspective, the photon orbits (3.19) are not as useful to us as the deflection angles as a function
of the distance of closest approach. We are interested in (3.18). In terms of the metric coefficients, the total

defelction angie is:
_ B2y | £y falro) Ik
le.\_..n_ " ﬁﬁﬂau A;_ﬁlul_ dr — (3.21)

Ini the treatment of the analysis of the above equation, I shall initially find approximations to the weak and
strong field limits for both cases using the procedure outlined by Bozza [15]. Following this, the results for the
direct evaluation of the above integral will be shown, and compared with the approximate ones.

Making the substitutions « = !, and u = ugx, the deflection angles for the Schwarzschild and CBD cases
are given by

m\'_ dx
oy = I
.mo,. ae\\HIHu._.u.mﬁSAHml:_

T (3.22a}
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\ ! dx

0 a\ (1 —roud) — (x — ragz?)
where r; and r,. are the event horizon radii. The Schwarzschild case has under the square root on the denominator
a cubic polynomial, while the CBD case expression is quintic. Both are irregular elliptical integrals, and cannot
be evalvaied analytically. Note that both expressions are regular over the integration interval, however there it
a complex pole at the lower limit. This pole represents the asymptotic behavoir of the pheton defelction as it

- (3.22b)

tcpp = 2

approaches the photen sphere. Expanding in x, and dropping higher order terms, we get an approximation for
the deflection angles for the Schwarzschild and CBD cases respectively in the weak field:

Yodr vyt (1 — %)
= 2 - 323
s \; ,\;|HNT+ ) _lﬁL (3.232)
b 11—z
Copn == .N,\ —HH + retin =l Bkl (3.230)
0 H — T
Now since v, = 2r,, these two integrals are identical with solution
4
Cweak = dtp = — (3.24)
To

This result shows that in the weak field limit, the defiection angles of photons in either spacetimes are identical.
Therefore, only photons with a high enough proximity (those experiencing a strong enough field) to a black
hole will show resulis that will differentiate between the two spacetimes. in analyzing the strong field limits ap-
proximation to the deflection angle, we continue following the Bozza procedure. We transform the independent
variable x — 1 — z, giving

1
dx
.h z&ﬁlmw«:&ﬁ..._”mﬂmgl:ﬂmIﬂuﬁcau I

Qger = 2 T (3.25a)

dx

1
gy =2 .\. —
b v 2{1 — 2raug}(1 — rawe)z + [2retp(l — retg) — (1 — Zrotip)?|2? — 2roug(l — 2roug)a® — [roug)?zt .

(3.25b}
These equattons hold for u, < u,, the divergence occurs when they are equal. Bozza seperates the integral into
two terms, one which diverges {; and a regular term f5. We have then o = I + fr — 7 with

! dx
-
mm. a{x_”mlmﬂ,«.__,&__a,_r_ﬂmu.uﬁqldhu

(3.26a)

! dz
.\-M V21 — 2raug) (1 — roug)z + [2rouglf — rottg) — (1 — 2r.ug)?] 22
These terms diverge when the distance of closest approach is the photon sphere. Howerver, the following terms
do not:

Iposn =2 (3.26b)

1 3
IRy, =2 \ B 1 (3.27a)
a T 1— 2z

1
Tresp = 22 \.u W L (3.27b)

—7

]
|

— e— g e p—
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Evaluating these two pairs of integrals gives

h..b.m.n? = MF ATFEV HW.MMW”-

Up
T = 2v21n T:FEV (3.28b)

Up
and )

Froun =210 T (V3- & _ (3.292)

4

- 2

IRepp = 2v21n Am m qmu (3.29b)

Thus, provided the the distance of closest approach is close enough to the photon sphere, the total defelction
angles are given by

tger = —2In T — %v +2in ?Em - :Nv -7 (3.30a)
agsp = —2v2In T - Mv +2v2In Tﬂmmv — (3.30b)

3.3 Simulation results

The evaluation of {3.21) was performed in Mathematica version 4.1. The Mathematica integration algorithm
uses gaussian quadrature with adaptive stepping. The iniegration gave the following results for the deflection
angie:
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Deflection angle of Geodesic as a function of distance of closeset approach

Mm T T T T
— Conformal Brans-Dicke
— Schwarzschild
— 142 revohuticn
: — 1 revolution
—-— 1.5 revolutions
5
= : :
] : :
£ W
2
=] : :
&
2
51 i
D 1 ] — 1 1 —
2 3 4 5 B 7 L
Distance of closes! approach

Figure 3.2: Deflection angle against distance of closest approach for both cases (GM = ¢ = 1). Observe the
comrect asymptotic behavior as the geodesics approach the photon sphere. The photon spheres are at r = 3 and
v = 2 for the Schwarzschild and CBD cases respectively. The horizontal lines indicate the angles for which the
photon has done 1/2 & revolution, 1 revehmtion etc. around the black hole.
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Iz order te check the strength of the integration routine, we compare it with the expressions for the strong
field limit (3.30a) and (3.30b). First the Schwarzschild case comparison:

Umann___os msun 2 m@ounm,_n asa E..R_o__._ R Qnm_..nn 2 nﬁmnn mv_u.oﬁn._ _“mnqtm_.nmo_..___:

16
_\ m — mﬁ.gn nm.n_ -Bn mb_uaua.ﬁ__n:
{ ~— Exact evaluation {numericat integretion) |
..—M ...

