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Abstract

The understanding of dark matter objects is one of the modern
mysteries. Usually one interpret them as Black Holes, but there is no
empirically evidence only a lack of alternatives. Proposing the idea of
a Phantom Gravastar we will give an alternative explanation to these
dark matter objects without supposing them to be Black Holes, in
particular to SgrA™ and the MACHOs.



——

Contents

1 Introduction

2 Phantom Gravastar

2.1  Einstein Ficld Equation for spherical symmetric space-

BIIme . . .o
2.2 The Lapsefunction . . . . ... .. o0
2.3 Derivation of the density . . . . . . . .. oL
2.4 The Mass-radius-relation . . . .. ... o000
2.5 Comparison with Polytropes. . ... .. .. .. .. ..
2.6 Junction condition for the shell . . . 00000000
2.7 Equation of state for the shell . . . . . ... .00 ..

3 Application of the Phantom Gravastar

3.1 Describing the most massive object . . . .0 0000
3.2 Describing Sgr A% . ... Lo
3.3 Description of the MACHOs . . . . . .. .. .. ...

4 Conclusion

5 acknowledgements

16
19

21
23
24
27

28



1 Introduction

The existence of dark matter and compact massive dark matier ob-
jects is beyond doubt. Dark matter even makes up most of the matter
i the universe. Usually these kind of massive compact dark mat-
ter objects are interpreted as Black Holes, but this interpretation is
purely based on a lack of different explanations. To assie a Black
Hole describing these objects might scemn couvenicnt, since these ob-
jects don’t emit radiation or at least too little for a baryonic object,
but this might also be due to an extended non-baryonic object. Some
interesting candidates for dark matter objects are MACHOs (Mas-
sive Halo Objects) and the heavy compact object in the center of the
Milkyway. '

In the last years the central object in the Milkyway (Sgr A*) has
been subject to many speculations, which resulted in a quite well de-
termined mass. Fuarthermore, observations of stars orbiting around
SgrA* led to quite stringent restrictions to it’s size. It is commouly
believed that SgrA* is a massive Black Hole, but there have also been
other explanations, like a massive ball of uncharged fermions [5], which
can’t be excluded. :

The MACHOs are compact dark objects orbiting in the galactic Halo
with masses below one solarmass. These objects cause a microlensing
event, of a star in a neighboring galaxy, when the Macho crosses the
line of sight between observer and star. An increase of brightness of
the star can be observed. Macho are also commonly expected to be
Black Holes, but again this is only due to a lack of alternative expla-
nations.

A promising attempt to construct non-black-hole objects has been
done by Mazur and Mottola [14], who proposed the idea of the de-
Sitter gravastar, described by an equation of state p = —p. This ob-

ject is contributed out of a quantum vacuum which nndergoes a phase

transition at the event horizon. The interior is de-Sitter matchoed to
the Schwartzschild spacetime near the event horizon, leading to the
result that the de-Sitter gravastar has no singularity at the origin and
no event. horizon. A striking feature is that this gravastar has a fixed
size.

In the line of ideas similar to the de-Sitter gravastar., N. Bilic, G.
Tupper and R.D. Viollier proposed the idea of a Phantom Gravastar
[7], which can explain a very large scale of dark matter objects up
to the most massive ones without being a Black Hole. It is basically
described by the equation of state p = *7} where p? < A, leaving the
kind of matter unspecified.

Since we are only dealing with one particular cosmological constant A
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to describe all objects, it is convenient to use a more general equation
of state p = ——;},‘-, for p < A»+7. This gives us more Hexibility 1o the

mass-radius-relation of the object. The condition p < AT}?T leads to
the equation p — p < 1, which is the regime of the ”phantom energy”
[15], hence we will call the resulting object again a Phantom Gravastar.
As we will see later on, it’s possible to derive a mass-radius-relation.,
which gives us the opportunity 1o test, if these compact dark matter
objects can be considered as Phantom Gravastars.
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2 Phantom Gravastar

2.1 Einstein Field Equation for spherical sym-
metric spacetime
In this part we are going to consider how the metric for the Gravastar

shall look like and what the implications for the Ficld-Equations are.
The Schwartzschild-metric, which reads

