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0.1 Introduction

With the appropriate choice of ensemble, the statistical-thermal model has
proved extremely successful in describing the hadron multiplicities observed
in relativistic collisions of both heavy ions and elementary particles, over a
wide range of energies. This success motivated the development of THER-
MUS [1,2], a thermal model analysis package of C++ classes and functions,
for incorporation into the object-oriented ROOT framework [3]. All THER-
MUS C++ classes inherit from the ROOT base class TObject. This allows
them to be fully integrated into the interactive ROOT environment, allowing
all of the ROOT functionality in a statistical-thermal model analysis. Other
publicly available codes performing thermal analyses include SHARE [4] and
THERMINATOR [5].

Anyone is free to use THERMUS. However, in the event of work leading
to publication, the authors request that THERMUS be cited:

‘THERMUS — A Thermal Model Package for ROOT",
S. Wheaton and J. Cleymans, hep-ph/0407174

Since several of the constraining functions in THERMUS use ‘Numerical
Recipes in C’ code (which is under copyright), it is required that THERMUS
users have their own copies of this software. Then, with ROOT already
installed on your system, follow these steps:

e Download the THERMUS source (in the form of a zipped tar-file) from:
http://hep.phy.uct.ac.za/ THERMUS/

e Unzip and untar the downloaded file.

e Set an environment variable THERMUS’ to point at the top-level di-
rectory containing the THERMUS code.

e Copy the following ‘Numerical Recipes in C’ functions to $ (THERMUS) /nrc:
broydn.c rsolv.c
fdjac.c fmin.c
Insrch.c nrutil.c
nrutil.h qrdcmp.c
gqrupdt.c rotate.c
zbrent.c



e Use the makefiles in $ (THERMUS) /functions, $(THERMUS)/nrc and
$ (THERMUS) /main to build the 1ibFunctions.so, 1ibNRCFunctions.so
and 1ibTHERMUS.so shared object files (run make all in each of these
directories).

e Finally, open a ROOT session, load the libraries and begin:
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root [ ] gSystem->Load("./lib/libFunctions.so");

root [ ] gSystem->Load("./1ib/1ibNRCFunctions.so");

root [ ] gSystem->Load("./1ib/1ibTHERMUS.so") ;

At present, three distinct thermal model formalisms are implemented in
THERMUS: the grand-canonical ensemble, in which baryon number (B),
strangeness (S), and charge (@) are conserved on average (the charm quan-
tum number C' is also accommodated in this class, although charmed particles
are yet to be included in the THERMUS particle list, and the constraining
functions involving the charm density are yet to be written); a strangeness-
canonical ensemble, in which strangeness is exactly conserved, while B and
(@ are treated grand-canonically; and, finally, a canonical ensemble, in which
B, S and @) are all treated canonically.

Currently, THERMUS performs only chemical analyses. In other words,
no kinetic freeze-out analysis or momentum spectra calculations are per-



formed. It is our aim to include such functionality in later versions of THER-
MUS.

As input to the various thermal model formalisms one needs first a set of
particles to be considered thermalised. When combined with a set of thermal
parameters, all primordial densities (i.e. number density as well as energy
and entropy density and pressure) are calculable. Once the particle decays
are known, sensible comparisons can be made with experimentally measured
yields.

In THERMUS, the following units are used for the parameters:

| Parameter | Unit |
Temperature (7) GeV
Chemical Potential () | GeV
Radius fm

Quantities frequently output by THERMUS are in the following units:

‘ Quantity ‘ Unit ‘
Number Densities (n) fm 3
Energy Density (e) GeV.fm™3
Entropy Density (s) fm~?
Pressure (P) GeV.fm™
Volume (V) fm?

In the sections to follow, we explain the basic structure and functionality
of THERMUS by introducing the major THERMUS classes in a bottom-up
approach. We begin with a look at the TTMParticle object.!

Tt is a requirement that all ROOT classnames begin with a ‘T’. THERMUS classnames
begin with “T'TM’ for easy identification.



0.2 The TTMParticle Class

The properties of a particle applicable to the statistical-thermal model are
grouped in the basic TTMParticle object:
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Besides the particle name, ‘Delta(1600)0’, its Monte Carlo ID is also
stored. This provides a far more convenient means of referencing the parti-

cle. The particle’s decay status is also noted. In this case, the A(1600)° is
considered unstable.

Currently, only the default constructor is written. Particle properties are
thus input using the ‘setters’.



