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Abstract

The nature of black holes in the Horava-Witten Braneworld is ex-
amined. The behaviour of particles and nature of singularities are ex-
amined and compared with the more familiar dilaton black hole and
Extremal Reissner-Nordstrém models. Various parameters are inves-
tigated to see if singularities in the curvature are real or co-ordinate
in nature. We show that the model implies a naked singularity not
hidden behind a horizon.
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1 Introduction

While String theory attempts to provide a description of the universe we
live in that is mathematically very elegant, it is questionable whether it is
in fact a scientific theory, as it has not thus far produced any falsifiable
predictions. One area that does hold promise is in looking at the accretion
around black holes. Black holes are the best laboratory available for testing
out theories of gravity, as we are able to see the effects of the strong grav-
ity limit, such as accretion and gravitational lensing. By investigating these
observables, it will be possible to determine the nature of gravity, whether
it is best described by Einstein’s GR, string theory, or something else. In
order to determine this, one needs to establish the metric, which describes
how particles move through space-time, which is different for each model,
and is also frame dependent. One would expect the different metrics de-
scribing black-holes would predict different accretion patterns. On Earth,
we are only able to see the weak gravity limit of these theories, which all
reduce to Newtons gravity. By looking at the properties of black-holes in
several different models, one can compare their predicted accretion processes
with experimental data. Although our current technology is not capable of
resolving the accretion flow near black holes to the precision required, it is
hoped that in a couple of years, the technology will be in place to determine
which of these models is the most accurate.

At a very simplified level, string theory takes the basic constituents of na-
ture to be extended objects called strings, rather than point particles. In
this picture, particles are taken to be quantized vibrational modes on the
string. The strings may be open or closed, depending on the particular the-
ory. However, this theory is not unique, and in fact there are 5 distinct string
theories, all of which exhibit supersymmetry. For example, type IIA string
theory is obtained by multiplying fermions of opposite chirality, as opposed
to multiplying fermions of the same chirality, which yields type IIB string
theory.

M-Theory is a more recent development, which includes many different 11-
dimensional extended objects. It is possible to obtain all 5 string theories
from this picture, and in fact one can transform between the different string
theories by dimensionally lifting them from 10 dimensions to 11-D M-Theory.
For more detail, see[5]

Although the Schwarzchild solution to the Einstein Field Equations is the
most commonly used metric describing space-time around a black hole, it is



not the only one. I will be examining the properties of several other solution,
their curvature and singularities. In particular, I will be considering a metric
calculated by Tupper, Kim and Viollier by compactifying the dimensions of
11-d M-Theory in the Horava-Witten Braneworld model, and examining the
behaviour of geodesics near the singularities.

ey

It is important to understand the nature of the objects that we will consid-
ering. A black hole is understood to be a region of space-time from which
nothing, not even light can escape. In the Schwarzchild case, this region,
containing a singularity, is contained within a horizon. Outside of this hori-
zon, light can still escape. This implies that the black-hole is only the region
inside the horizon. However, in the case of the Horava-Witten Braneworld,
the space time is only define in a region from which light can escape, although
singularities are present. Hence this is not a true ”black hole”.

2 Extremal Reissner-Nordstrom model for black
_ ’ holes

In order to gain insight into the results that will be obtained for the Horava-
Witten braneworld, is is useful to compare it to other alternative black hole
solutions. On such alternatve is the Reissner-Nordstrom model, which de-
scribes a black-hole that is static (i.e. no angular momentum), containing
some electric charge. By contrast, The Schwarzchild solution describes a
black-hole with no charge or angular momentum. This solution can be ob-
tained from both GR and conformal Brans-Dicke theory, which is an alterna-
tive gravitaional field theory. In the case of the extremal Reissner-Nordstrom
model, where the charge is maximal the line element is given by
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Computing the covariant Ricci Tensor, one obtains
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R=0 (2)
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While the singularity is there in the R, component of the Rici tensor, this
model doesn’t contain any singularities in the Ricci scalar or contracted Ricci
tensor at 2r = Rs , implying that it is a co-ordinate singularity, rather than
an actual singularity, although the singularity at 7 = 0 is a real one. Here,
and for the rest of the paper, R, refers to the Schwarzchild radius of the
black-hole, given by R, = 2GM/c?.

3 Dilatonic black holes

When dealing with the Einstein equations, it is often useful to be able to
work in several different frames. This is not unlike performing particle scat-
tering calculations first in the CM frame, then transforming back to the lab
frame. The two frames of interest are the Einstein frame, and the Jordan
(or string) frame. Calculations are typically much easier to perform in the
Einstein frame, but looking at particles in this frame does not tell you much
about the physics involved, as particles in the Einstein frame do not follow
geodesics. It is best to start in the string frame, where particles DO follow
geodesics, then perform a conformal transformation to the Einstein frame,
calculate the quantities one requires, such as the curvature, then perform an-
other conformal transformation to take the results back to the string frame
and examine them there.