‘ 26MY . 2GMN T, : A
ds® = (1 - ) dt? — (1 — — ) dr? — 12 (dd? + sin?(9)dep?)

e s

describes a pointmass in space-time, with a singularity at the ori-

in, where the sinpularity at r = 2GM is just a result of choice of
g, Y .

coordinates [12]. While there is little doubt that the metric describes
the outside physics of the Schwartzschild-radius Rg corvectly, it is still
unclear if it describes the physics of the iuside correctly. There is no
definite observational evidence for the existence of such singularitics,
therefore we are going to construct a metric without such singularities.
Hence we substitute the constant M by M{r), due to the varying mass
inside the gravastar, and the time-compounent of the Schwavtzschild-
metric by an arbitrary positive functiou ¢ (r), which will be deterinined
in the next chapter.

dr?

ds® = C2(7")dt2 —_—— e —
) G 1/\'/( '
126

2 (dd? 4 sin® () dp?) (1

Our choice for the encrgy momentum tensor is 1) = diag{p, —p, —p.

since we want to consider a simple matter distribuation. Using this to-
gether with (1) Einstein’s field equation become [1]

M' = dar?p (2)

NP M + 47r’p

= e 3
A o R Te 1)) (3)
while T, = 0 gives
¢’

p=—(p +p)? (‘H

We are going to take
A -
P (5)

=p).



where n > 0 real, as the equation of state for the Gravastar, Further-
more we will restrict our calculations Lo the phantom vegime p < A7+
as we arce going to wotivale i the next chapter.
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2.2 The Lapsefunction

We are going to derive the Lapsefunction and give reason to the con-
dition p < A.ﬁ. _ ‘

We waunt to have a density which is decreasing frowm pg = p(0), the
center of the gravastar, up to p(R) = 0 where R warks the vadius of
the star. This is a convenicnt condition for the physical expericnce of
well known matter structures. Furthermore we would like the Lapse-
function ¢(r) to hold the following three conditions, since we want to
match (1) to the Schwartzschild-metric and avoid any singularities.
At first ((0) = 1, where we chose the value of 1 simply in analogy
to the Schwartzschild-metric, which time-component (1 — 57—/‘—’) <1
everywhere outside the Schwartzschild-radius Re. Furthermore we
would like to have ¢ decreasing up to the Schwartuschild-radius where
((Rg) = 0,which is necessary since we are going to match (1) with the
Schwartzschild-mnetric somewhere outside fg.

In the following we are going to counsider three different conditions
for p with respect to A, and conclude in the end that we can drop two
of them.

If p= AnFT equation (5) leads to

P=—p

which is the equation of state of the de-Sitter gravastar [4], where
the Lapscfunction is given by

/ 2 )
()= (1 — —
¢ ( 3

Therefore we won’t consider this condition anywmore.

If p < A»¥T we can caleulate the Lapsefunction in the following
way.
Starting from equation (4) and substituting (5) once obtains:

a
S
po=—(p+p)-
G
7/1,’,]’/)—1: | , C;/
e 4=
[) - pn, g
-n_ )= ¢!
l} - /)”]“ILI ,U’H 2 Q




where pg = p(0) is the central density. By rescaling t one can set
C(0) = 1, thercfore

In(¢(r)) = ‘/,) [N TR dp
B '!7(7') 7;1’1 d 1 R
=TT
7 P0 /)N<|-1 1 (-'/) [) zs

no | 1 1\100)
B ['_ hl( nkl "‘)}
n+1 ik AL

_ —1, ]n /)n—l—-! _\

- ’ | 1
n+1 ST T

B —n, In /)07,,+1 A~ /)”"’1
4+ 1 i l{)‘yl,+-l A— 20 -1

7" | /< p‘)'n.+l A p()wwlf!
= ni{— —_—
7+ 1 ( 0 A - /)”"'!_]

Thercfore the lapse function is given by:

‘ nlA— n+1 ﬁT
= (L) (2 (©)
P0 A =t ’