0.2.1 Inputting and Accessing Particle Decays

The TTMParticle class allows also for the storage of a particle’s decays.
These can be entered from file. As an example, consider the decay file of the
A(1600)°:

11.67 2112 111

5.83 2212 -211
29.33 2214 -211
3.67 2114 111
22. 1114 211
8.33 2112 113
4.17 2212 -213
15. 12112 111
7.5 12212 -211

Each line in the decay file corresponds to a decay channel. The first
column lists the branching ratio of the channel, while the subsequent tab-
separated integers represent the Monte Carlo ID’s of the daughters (each
line (channel) can contain any number of daughters). The decay channel list
of a TTMParticle object is populated with TTMDecayChannel objects by the
SetDecayChannels(char* file) function, with the decay file the argument:

root [ ] part->SetDecayChannels("./particles/Delta\(1600\)0_decay.txt")
root [ ] part->List()
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In addition to the list of decay channels, a summary list of TTMDecay ob-
jects is generated in which each daughter appears only once, together with
its total decay fraction. This summary list is automatically generated from

the decay channel list when the SetDecayChannels function is called.

An existing TList can be set as the decay channel list of the parti-
cle, using the SetDecayChannels(TList* x) function. This function calls
UpdateDecaySummary, thereby automatically ensuring consistency between

the decay channel and decay summary lists.

The function SetDecayChannelEfficiency sets the reconstruction effi-
ciency of the specified decay channel to the specified percentage. Again, a

consistent decay summary list is generated.
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Access to the TTMDecayChannel objects in the decay channel list is achieved
through the GetDecayChannel method. If the extracted decay channel is sub-
sequently altered, UpdateDecaySummary must be called to ensure consistency
of the summary list.

0.2.2 The Destructor

Once the TTMParticle destructor is called, all heap-based TTMDecayChannel
and TTMDecay objects in the decay lists are deleted.

0.3 The TTMParticleSet Class

The thermalised fireballs considered in statistical-thermal models typically
contain approximately 350 different hadron and hadronic resonance species.
To facilitate fast retrieval of particle properties, the TTMParticle objects
of all constituents are stored in a hash table in a TTMParticleSet object.
Other data members of this TTMParticleSet class include the filename used
to instantiate the object and the number of particle species. Access to the
entries in the hash table is through the particle Monte Carlo ID’s. The nu-
merical ID of each particle is converted into a string and stored as the fName
data member of its associated TTMParticle object. This is required, since,
in ROOT, access to objects stored in container classes is through fName.

0.3.1 Instantiating a TTMParticleSet Object

In addition to the default constructor, the following constructors exist:

TTMParticleSet *set
TTMParticleSet *set

new TTMParticleSet(char *file);
new TTMParticleSet(TDatabasePDG *pdg);

The first constructor instantiates a TTMParticleSet object and inputs
the particle properties contained in the specified text file. As an example of
such a file, /$THERMUS/particles/PartList _PPB2002.txt contains a list of
all mesons (up to the K;(2045)) and baryons (up to the Q) listed in the
July 2002 Particle Physics Booklet [6] (195 entries). Only particles need be
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included, since the anti-particle properties are directly related to those of the
corresponding particle. The required file format is as follows:

0 Delta(1600)0 32114 4 +1 1.60000 0
0 0 0.35000 1.07454 (npiO)

e stability flag (1 for stable, 0 for unstable)

e particle name

e Monte Carlo particle ID (used for all referencing)
e spin degeneracy

e statistics (41 for Fermi-Dirac, -1 for Bose-Einstein, 0 for Boltzmann)
e mass in GeV

e strangeness

e baryon number

e charge

e absolute strangeness content |S|

e width in GeV

e threshold in GeV

e string recording the decay channel from which the threshold is calcu-
lated if the particle’s width is non-zero

All further particle properties have to be set with the relevant ‘setters’
(e.g. the charm, absolute charm content and hard-sphere radius). By de-
fault, all properties not listed in the particle list file are assumed to be zero.

Figure 1 shows the distribution of resonances (both particle and anti-
particle) derived from /$THERMUS/particles/PartList PPB2002.txt. As
collider energies increase, so does the need to include also the higher mass
resonances. Although the TTMParticle class allows for the properties of
charmed particles, these particles are not included in the default THERMUS
particle list. If required, these particles have to be input by the user. The
same applies to the hadrons composed of b and ¢ quarks.
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Figure 1: The mass distribution of the resonances included in
/PartList PPB2002.txt (blue: mesons, red: baryons).