Deflection angle (radians)

a i i i m m i “ i i i

3 32 34 36 8 4 42 4.4 45 43 5
Bistance of closest approach

Figure 3.3: This plot shows the relationship between the deflection angle and the distance of closest approach
for both the direct integral evaluation and the strong field limit relationship.
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mm %ﬁgggggggnﬁ_ﬂnmﬁig
0 T : T T T ¥ T T !

Differsnce (radians)

\ i L i B i i
3 iz 34 348 3B L *2 4.4 45 LY 5
LDeslpnee of closest appreach

Figure 3.4: The difference between the strong field limit expression and the exact numerical expression. We
expect the difference in the limit as the distance of closest approach tends to the photon sphere radius to be zero
if the integration routine is successful.
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Figure 3.5: Once again, a check on the accuracy of the integration method.
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In order to fix an upper bound for the relative accuracy, we zoom into the photon sphere region by = 1i¥
times.

% 10° Relative accuracy (Schwarzschild)
19 T ) ) ) T ) T ; )

Ratio
F-9
T

ok iﬁx_a&%._,

2 i i _ _“ _ _ i R i
3 230005 3001 30015 2002 3.0025 3003 30035 3004 30045 3005
Distance of closest approach

Figure 3.6: The relative accuracy of the integration routine with the strong field limit in high proximity to the
photon sphere. At this resolution, small fluctuations from the correct values are visible in the integration routine.
This places an upper bound on the relative accuracy at 1/10000.

The integration routine comparison for the CBD spacetime:
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_u_mamn__o: m_..Em 94 moon_mm“n asa Eﬁzo: oﬂ n_ﬂm:om Q. n_omu.# muﬂ_.nmn_.. __M_n mE

m — m__.o_..n A_. m_n_ -3__ mu_u..g_..ﬁ__oa
| —— Exact evehlalion (numerical infegration} | :

=

Deflection angle (radians)
& ;]
!' T

2 25 3 35 d 4.5 5
Distance of closest approach

Figure 3.7: This plat shows the deflection angles for a given distance of closest approach. (CBD)
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Difference between computational integration and strong fiekd Emit (CBDY
0.4 T T T 7 )

035~

03

025

02

015

Difference (radians)

01

2 25 3 3.5 4 45 S
Distance of closest approach

Figure 3.8: The difference between the strong field limit expression and the exact numerical expression. We
expect the difference in the Limit as the distance of closest approach tends to the photon sphere radius to be zero
if the integration routine is successful.
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1.6

Ratio of computational integration to strong fiskd Kmit (CBDY
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Figure 3.9: The ratio between the two methods (Should both be unity in the photon sphere kimit if the integration

fimit does not diverge).
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i 107 Relative accuracy (CBD)
_ _

Ratio

2 2.05 24

Distance of closest epproach

Figure 3.10: The relative accuracy of the integration routine with the strong field limit in high proximity to the
photon sphere. We have zoomed in to the region just above the photon sphere. At this proximity the integration
routine’s accuracy begins to diverge. The integration is not as strong here as for the Schwarzschild case. The
relative accuracy here is about 1/1000. This can be expected considering the slightly more complex nature of
the CBD integral.
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m E L
—— Schwerzschild photon gecdesic
— CBD photon geodesic
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Space (¥}

Figure 3.11: This shows an example of the photon trajectory through space, simply the evaluation of (3.1%} fora
particular impact paramater and associated distance of closest approach. Here, the distance of closest approach
of the photon in the Schwarzschild spacetime is 3.1m. The distance of closest approach of the CBD photon is
3.9m (simply chosen because this gives approximately the same impact parameter as the Schwarzschild photon).
The Schwarzschild photon is close enough to circle its black hole, while the CBD photon is simply bent by its
black hole - due to a low proximity to its own black hole. The two bold circles in this plot are the black hole
photon spheres. The larger belongs to the Schwarzschild black hole with radius r = 3m and the smaller belongs
to the CBD black hole with radius = Zm.
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Example orbit
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Figure 3.12: An example similar to the above, only here the incident photons have lower distances of closest
approach. The CBD pheton’s distance of closest approach to its black hole is 2.1m. The Schwarzschild photon
has impact paramater too low to orbit its black hole - thus, it crosses the photon sphere and is swallowed.
Since both spacetimes have only one solution to (3.20), and so only one orbit, a photon which crosses this
orbit will eventually cross the event horizon and will therefore never emerge. The reason we do not see the
phaton trajectory on the above plat afier it crosses the photon sphere, is because of the assumption made in the
derivation of the orbit equation. The orbit equation integrand becomes complex when the photon crosses the
photon sphere. It was assumed that the relationship between the angular positien and the radial position had a
stationary point, A photon crossing the photon sphere has a monotonically decreasing radius.