——————l . - -
The Lapscfunction for p > A»+T is given by the sanie expression,
since one can basically run through the above calculation, simply wl-
tiplying % - ;%;T by —1, whenever it is necessary to ensure the posi-
tivity of the argument of the logarithin. ‘

. L. L T ..
To sce that we can drop the condition p > AT just substitute (5
f - .

into (4) and calculate the derivative of I, then:

—n. ’ y
SET P ¢

P

1~;%/J7C

1
n 1

One can sce that ¢ < 0 only holds, if p < A . sucee we also

. : (L . )
assumed p to be decreasing. While p > A7 leads to either an -
creasing ¢ or an increasing density, which we both want fo avoid as

mentioned in the beginning of this chapter. Therefore we can restrict
I

the cquation of state of the gravastar to the condition p < A»+7 and
drop the other two.



2.3 Derivation of the density

The next step is to obtain a differential cquation for the density with
respect to 1.

The combination of equation (3) and (4) leads to the Oppenheimer-
Tollmann-Volkoff-Equation [13]:

M + 4mrp
U — G
p=-(p+p) 26 (7)
substituting (5) into (7) leads to
. /A M — Ayt 4
A ) —*(7’?4—1) /: <_ _ ) G __“_—[__
e P=\m ~ ) e = 2c,M)
1 G M — 4w A
PR /gl (_ ) f)
p=r ot A nr(r—2GM)
P N g M - 4,7r7'3—‘%
= J =1~ i
g ( A ) nor(r—2GM)" (®)

which we take as the differential equation for the density.

Now we solve (8) in the small central density approximation py <
A'—YTIT This leads with {5) to a much higher pressure than the density,
which is contrary to the validity of Newtonian physics, where the
pressure is much smaller than the density. Hence this approximation
reflects the intention to describe an object for which the eficcts of
general relativity are significant; we might also call it "antinewtonian”
approximation. Furthermore we want to describe an object which is
not a black hole, 1.e.: which radius is larger than the Schwartzschild-
radius 2G M, hence we make the additional assumption: 2GM (1) <<
r. We are going to show the self-consistency of this assmmption later
on. ]

Substitution of py < AT into (8) leads to

, G M —d4nr? —);
po= —p——aat
n' r(r—2GM)

3 A

G AT

—— P
nt r(r — 2GM)
and using 2GM << r one obtains:

G Arnr
!/

po= A;A n— 1
P

10



&= np'” ' pl = —4GurA
pr) ! -
= / np" dp = — | AGwr Adr
7 po S0 :
= pMr) - p" = -20G A
/ 9 %
oo o
<= /)(’]‘) = Py (1 - 'Z“?'z') (1())
with
‘) :),l
% = 0 (] 1)

T 2nGA

is defined as the radius of the star, since the density vanishes there.
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2.4 The Mass-radius-relation

In the following we derive the mass-radius-relation of the phantom
gravastar, which we will use to test the predicting power of the Phau-
tom Gravastar concerning SgrA™* and the MACHOs. Substituting (10)
into (2) one obtains:

M = dmrtpy (1= 1)
= aTT g - j?_z

Integrating this expression from 0 to R, the radius of the star, gives
the total mass M = M(R) of the star.

It Y ,,,.2 %
M = /0 4mre py (1 - 7?—2—> dr

Changing the variable r = 2R leads to:
. b o 1
M = 4mwpyR® / 2%(1 — 2%)ndz
Jo

The solution of this integral [2]is given by

r(3)r(L+1)
r(i+3)

Using that according to (11) py = (QWGARQ)% one obtains that

M = 2mpy R’ (12)

. LT (41
M = (2m)55 (GA)T R¥ <)| ) (13)
ri+s)
Therefore the mass-radius-relation reads:
3 ~ ]
M TSR N ¢ R N G
— = (2m) 5 (GA) G 1 (’i ) (14)

or in an cquivalent notation:

]\4“;111-}_—7/ n41
I = (27T) A2

(GA)T (P (G)r (—+ A -

12



Obviously this gives us a radins distribution of the Phantomn Gravas-
tar depending on the mass:

-

R(M) = M3+ (27) " s

&

(C:’i)"'?ﬁ;‘:ﬁ /1 (_‘)r (% . 1>\ o (16)

One can casily sce from the calculation above that the mass inside
the radius of the gravastar (i.c.: 0 <r < R) is given by:

»

M (r) = drpo R ! 241 - z“))-[d (1
10

~I

since ouc only integrates from 0 to r.