It is also possible to use a TDatabasePDG object to instantiate a parti-
cle set?. TDatabasePDG objects also read in particle information from text
files. The default file is /$RO0TSYS/etc/pdg-table.txt and is based on the
parameters used in PYTHIAG.

root [ ] TDatabasePDG *pdg = new TDatabasePDG()
root [ ] pdg->ReadPDGTable ()
root [ ] pdg->GetParticle(211)->Print()

pi+ 211 Mass: 0.1396 Width (GeV): Stable Charge: 3.0
Channel Code BranchingRatio Nd ............. Daughters.............
0 0 9.99877e-01 2 mu+(-13) nu_mu(14)
1 0 1.23000e-04 2 e+(-11) nu_e(12)

root [ ] TTMParticleSet set(pdg)
root [ ] set.GetParticle(211)->List()

sokksokkkokk LISTING FOR PARTICLE pi+ skkskskkokskokok

ID = 211

2In order to have access to TDatabasePDG and related classes, one must first load
/$RO0TSYS/1ib/1ibEG.s0
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The constructor TTMParticleSet (TDatabasePDG *pdg) extracts only those
particles in the specified TDatabasePDG object in particle classes ‘Meson’,
‘CharmedMeson’, ‘HiddenCharmMeson’, ‘B-Meson’, ‘Baryon’, ‘CharmedBaryon’
and ‘B-Baryon’, as specified in /$RO0TSYS/etc/pdg_table.txt, and includes
them in the hadron set. Anti-particles must be included in the TDatabasePDG
object, as they are not automatically generated in this constructor of the
TTMParticleSet class.

The default file read into the TDatabasePDG object, however, is incom-
plete; the charm, degeneracy, threshold, strangeness, |S|, beauty and topness
of the particle are not included. Although the TDatabasePDG: :ReadPDGTable
function and default file allow for isospin, I3, spin, flavor and tracking code
to be entered too, the default file does not contain these values. Further-
more, all particles are made stable by default. Therefore, at present, using
the TDatabasePDG class to instantiate a TTMParticleSet class should be
avoided, at least until pdg_table.txt is improved.

0.3.2 Inputting Decays

Once a particle set has been defined, the decays to the stable particles in the
set can be determined. Firstly, let us instantiate a TTMParticleSet object
and list its stable constituents:
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root [ ] TTMParticleSet set("./particles/PartList_PPB2002.txt")
root [ ] set.ListStableParticles()

sokskskokokokokkkkkkk STABLE PARTICLES skskskskokoskokosk sk ok sk kok k
anti-Lambda
Sigma-
Omega
pio
KsiO
K+
n
Sigma+
anti-Sigma-
anti-Omega
KOS
anti-Ksi0
Ksi-
anti-K+
anti-n
anti-Sigma+
pi+
anti-Ksi-

p
anti-pi+
anti-p
Lambda
KOL
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This list of stable particles can be modified by adjusting the stability flags
of the TTMParticle objects included in the TTMParticleSet object.

Decays can be input using the InputDecays(char* dir) method. Run-
ning this function populates the decay lists of all unstable particles in the set,
using the decay files listed in the directory specified in the argument. If a file
is not found, then the corresponding particle is set to stable. For each typ-
ically unstable particle in /$THERMUS/particles/PartList PPB2002.txt,
there exists a file in /$THERMUS/particles listing its decays. The filename
is derived from the particle’s name (e.g. Delta(1600)0__decay.txt for the
A(1600)%). There are presently 195 such files, with entries based on the
Particle Physics Booklet of July 2002 [6]. The decays of the corresponding
anti-particles are automatically generated, while a private recursive function,
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GenerateBRatios, is invoked to ensure that only stable particles feature in
the decay summary lists.

root [ ]
root [ ]
root [ ]

set.InputDecays("./particles/")

TTMParticle *part = set.GetParticle(32114)

part->List ()
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For particle sets based on TDatabasePDG objects, decay lists should be
populated through the function InputDecays (TDatabasePDG *). This func-
tion, however, does not automatically generate the anti-particle decays from
those of the particle. Instead, the anti-particle decay list is used. Since the
decay list may include electromagnetic and weak decays to particles other
than the hadrons stored in the TTMParticleSet object, each channel is first
checked to ensure that it contains only particles listed in the set. If not,
the channel is excluded from the hadron’s decay list used by THERMUS. As
mentioned earlier, care should be taken when using TDatabasePDG objects
based on the default file, as it is incomplete.

An extremely useful function is ListParents(Int_t id), which lists all
of the parents of the particle with Monte Carlo ID id. This function uses
GetParents(TList *parents, Int_t id), which populates the list passed
with the decays to particle id. Note that these parents are not necessarily
‘direct parents’; the decays may involve unstable intermediates.

0.3.3 Customising the Set

The AddParticle and RemoveParticle functions allow customisation of par-
ticle sets. Particle and anti-particle are treated symmetrically in the case of
the former; if a particle is added, then its corresponding anti-particle is also
added. This is not the case for the RemoveParticle function, however, where
particle and anti-particle have to be removed separately.

Mass-cuts can be performed using MassCut (Double_t x) to exclude all
hadrons with masses greater than the argument (expressed in GeV). Decays
then have to be re-inserted, to exclude the influence of the newly-excluded
hadrons from the decay lists.