3.4 Application to lensing

Leaving geometrized units behind and turning to SI units, we shall look at lensing in our own galaxy. The stars
orbiting the galactic center provide us with ideal candidates for strong lensing. We aim to distinguish the two
spacetimes from one another, and attempt to find a lower bound on the required telescope resolution.



CHAPTER 3. TESTING THE THEORY - STRONG LENSING BY BLACK HOLES 3G

The most general lensing setup is as follows:

SHTCe s obseryer
piane plane plane

Figure 3.13: A generic lensing setup. While here the source plane is further away from the observer plane than
the lens plane is; iensing is not restricted to this. In addition, this diagram shows only the first relatavistic image.
(Essentially a distorted Einstein Ring because the source s not collinear with the observer and lens.)

o in the above diagram is the deflection angle, b is the impact parameter, ;3 is the angular pesition of the
source in the absence of the lens, and & is the angular position of the source as seen by the observer. The
diagram shows only the first image that reaches the observer. There are an infinite number of images, the higher
the image number, the lower the impact parameter and deflection angle (after subtracting 27 an appropriate
number of times). After calculation of the deflection angle for a given distance of closest approach (already
done above), and given the above setup with known rg, 3, Dis and D),s; we need to find the corresponding
deflection angle a.
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Using simple geometry one can show that the relationship between # and o is given by [19]

tan 8 = NHM {tan @ + tan{a — )] + tan 3 (3.31)
For small 3, this simplifies to
g=p122, (3.32)
D.s

Using the above fens eguation, once we have found o, we can find # - our observable. We shall use as our
example the star S2 in orbit around the black hole Sagitarius A*. The distance to the Sagitarius A* is =~ 8.51k Pe.
52 has [20] an orbital period of 15.24 + (.36 years, the inclination of the orbit normal with respect to line of sight
is 131.9 & 1.3 degrees, the semimajor axis has angular size 0.1226 + 0.0025 arcseconds, and the eccentricity
of the orbit is 0.876 + 0.0072. The simulations give the following results:

0% Lensing of S0O2 by Sagitarius A* (first image)

s,
2
T

S
T

Dec. (arcsesconds)
-

-5 L i 1 | b
-8 -5 -4 -2 0 2 4 8 8 10

R.A_ (arcseconds) ¥ 10°

Figure 3.14: The blue curve shows the angular positions of the images from the star 52 throughout its orbit in
the absence of the black hole. The red curve shows the angular positions of the first relatavistic images from
the star throughout its orbit. Unfortunately, even at this proximity to the black hole, the Schwazschild and CBD
deflection angle cases give the same results.(Both lie on the red curve.) The asymmetry in the relatvistic images
is a consequence of the tilt in the star’s orbit. {The orbit is not flat-on.)
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3.5 Final conclusions

The Chiba connection between Randall-Sundrum branes and a conformal Brans-Dicke theory allows us to see
the manifestation of branelike features on our brane. Beginning with this link, the CBD action was variated,
giving the corresponding field equations. Using these we were able to find a black hale metric solution analagous
to the Schwarzschild metric - static and isotropic. This metric had geometry equivalent to that of an extremal
Reissner-Nordstrom spacetime. The deflection of photons by black holes in the Schwarzschild spacetime differs
from the CBD spacetime in the strong field - the weak field gives identical results. It is for this reason, that only
the observation of exireme phenomena, like the deflection of light in high proximity to a black hole would
provide a testable oppertunity to observe the black-hole like features of our universe. Upon consideration of the
null geodesics in generic spacetimes with only radial dependence on metric coefficients, an expression for the
deflection of light by black holes was obtained. This involved an integral which could not be solved analytically,
s0 two approaches were used. The first was a direct numerical evaluation of the integral. The second method,
valid only in the strong field limit was found following the approach outlined by Bozza. Approximate solutions
of these types were found both for the Schwarzschild spacetime and the CBD spacetime. The strong field timit
solutions were used to check the strength of the integration routine. The implementation of the routine to the
Schwarzschild case exhibited a higher relative accuracy (10-%) than the CBD case integration (about10~3).
Both however, are well within the required accuracy range. The application of the deflection of light to lensing
was considered. The example used was the star S2 in orbit around Sgr A*, the black hote at the centre of our
galaxy. It was found that even in this case there was no observed difference between the two spacetimes for
the first relatavistic images. Thus, the required telescepe resolution is certainly beyond the technology available
today. Should astronemers be able to observe with high resolution the positions of relatavistic images, we would
be provided with a strong tool for determining the nature of black holes - and thus hint at the strengths of various
theories of gravity.
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