Now we are going to consider the mass radius relation for very big
and small n. From equation (14) it is obvious that for large n

1
Roc M3
While for n — 0 we obtain a radius, which s independent of the
enclosed mass. This 18 a similar behaviour than that of the de Sitter

gravastar.

To see that the assumption 2G M << r is self consistent, we simply
substitute (12) into 2GM.

2GM LT+
:47TG/)()RL ({)](”’j\ )
R L= +32)

Substituting (11) leads to:

26GM ‘),0(}”""' rErE + 1
- 1}

R A T

I
Finally use py << A+ {0 see that

2G M
<<
R

13



2.5 Comparison with Polytropes

We are going to compare the equation of state for polytropes with (5)
via the mass radius relation, but first a short overview about poly-
tropes. ’

The cquilibrium of a star is described by the following cquations [3].

dp  GM(r)

dr z P
dM (1 K
ﬂ — 47r7'2p
dr
or
1 d s I
SO (LA o —4nGp

rdr \ pdr
while for polytropes one assumes the following equation of state:

1

p = K/)'"FTF

Substituting this into the above cquation and defining p = AQ™

, v = al with a = (——(”f'{;](?l(, 3%;“‘)
Emden-Equation.
%i{: <C2@> — _(H'm
(= d¢ dC

Polytropes are described by solutions of this equation. From the
second equation of stellar cqnillibrium and the Lanc-Emden-Eguation
one can derive an mass-radius-relation, which reads

o=

we obtain the so called Laue-

ot gz _ (A DK T et dO T

FEEEE

(4’/’()-):_1 dc JC--Q,

Where (7 denotes the first sero of ©. So we can read this mass
radius relation as:

M oc RUwET

where m is a real number.

Since we also obtained a mass-radius-relation for the gravastar, it
might be interesting to compare the behaviour of the velation for poly-
tropes, which qualitatively describes the behaviour of even relativistic
stellar objects quite often.

In the small density approximation (14) the mass-radins-relation
of the gravastar obeys the following relation:

14
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We want to obtain a relation between nand 1w, for the situation
that in both cases the mass is related to the radius with the samne
power. Thus a comparison of the powers leads to:

L') 2
o n 0 om—1
1 1
= - = - — — 1
7 1—1m
i m,
— - = -
n 1—m
1 ]
= nu=——1
™
= ! (18)
= —— )
n+1 =

which gives us informatiou about how both cquations of state have
to be related, to lead to a similar mass-radius-relation. Additionally
we obtain the condition that 0 < m < 1, since n > 0.



2.6 Junction condition for the shell

This chapter is dedicated to the matching of the metric (1) inside the
Schwartzschild-metric.  The aim is to derive the junction cquation,
which describes the surface density and the surface tension of the
shell. The shell is a hypersurface in 3 + 1 dimensional spacetime,
caused by fixing the variable r at r = Ry. We choose Ry in such a
way that the density is small but still nonzero, since for a vanishing
density the pressure will become infinite. The junction equation will
be used to derive an equation of state for the shell in the next chapter.

We denote with Ry the radius of the shell, which should ful-
fill Rs < Ry < R since we wanl to avoid the singularitics of the
Schwartzschild-metric. Furthermore shall the radius 2y be constant,
since we arc only going to cousider a static gravastar. Let My be de-
fined as the mass of the shell plus M(Rg), which is the mass of the
gravastar star inside the radius of the shell Ry. Finally denote by o
the surface density and by 6 the surface tension.

To match the metrics we use Isracl’s junction condition [6]:

[[KE - oke]| = 8nGs?, (19)

where S = diag(o,6,0) denotes the surface stress cncrgy tensor
and [[f]] denotes the discontinuity in f on the shell, i.c.