The function SetDecayEfficiency allows the reconstruction efficiency
of the decays from a specified parent to the specified daughter to be set.
Changes are reflected only in the decay summary list of the parent (i.e.
not the decay channel list). Note that running UpdateDecaySummary or
GenerateBRatios will remove any such changes, by creating again a sum-
mary list consistent with the channel list.
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In addition to these operations, users can input their own particle sets by
compiling their own particle lists and decay files.

0.3.4 The Destructor

When the destructor is called, the heap-based TTMParticle entries in the
hash table are deleted.

0.4 The TTMParameter Class

This class groups all relevant information for parameters in the statistical-
thermal model. Data members include:

fName - the parameter name,
fValue - the parameter value,
fError - the parameter error,
fFlag - a flag signalling the type of parameter (constrain, fit,

fixed, or uninitialised),
fStatus - a string reflecting the intended treatment or action taken.

In addition to these data members, the following, relevant to fit-type param-
eters, are also included:

fStart - the starting value in a fit,

fMin - the lower bound of the fit-range,
fMax - the upper bound of the fit-range,
fStep - the step-size.

The constructor,

TTMParameter *p = new TTMParameter( TString name, Double_t value,
Double_t error),

and SetParameter (TString name, Double t value, Double_t error) func-
tion set the parameter to fixed-type, by default. The parameter-type can be
modified using the Constrain, Fit or Fix methods.
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0.5 The TTMParameterSet Class

The TTMParameterSet class is the base class for all thermal parameter set
classes. Each derived class contains its own TTMParameter array, with size
determined by the requirements of the ensemble. The base class contains a
pointer to the first element of this array. In addition, it stores the constraint
information.

All derived classes must contain the function GetRadius. In this way,
TTMParameterSet is able to define a function, GetVolume, which returns the
volume required to convert densities into total fireball quantities (the volume
returned by this function is in units of fm?).

TTMParameterSetBSQ (applicable to a grand-canonical approach),
TTMParameterSetBQ (applicable to a strangeness-canonical approach) and
TTMParameterSetCanBSQ (applicable to a fully B, S and @) canonical ap-
proach) are the derived classes coded at present.

0.5.1 TTMParameterSetBSQ

This derived class, applicable to the grand-canonical ensemble, contains the
parameters:

T pp ks pg Hc vs Y R

where R is the fireball radius, assuming a spherical fireball (i.e. V = 4/37R?).
In addition, the B/2() ratio and charm and strangeness density of the system
are stored here. In the constructor, all errors are defaulted to zero, as is R,

ue, S/V, C/V and B/2Q, while ¢ is defaulted to unity.

Each parameter has a ‘getter’ (e.g. GetTPar), which returns a pointer to
the requested TTMParameter object. In this class, ug and pg can be set to
constrain-type using ConstrainMu$ and ConstrainMuQ, where the arguments
are the required strangeness density and B/2Q) ratio, respectively. No such
function exists for pc, since constraining functions are not yet coded for the
charm density. Each parameter of this class can be set to fit-type, using
functions such as FitT (where the fit parameters have reasonable default
values), or fixed-type, using functions such as FixMuB.
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0.5.2 TTMParameterSetBQ

This derived class, applicable to the strangeness-canonical ensemble (strangeness
exactly conserved and B and @ treated grand-canonically), has the parame-
ters:

T pp po vs Re R

where R, is the canonical or correlation radius; the radius inside which
strangeness is exactly conserved. The fireball radius R, on the other hand,
is used to convert densities into total fireball quantities. In addition, the
required B/2@) ratio is also stored, as well as the strangeness required inside
the correlation volume (which must be an integer).

In addition to the same ‘getters’ and ‘setters’ as the previous derived
class, it is possible to set ug to constrain-type by specifying the B/2Q ra-
tio in the argument of ConstrainMuQ. The strangeness required inside the
canonical volume is set through the SetS method. This value is defaulted
to zero. The function ConserveSGlobally fixes the canonical radius, R, to
the fireball radius, R. As in the case of the TTMParameterSetBSQ class, there
also exist functions to set each parameter to fit or fixed-type.

0.5.3 TTMParameterSetCanBSQ

This set, applicable to the canonical ensemble with exact conservation of B,
S and @, contains the parameters:

Since all conservation is exact, there are no chemical potentials to satisfy
constraints. Again, the same ‘getters’, ‘setters’ and functions to set each
parameter to fit or fixed-type exist, as in the case of the previously discussed
TTMParameterSet derived classes.