A conformal transformation maps a metric in one frame to another via

G = Q_Qg;w (4)

where () is a smooth continuous function.

Another formulation that has been used is one involving the dilaton, a par-
ticle of the scalar field associated with gravity in string theory, coupled with
matter. This model is obtained by considering 10-d String theory, dimen-
sionally reduced down to 4-d. By performing a Kaluza-Klein dimensional
reduction, one can obtain a 4-d effective action for both the String and Ein-
stein frames.
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where ¢g* is the metric in the Einstein frame, G*” is the metric in the Ein-
stein frame, R relates to the curvature, X, is the string length and « is the
electromagnetic coupling constant. G** is related to g"” via the conformal
transformation

Gij = 6¢ (7)

If one then looks at the extremal limit solution (the maximum charge that
the black hole can have an still be a physics solution) in 10-D reduced down
to 4 dimensions, on obtains in the Einstein frame a metric of the form

-2 0 0 0
0 —— 0 0
Jab = 1-== 2 R
0 0 —r(1-=) 0
0 0 0 —r2sin?0 (1 — =)

The Ricci tensor and Ricci scalar for this solution are
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While the Ricci Tensor is regular at r = R_, R does contain a singularity
there. In addition, the dilaton field itself, given by

e = (1 - E_—) B 9)

r

is singular at = R_. This frame is then meanigless for considering geodesic
behaviour, as particles in the Einstein frame do not follow Geodesic motion.
One needs to make the conformal transformation to the String frame.

In the string frame, the metric has the form

(1-£) o 0 0
0 11 0 0
27 0 0 (- 0
0 0 0 r2sin?0 (1 — £=)°
The Ricci tensor and Ricei scalar for this solution are
o0 0 0
0 2R 0 0
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4 The Horava-Witten model

While there are several ways of performing dimensional reduction on higher
dimensional (n > 4) theories, for obtaining this metric, 10-d string theory
is lifted up to 11-d M-theory. In this picture, 2 10-d branes are separated
by a distance, which constitutes the 11th dimension. The branes are then
dimensionally reduced down to 4-d, with the extra separation dimension still
there. This is then further reduced down to effective 4-d actions (Spux and
Strane)- The metric under consideration is obtained from the effective action
of the brane.

1 3(Vy)?
Sefs = 2_K/d4m\/‘(7 {25:08?'/’ - RCOShw} o ()

where the matter contribution is given by
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In the Eistein frame, this is given by [1]
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The most general form of the line-element is in the Einstein frame is [3]

dsyp = U%dt? — U~ [dr® + r2U%d0?] (14)
R,

U = (1-= (15)
ar
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This definition of U and « sets that the line-element is only defined for
Rs/a<r<ocoand 0 <a < 1.

Transforming to the String frame via the conformal transformation via

. _3
G = (1+9) 2 g (17)

with
¢ = sinh® ) (18)
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and

¢ = sinh® \/gqﬁ =1 = \/ggb (19)

Here ¢ represents the scalar field.
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Computing the Ricci Scalar for this metric with u = 1 — R,/a gives the
leading term as

€ =

(21)

at —o?
R= 22
2(1 + u?)R2y2Feo (22)
which indicates that there will be not be a singularity at r = R,/a pro-
vided 2+ € — a < 0 = a — € > 2 However, from the restrictions on o and

¢, such a combinastion is not possible, as the largest value of a—€is 1-0 = 1.

Since we are unable to avoid a situation with a singularity, we examine the
case where o = 1/2.

In this case, the result in the String frame for the line element concerned is

1 — 2Bs 1 r2 (1 — 2B r2sin?f (1 — 2L
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The metric itself is diagonal:

1_—7%7? 0 0 0

0 —1—_@ 0 0
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The metric contains a singularity at r = 2R,. However, the metric is only
defined for r > 2R,. Recall from (14) that 2R,/ <7 < oo for o = 1/2. The
question at this stage is to determine if the singularity at r = 2R, is real , or
merely a result of our choice of co-ordinates. The best way of doing this is
to look at invariants of this metric. If the singularities are merely a result of
our choice of co-ordinates, they should not be present when we examine the
invariants, such as the Ricci scalar (RY) and the contracted Ricci (R* Ry ).
These can be calculated from the Christoffel sybols, which in turn are calcu-
lated from the metric.