Lfr))] = ];i”(l)(f(Ro +x) = f(By — )

T

The extrinsic curvature is defined as [6]:
Kij=¢;Vyn

where 4,7 = 1,2,3 and e, ¢y, e3 form an orthonormal basis of the
hypersurface. For the shell 4,5 = ¢,9, ¢ and the basisvectors become
;% = 0%, The unitnormal to the hypersurface is denoted with n, for
the shell we choose the unitnormal to be

YA o
n® = \/ -~ %E-(—f—)—b\”r (20)
,

Before we actually calculate the extrinsic curvature, we are going
to derive an equivalent expression which avoids the derivative of the
unitnormal n. Writing down K in terms of indices and using Leibnits
rule one finds:

)

e .3 . B
Kij = (e 'n,a);/ga.,;/ — N0 Cy8 e;f

16



Since n and ¢; are orthogonal we find
. Lo B
Kij = —nacizc)

Substituting ¢;* = §%; into this cquation and writing the kovari-
ant derivative in terms of Christoffel-symbols gives us the extrinsic

curvature for the inside of the shell.
K= —nq (AJ + 1 87 )

Actually doing the given coutractions, substituting (18) with the
index down and using that ¢%; ; = 0 shows that
1 . :
=T, (21)

K [ acn(n) Y
P

N

Therefore the next step is to calculate the Christoffel-Symbols for

the metric (1). The general expression for them in terms of the metric

tensor is
1
/N aby ..
I ij = IZ—.(] (,‘1’(1,,'/',1 + Goij — .(/‘1'7,(::,)
Siuce 4,7 = ¢, 49, and g is diagonal this simplifics to
1

i —_
1 ij = ==

2

wr
9 Yija
and we ouly have three nonsero Christoffel-Symbols:
2GM (7'))

IMyy = —r ( -
R \ ”

QGM('I')>

My = —sin? () <1 -
7

- I3V
. 2G M (r
7, = C,»f | — o ( )
i S .
Substituting this into equation (19) and raising aun index shows us

that all three nonzero components of the extrinsic cnrvature inside the

(22)

wof—

shell are given by
~1 2 YA
Kl = % (] B G]V[(r_)_)
’

and



1
’ 1 26 M (r)\ 2
o __opet) . PR
Kj=Kj=-{1- +~—) (23)
T 7
With a similar calculation one finds {or the extrinsic curvature of
the Schwarzschild-metric outside the shell:

GM 2GMN\ % .
- O (12 "
|
@ ~9) 1 2GM\ 37 .
Kf = Kj = (1 - —) (25)

pry

Considering the junction equation (19) again one finds for the sur-

face density
[—2KJ]] = 8nGo
Substituting (23) and (25) gives

1
1- — — - =4GR,
< ]?O 1 ]{0 (. R()O’

Using that the gravastar is much bigger than a black hole, ic.

DYSEY . . . * i 2 <
Z(%ﬁ[’ << 1, we can expand this equation by adding (%—}‘—{f(—)) and

GM{(IRo)
Ry
the first junction equation:

(Mg

2
) inside cach square root respectively. Hence we obtain for

M(Ro) My
Ry R
Considering (19) for the surface tension leads us to:

= '—~4’/‘TR,()O' (2())

([—K| - K})]] = 8xG@
Substituting (22), (24) and dircctly using equation (26) leads to

1 t
4 1(Ryp)\ 2 GM, 2G M\ " GM{Ry) GM
¢ (1 26N (Ro)> B 120 <1 26 «,,) U6 ”\_‘) 0) A—
¢ Iy Rj Ry Iy® Iiy*
 Using (3) we obtain
G M(Ry) +4rRiP GMy (. 2GM, T GM(Ry)  GMy .
- I - = e ——~ = 87 (G
Ry Ry* Ry~

; ) T 2
R? | 26M(Ro) ) Iy
Ry

We expand the square roots with the same method than for equa-
tion (26), which gives us finally