0.5.4 Example

As an example, let us define a TTMParameterSetBQ object. By default, all
parameters are initially of fixed-type. Suppose we wish to fit 7" and ug, and
use L to constrain the B/2() ratio in the model to that in Pb+Pb collisions:

17



root [ ] TTMParameterSetBQR parBQ(0.160,0.2,-0.01,0.8,6.,6.)
root [ ] parBQ.FitT(0.160)

root [ ] parBQ.FitMuB(0.2)

root [ ] parBQ.ConstrainMuQ(1.2683)

root [ ] parBQ.List()
sk kokokokokokkokskkkkkkkokkokkk Thermal Parameters kskkskskokskskskskokskkkkkkk sk kk k

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.2 (to be FITTED)
start: 0.2
range: 0 -- 0.5
step: 0.001
muQ = -0.01 (to be CONSTRAINED)
B/2Q: 1.2683
gammas = 0.8 (FIXED)
Can. radius = 6 (FIXED)
radius = 6 (FIXED)

Parameters unconstrained

3k ok 3k 3k 2k 3k 3k 2k >k 3k ok 3k >k dk 3k 5k ok dk 3k 3k ok >k 3k ok >k ok dk 2k 3k 3k 3k k k 3k 3k 2k >k 2k dk dk 3k >k >k ok 3k 5k 3k >k >k 3k 3k 3k >k >k >k 3k 5k >k >k >k %k %k %k %k

Note the default parameters for the 7" and pp fits. Obviously, no constraining
or fitting can take place yet; we have simply signalled our intent to take these
actions at some later stage.

0.6 The TTMThermalParticle Class

By combining a TTMParticle and TTMParameterSet object, a thermal par-
ticle can be created. The TTMThermalParticle class is the base class from
which thermal particle classes relevant to the three currently implemented
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thermal model formalisms, TTMThermalParticleBSQ, TTMThermalParticleBQ
and TTMThermalParticleCanBSQ, are derived. Since no particle set is spec-
ified, the total fireball properties cannot be determined. Thus, in the grand-
canonical approach, the constraints cannot yet be imposed to determine the
values of the chemical potentials of constrain-type, while, in the strangeness-
canonical and canonical formalisms, the canonical correction factors cannot
yet be calculated. Instead, at this stage, the chemical potentials and/or cor-
rection factors must be specified.

Use is made of the fact that, in the Boltzmann approximation, e, n
and P, in the canonical and strangeness-canonical ensembles, are simply the
grand-canonical values, with the chemical potential(s) corresponding to the
canonically-treated quantum number(s) set to zero, multiplied by a particle-
specific correction factor. This allows the functions for calculating e, n and
P in the Boltzmann approximation to be included in the base class, which
then also contains the correction factor as a data member (by definition, this
correction factor is 1 in the grand-canonical ensemble).

Both functions including and excluding resonance width, I', are coded
(e.g. DensityBoltzmannNoWidth and EnergyBoltzmannWidth). When width
is included, a Breit-Wigner distribution is integrated over between the limits
[max(m — 2T, Mnreshold), m + 207

0.6.1 TTMThermalParticleBSQ

This class, relevant to the grand-canonical treatment of B, S and @, has
constructor:

TTMThermalParticleBSQ(TTMParticle *part, TTMParameterSetBSQ *parm);

In addition to the functions for calculating e, n and P in the Boltzmann
approximation, defined in the base class, functions implementing quantum
statistics for these quantities exist in this derived class (e.g. EnergyQStatNoWidth
and PressureQStatWidth). Additional member functions of this class cal-
culate the entropy using either Boltzmann or quantum statistics, with or
without width.

In the functions calculating the thermal quantities assuming quantum
statistics, it is first checked that the integrals converge for the bosons (i.e.
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there is no Bose-Einstein condensation). The check is performed by the
ParametersAllowed method. A warning is issued if there are problems and
zero is returned.

This class also accommodates charm, since the associated parameter set
includes pc and ¢, while the associated particle may have non-zero charm.

Note: The chemical potentials ps and pg are not automatically con-
strained in this class.

0.6.2 TTMThermalParticleBQ

This class, relevant to the strangeness-canonical ensemble, has constructor:

Double_t corr);

TTMThermalParticleBQ( TTMParticle *part, TTMParameterSetBQ *parm,

At present, this class is only applied in the Boltzmann approximation.
Under this assumption, n, e and P are given by the grand-canonical result,
with ug set to zero, up to a multiplicative correction factor. Since the total
entropy does not split into the sum of particle entropies, no entropy calcula-
tion is made in this class.

Note: The chemical potential g is not automatically constrained and
the canonical correction factor must be specified.

0.6.3 TTMThermalParticleCanBSQ

This class, relevant to the fully canonical treatment of B, S and (@), has
constructor:

TTMThermalParticleCanBSQ( TTMParticle *part,
TTMParameterSetCanBSQ *parm,
Double_t corr);

At present, as in the case of TTMThermalParticleBQ, this class is only
applied in the Boltzmann approximation. Also, since the total entropy again
does not split into the sum of particle entropies, no entropy calculation is
made here.