The covarient Ricci tensor Ry is found to be

R2(3R;—r)
T 2r2(R,—7)2(2R,—7) 0 0 0
0 R2(10r2—-21R,r+8R?2) 0 0
2r2(Rs—7)%(2Rs—1)?
0 O Rg(T2—3Rs7'+4R§Z O
2r(Rs—7)2(2Rs—r)
0 0 0 R2%5in?0(r?—3R,r+4R2)
2r(Rs—r)?(2Rs—T)
The Ricci scalar is
OR2

T T 22(2R, — 1) (R, — 1) (24)

RY[2(r? — 3rR, + 4R2)? + r2(3R, — r)? + (10r2 + 8R% — 21R,r)?
S S )
4T6(Rs — T)2(2Rs - 7”)4

RMR,, =

(25)
The contracted Ricci also contains the same singularity at r = 2R,.

It is interesting to contrast this against the results from the Randall-Sundrum
model, which is also a braneworld, but put together ”by hand“, not derived
from string theory. At low energies, this reduces to conformal Brans-Dicke
theory. An acceptable solution of this in the Einstein frame is the Extremal
Reissner-Nordstrom with o = % With a = % it is always possible to con-
formally transform to a frame where the solution looks like the extremal RN
solutionwhich is non-singular. However, as was noted at the beginning, it
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is only in the String (Jordan) frame that the particles follow geodesics, so
transforming to this new frame still doesn’t give much information about the
particle behaviour unless it corresponds to the Jordan frame.

If one compares this the Ricci Tensor of the Dilaton model, one sees that
the singularities are are present in both cases, with the square of the bracket
containing the singularity appearing in the denominator of the R,, compo-
nent.

5 Geodesic behaviour

Of particular interest is the behaviour of Geodesics around the singularity.
To calculate the null radial geodesics (always in the String frame) we set
df = d¢ = ds = 0 From this we obtain

RN\ dr
t dr
. dt = /G—_—%—fT (27)
[ sy )

(%)

As r — R,/a, the integral approaches a finite value if o < 1, but diverges if
a = 1 In the case concerned, with oo = 1/2, this inplies that it takes a finite
amount of co-ordinate time for the particle to travel from the horizon to a
point further away.

By comparison, the behaviour of the null radial geodesic in the Schwarzchild
case goes like

2GM dr
(-=7) - @ 2
1 T dfr
dt = — 30
to -/To (1—2%11/[-) ( )

which diverges as ro — 2G'M, implying that it takes an infinite amount of
time for light to escape from the horizon.
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For the Extremal Reissner-Nordstrom case

GM\? dr
oy - g
t T dfr
dt = _— 2
to /To (1 — %)2 (3 )

which also diverges as 1o — GM. All of these cases are just specific cases
of (25), with & = 1 and 2 for the Schwarzchild and extremal RN solutions
respectively.

6 Discussion

In examining both the Dilaton and the Horava-Witten cases, String theory
has been used as the starting point. However the methods of dimensional
reduction are very different. Both of these cases contain singularities in their
metrics and their curvature scalars (R). An important difference in the two
results is that that while the KTV metric contains 'tidal’ charges, the Dilaton
model requires an extremal electric charge, a highly unlikely situation.

We see that both of these string theory approximations for a black hole suffer
from the same problem, namely a naked singularity (one not hidden behind
a horizon)[5]. Such a situation is not permitted by General Relativity. How-
ever this is not GR. It is unclear, though, exactly what these objects are. If
such objects exist, then it would be possible to detect them via gravitational
lensing.

7 Acknowledgments

Thanks to Prof. P. Dunsby for assistance with using the GR tensor cal-
culations as well as useful discussions. Thanks to Prof G. Ellis and Dr C.
Clarkson for discussions as to the nature of black holes and naked singular-
ities. Big thanks to to my supervisors, Dr. Gary Tupper and Prof Raoul
Viollier.

10



ey

[e—

—

gt

References

[1] G. Tupper, J. Kim, R. Viollier, Gauges in the bulk II: Models with bulk
scalars, Physics Letters B 615, 293-303, (2005).

2] P. McFadden , N. Turok, Effective theory approach to brane world black
holes, Phys. Rev. D 71, 086004 (2005).

[3] R. Casadio, B. Harms, Charged Dilaton Black-Holes: String frame vs
Einstein frame, Med. Phys. Lett. A 14, 1059-1104, (1999).

[4] J. Bekenstein, Exact solutions of Einstein-Conformal scalar equations,
Annals of Physics 82, 535-547, (1974).

[5] K.S. Virbhadra, G.F.R. Ellis, Gravitational lensing by naked singularites,
Phys. rev. D, 65, 103004, (2002).

11