1
S =0 (27)

18



2.7 Equation of state for the shell

In this chapter we are going to derive the equation of state of the shell.
Starting with (26) gives us for the surface density

_4{-(.]3(1) Aiﬂ = —47 R o0

Ry Ry

= o= (g - M)
Ar \Ry>  Ry”
Inserting (17):
M, R3 Eo . ‘
d " Z4(1 — 2’2)%(13 (28)

g = 5 T T
4'R'R()2' Ry~ ,00' 0

Now we are going to calculate :1—7?)\7%0 Take Ry = =R with = € (0,1)

and My = pM with g > 0. Hence
GJ\_JE _ G]\,/[ﬁ
Ry R ux

s . . (Lo
Substituting (12) and using the notation I' = (]‘()1_("’_; ) leads to

GM .
20— 9rGR?p T
A

Ry
po" g
= -
A €L
My 1 MG
drRy>  AnRyG Ry
pon+l N

4rRyGA 1

= 2R one obtains

Using again the notation Ry

My 1 | J
7 = o
4 Ry drRGA e
while substituting (11) leads to
My 1

LA e
s = T Rpys
471’.[{.()')" 2 o €2

= 7 leads to

. . S S ) it 0 s Rp
Inserting this again into equation (28) and using 3

the surface density:

19
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1"\ /‘l' 1 .‘I: 2 P L \ ¢
o = Rpy (51 - /O L= )z ) (29)
From (27) we obtain for the surface teusion:
1
) = - Ron
5 07

Inserting into this expression the basic condition (5) leads to:

1. A
0 =——nR
DI o

Simply substituting (10) and nSing again the definition of x leads
to
1 A

0 =——xR——r: .
2" po™(1 = x2)

(30)

It is desirable to have an cquation of state which is independent
of the central density and the radius of the shell. Thus we iry to find
powers of o and € which cancel these parameters. We can use {or this
again the relation (11) R? oc p,™.

Obviously % + 1 1s a sufficient power, since

2
2 Ru! L2t 2 1) ol 2
ot o Rpo—— oo f’Uz[M 2N =200 = st
= -
[]0 i

Taking this to the power of 575 leads to the shell eguation of state.

n4! i

0Tl = —l Aw ( ! ) " (1FL — L 21— %) 5(&3’) o

21 —22 \27GA 204 x? fy

N

20



3 Application of the Phantom Gravas-
tar

3.1 Describing the most massive object

The uniqueness of the cosmological constant restricts the n = 1 model
concerning the mass-radius-relation, for an arbitrary » > 0 these ro-
strictions become less stringent and we gain a more Hexible mass-
radius-relation. In this chapter we are going to determine the cosmo-
logical constant A.

The increase of mass is accompanied by an increase of density. Hence
there will be a mass, such that p = AWﬂITi', while (8) shows us that the
density will then be constant. p = AR loads us o the case of the
de-Sitter-gravastar, where due to a phase transition at the shell only
a unique constant A exists [14] to describe all objects. Furthermore
the radius is independent of the enclosed mass and density,being cqual
to the event-horizon. Hence it is convienient to supposc the density
reaching the value An_lfl for the most massive objects in the universe.
Substituting into the Einstein Field Equation (2) the above expression
for the density and integrating this, we find

. ’4 2 - -
M(r)= §W’/*"A el (32)

To obtain an expression for the radins, only depending on A and
G, we consider the Lapse-function {or the de-Sitter-Gravastar, which
must vanish at the event-horizon. Hence we get the equation:

oG M (r
Lo 2GME)
.

Therefore the radius, where the Phantom Gravastar will collapse
to become a Black Hole, is given by:

[
R= \/ —_
8rGATT

Substituting this into equation (32) and isolating A leads us to:
4 3 n4-1
A= (*——-——) 33
32rG3 M2, (33)
According to [8] the most massive objects will be found to be

around 3 * 109 M, hence we take 4 x 109 My, which will result in a
stronger condition for the gravastar radius, since it will becorme larger.

21



Substituting this mass and G = 4.926 % 100 ‘—;—;{‘7‘ into (33) leads us to
the A(n).