Note: The canonical correction factor must be specified.
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0.6.4 Example

Let us make a thermal particle, within the strangeness-canonical ensemble,
from the A(1600)° and the parameter set previously defined. Since this
particle has zero strangeness, a correction factor of 1 is passed as the third
argument of the constructor:

root [ ] TTMThermalParticleBQ therm_delta(part,&parBQ,1.)
root [ ] therm_delta.DensityBoltzmannNoWidth()
(Double_t)8.15072671710089913e-04

root [ ] therm_delta.EnergyBoltzmannWidth()
(Double_t)2.29185316377137748e-03

0.7 The TTMThermalModel Class

Once a parameter and particle set have been specified, these can be combined
into a thermal model. TTMThermalModel is the base class from which the
TTMThermalModelBSQ, TTMThermalModelBR and TTMThermalModelCanBSQ
classes are derived. A string descriptor is included as a data member of
the base class to identify the type of model. This is used, for example, to
handle the fact that the number of parameters in the associated parameter
sets is different, depending on the model type.

All derived classes define functions to calculate the primordial particle,
energy and entropy densities, as well as the pressure. These thermal quan-
tities are stored in a hash table of TTMDensObj objects. Again, access is
through the particle ID’s. In addition to the individual particles’ thermal
quantities, the total primordial fireball strangeness, baryon, charge, charm,
energy, entropy, and particle densities, pressure, and Wroblewski factor (see
Section 0.7.11) are included as data members.

At this level, the constraints on any chemical potentials of constrain-type
can be imposed, and the correction factors in canonical treatments can be
determined. Also, as soon as the primordial particle densities are known, the
decay contributions can be calculated.

0.7.1 Calculating Particle Densities

Running GenerateParticleDens clears the current entries in the density
hash table of the TTMThermalModel object, automatically constrains the
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chemical potentials (where applicable), calculates the canonical correction
factors (where applicable), and then populates the density hash table with
a TTMDensObj object for each particle in the associated set. The decay con-
tributions to each stable particle are also calculated, so that the density
hash table contains both primordial and decay particle density contribu-
tions, provided of course that the decays have been entered in the associ-
ated TTMParticleSet object. In addition, the Wroblewski factor and total
strangeness, baryon, charge, charm and particle densities in the fireball are
calculated.

Note: The summary decay lists of the associated TTMParticleSet object
are used to calculate the decay contributions. Hence, only stable particles
have decay contributions reflected in the hash table. Unstable particles that
are themselves fed by higher-lying resonances, do not receive a decay contri-
bution.

Each derived class contains the private function PrimPartDens, which
calculates only the primordial particle densities and, hence, the canonical
correction factors, where applicable. In the case of the grand-canonical and
strangeness-canonical ensembles, this function calculates the densities with-
out automatically constraining the chemical potentials of constrain-type first.
The constraining is handled by GenerateParticleDens, which calls external
friend functions, which, in turn, call PrimPartDens. In the purely canonical
ensemble, GenerateParticleDens simply calls PrimPartDens. In this way,
there is uniformity between the derived classes. Since there is no constraining
to be done, there is no real need for a separate function in the canonical case.

0.7.2 Calculating Energy and Entropy Densities and
Pressure

GenerateEnergyDens, GenerateEntropyDens and GeneratePressure iter-
ate through the existing density hash table and calculate and insert, respec-
tively, the primordial energy density, entropy density and pressure of each
particle in the set. In addition, they calculate the total primordial energy
density, entropy density and pressure in the fireball, respectively. These func-
tions require that the density hash table already be in existence. In other
words, GenerateParticleDens must already have been run. If the parame-
ters have subsequently changed, then this function must be run yet again to
recalculate the correction factors or re-constrain the parameters, as required.
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0.7.3 Bose-Einstein Condensation

When quantum statistics are taken into account (e.g. in TTMThermalModelBSQ
or for the non-strange particles in TTMThermalModelBQ), certain choices of pa-
rameters lead to diverging integrals for the bosons (Bose-Einstein condensa-
tion). In these classes, a check, based on TTMThermalParticleBSQ: :Parameters-
Allowed, is included to ensure that the parameters do not lead to problems.
Including also the possibility of incomplete strangeness and/or charm satu-
ration (i.e. vs # 1 and/or ¢ # 1), Bose-Einstein condensation is avoided,
provided that,

el > iy, (1)

for each boson. If this condition is failed to be met for any of the bosons in
the set, a warning is issued and the densities are not calculated.

0.7.4 Accessing the Thermal Densities

The entries in the density hash table are accessed using the particle Monte
Carlo ID’s. The function GetDensities(Int_t ID) returns the TTMDensQObj
object containing the thermal quantities of the particle with the specified
ID. The primordial particle, energy, and entropy densities, pressure, and
decay density are extracted from this object using the GetPrimDensity,
GetPrimEnergy, GetPrimEntropy, GetPrimPressure, and GetDecayDensity
functions of the TTMDensObj class, respectively. The sum of the primordial
and decay particle densities is returned by TTMDens0Obj: :GetFinalDensity.
TTMDensObj::List outputs to screen all thermal densities stored in a
TTMDensObj object.

ListStableDensities lists the densities (primordial and decay contri-
butions) of all those particles considered stable in the particle set associ-
ated with the model. Access to the total fireball densities is through sepa-
rate ‘getters’ defined in the TTMThermalModel base class (e.g. GetStrange,
GetBaryon etc.).

0.7.5 Further Functions

GenerateDecayPartDens and GenerateDecayPartDens(Int_t id) (both de-
fined in the base class) calculate decay contributions to stable particles. The
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former iterates through the density hash table and calculates the decay contri-
butions to all those particles considered stable in the set. The latter calculates
just the contribution to the stable particle with ID id. In both cases, the pri-
mordial densities must be calculated first. In fact, GenerateParticleDens
automatically calls GenerateDecayPartDens, so that this function does not
have to be run separately under ordinary circumstances. However, if one is
interested in investigating the effect of decays, while keeping the parameters
(and hence the primordial densities) fixed, then running these functions is
best (the hash table will not be repeatedly cleared and repopulated with the
same primordial densities).

ListDecayContributions(Int_t d_id) lists the contributions (in per-
centage and absolute terms) of decays to the daughter with ID d_id. The
primordial and decay densities must already appear in the density hash ta-
ble (i.e. run GenerateParticleDens first). ListDecayContribution(Int_t
p-id, Int_t d_id) lists the contribution of the decay from the specified par-
ent (with ID p_id) to the specified daughter (with ID d_id). The percentages
listed by each of these functions are those of the individual decays to the total
decay density.

0.7.6 TTMThermalModelBSQ

This class has constructor:

TTMThermalModelBSQ( TTMParticleSet *particles,
TTMParameterSetBSQ *parameters,
Bool t gstats = true, Bool t width = true)

In the grand-canonical ensemble, quantum statistics can be employed and,
hence, there is a flag specifying whether to use Fermi-Dirac and Bose-Einstein
statistics or Boltzmann statistics. As can be seen, the constructor, by de-
fault, includes both the effect of quantum statistics and resonance width. The
flags controlling their inclusion are set using the SetQStats and SetWidth
functions, respectively. The functions that calculate the particle, energy, and
entropy densities, and pressure then use the corresponding functions in the
TTMThermalParticleBSQ class to calculate these quantities in the required
way. The statistics data member (fStat) of each TTMParticle included in
the associated set can be used to fine-tune the inclusion of quantum statis-
tics; with the quantum statistics flag switched on, Boltzmann statistics are
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still used for those particles with £Stat=0.

In this ensemble, at this stage, both pg and ug can be constrained (either
separately or simultaneously). In order to accomplish this, the pug and/or pq
parameters in the associated TTMParameterSetBSQ object must be set to
constrain-type.

It is also possible to constrain pp by the primordial ratio £/N (the aver-
age energy per hadron), n,+n; (the total primordial baryon plus anti-baryon
density), or s/T? (the primordial, temperature-normalised entropy density).
This is accomplished by the ConstrainEoverN, ConstrainTotalBaryonDensity
and ConstrainSoverT3 methods, respectively. Running these functions will
adjust up such that E/N, ny + ng or s/T3, respectively, has the required
value, regardless of the parameter type of ugp.

This class also accommodates charm, since the associated parameter set
includes pc and 7y, while the associated particle set may contain charmed
particles. However, no constraining functions have yet been written for the
charm content within this ensemble.

Excluded Volume Effects

Within the grand-canonical ensemble, it is possible to include excluded vol-

ume effects. Their inclusion is controlled by the fExclVolCorrection flag,

false by default, which is set through the SetExcludedVolume function.
When included, these corrections are calculated on calling GenerateParticleDens,
based on the hard-sphere radii stored in the TTMParticle objects of the as-
sociated particle set.