3N 1 1 6 5
A= (E) G (2m )l 42042 (4.926)3n+2 10 (34)

Which reads in units of keV:
A = (8.394keV )10+ D)

Substituting (34) into the radius distribution of the antinewtonian
approximation and dividing by 499 gives us the radius in astronomical

units [a.uw.], if M is in units of solarmasses. .
0 | 5 ETE
4.926 (256 343 d i +3 .
R(M) =~ ( - ) omE (_" 12> M
t OReED

Thus the radius-function for the special case n = 1 reads:

R(M) = 1.206834174M 7 (36)



3.2 Describing Sgr A*

The mass and the rading of the super massive object in the center
of the milkyway arc both well kuown. Thus it is convenient to use
this data to set restrictions to the values of n. The miass of SgrA* is
3.7(10.2)10° My, [8] while the radius must be Jess than 45a.u. [9].
For the values of u we find from the inequality R(M) < 45 aa. the
condition:

n > 0.4
If n satisfies this condition, the gravastar will lay well within Lthe
upper bound of SgrA*. For big u the radius approximates the value
of
I =7.695a.u.

being far beyond the Schwartzschild-radius.

704
60
50
40-
30+

20

05 1 - T Y- B

Figure 1: Radial behaviour of SgrA™ with varying u, the straight line marks the
upper bound of the size of SgrA*; R iy iu aaw
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3.3 Description of the MACHOs

The occurrence of Gravitational Microlensing events make the exis-
tence of compact dark matter objects in the Halo of the Milkyway very
likely. A recent paper [11] give strong restrictions to low mass MA-
CHOs, while [10] the existence of MACHOs with masses m > 0.1M,,
is very likely. Therefore we will consider the radial behaviour of the
gravastar with masses between 0.1and0.9M.

To give a restriction to the size of these MACHOs we will use [12] that
they move with a velocity of 220km /s and that the duration of the
microlensing-effect is given by ¢ = 13()\/% days. Combining these
two informations gives us an upper bound for the size of a MACHO:

R(M) < 16.51781269v M

Using (33) for the radius we find for MACHOs with mass 0.3 and
0.5M, radii of

R(M = 0.3) = 0.94857538460.1.

R(M = 0.5) = 1.050610170a¢.1.

both within the upper bounds of 9.047178611 and 11.67985736 a.u.
respectively.

Using again that one can choose an arbitrary n > 0.4 one finds
that for increasing n the radius will decrease up to a particular value:

R =0.034a.1u. and R =0.0da.u.

for M = 0.3 and M = 0.5M,, vespectively. It remaing to mention that
the choice of the upper bound for the radius is not very stringent.
A far better one would be the following: Assming that the mabter
of the gravastar is such, that light cannot penctrate it, there must
exist a maximal radius of the MACHO, such that no light can reach
the observer. Similar there will exist a radius of the MACHO, such
that light can reach the obscrver. Of course, the idea of an extended
object, which light cannot peuectrate, includes that, the common mass
distribution is to small. Since for a pointmass no light will vanish be-
hind the object. Hence if the object is extended the curvature of the
light-paths must be stronger to supply the same increase w brightness
and therefore the mass of the object must be higher.

This connection between the extension of the object and it’s mass can
be used either to determine whether the object can be penetrated by
light or if the gravastar is sufficiently small.
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Figure 2: Gravastar (lower line) compared with the upper bound of the Machos,
mass in M, and R in a..
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Figure 3: Radius

(in a.1.) of the Gravastar with masses between 0.1 and 0.9 M.,



Figure 4: Radius of Gravastar with varying masses and powers n in between O

and 8 M., and 0.4 < n < 3 respectively



4 Conclusion

For m > 0.4 the gravastar can describe Machos in a mass range of 0.1
up to 0.9M,,, where we derived the restriction of size by the effect-
duration. It can also describe very massive compact dark matter ob-
jects such as Sgr A*.

If »n is increasing the radius will decrease, converging to a particn-
lar value, while it will always remain lavger than the event horizou.
The Phantom Gravastar model succeeds in explaining compact dark
matter object without being a black hole.
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