0.7.7 TTMThermalModelBQ

This class contains the following additional data members:

flnZtot - log of the total partition function,

£1nZ0 - log of the non-strange component of the partition function,
fExactMuS - equivalent strangeness chemical potential,

fCorrP1 - canonical correction for S = +1 particles,

fCorrP2 - canonical correction for S = +2 particles,

fCorrP3 - canonical correction for S = +3 particles,
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fCorrM1 - canonical correction for S = -1 particles,
fCorrM2 - canonical correction for S = -2 particles,
fCorrM3 - canonical correction for S = -3 particles,

and has constructor:

TTMThermalModelBQ( TTMParticleSet *particles,
TTMParameterSetB( *parameters,
Bool_t width = true)

Although this ensemble is only applied in the Boltzmann approxima-
tion for S # 0 hadrons, it is possible to apply quantum statistics to the
S = 0 hadrons. This is achieved through the SetNonStrangeQStats func-
tion. By default, quantum statistics is included for the non-strange hadrons
by the constructors. Resonance width can be included for all hadrons, and
is achieved through the SetWidth function. The constructors, by default,
apply resonance width. The functions that calculate the particle, energy,
and entropy densities, and pressure then use the corresponding functions in
the TTMThermalParticle classes to calculate these quantities in the required
way.

GenerateParticleDens populates the density hash table with particle
densities, including the canonical correction factors, which are also stored in
the appropriate data members. The equivalent strangeness chemical poten-
tial is calculated from the canonical correction factor for S = +1 particles.
In the limit of large VT3, this approaches the value of ug in the equivalent
grand-canonical treatment.

Running GenerateEntropyDens populates each TTMDens0bj object in the
hash table with only that part of the total entropy that can be unambigu-
ously attributed to that particular particle. There is a term in the total
entropy that cannot be split; this is added to the total entropy at the end,
but not included in the individual entropies (i.e. summing up the entropy
contributions of each particle will not give the total entropy).

At this stage, in this formalism, ug can be constrained (this is automati-
cally realised if this parameter is set to constrain-type), while the correlation
radius (R.) can be set to the fireball radius (R) by applying the function
ConserveSGlobally to the associated TTMParameterSetBQ object.

It is also possible to constrain pp by the primordial ratio E/N (the aver-
age energy per hadron), n,+nj (the total primordial baryon plus anti-baryon
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density), or s/T? (the primordial, temperature-normalised entropy density)
using the ConstrainEoverN, ConstrainTotalBaryonDensity or Constrain-
SoverT3 methods, respectively. Running these functions will adjust up such
that E/N, ny+ny or s/T3, respectively, has the required value, regardless of
the parameter type of ug.

The strangeness content within the correlation volume, as calculated by
THERMUS in the strangeness-canonical ensemble requiring strangeness neu-
trality, is shown in Figure 2, for up = 0 and pp = 0.240 GeV (in both cases,
po = 0 and s = 1). As one can see, the strangeness constraint is satisfied
far better in the case of the vanishing baryon chemical potential. One no-
tices, too, that the constraint worsens as the temperature and/or correlation
radius increase.

0.7.8 TTMThermalModelCanBSQ

This class has constructor:

TTMThermalModelCanBSQ( TTMParticleSet *particles,
TTMParameterSetCanBSQ *parameters,
Bool_t width = true);

and contains, amongst others, the following data members:

flnZtot - log of the total canonical partition function,
fMuB,fMuS,fMuQ - equivalent chemical potentials,
fCorrpip - correction for 7-like particles,
fCorrpim - correction for w~-like particles,
fCorrkm - correction for K~ -like particles,
fCorrkp - correction for K T-like particles,
fCorrk0 - correction for K°-like particles,
fCorrak0 - correction for K°-like particles,
fCorrproton - correction for p-like particles,
fCorraproton - correction for p-like particles,
fCorrneutron - correction for n-like particles,
fCorraneutron - correction for n-like particles,
fCorrlambda - correction for A-like particles,
fCorralambda - correction for A-like particles,
fCorrsigmap - correction for X*-like particles,
fCorrasigmap - correction for $-like particles,
fCorrsigmam - correction for X~ -like particles,
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Figure 2: The strangeness content in the correlation volume, as a func-
tion of temperature and correlation radius, achieved by THERMUS in the
strangeness-canonical ensemble imposing strangeness neutrality, with ug = 0
and vs = 1, for ug =0 (top) and up = 0.240 GeV (bottom).
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fCorrasigmam - correction for Y *-like particles,

fCorrdeltam - correction for A~-like particles,
fCorradeltam - correction for A*-like particles,
fCorrdeltapp - correction for A**-like particles,
fCorradeltapp - correction for A~"-like particles,
fCorrksim - correction for =~ -like particles,
fCorraksim - correction for =*-like particles,
fCorrksiO - correction for Z%-like particles,
fCorraksi0 - correction for =C-like particles,
fCorromega - correction for Q~-like particles,
fCorraomega - correction for Q*-like particles.

Since this ensemble is only applied in the Boltzmann approximation, there
is no flag for quantum statistics. However, resonance width can be included.
This is achieved through the SetWidth function. The constructor, by default,
applies resonance width. The functions that calculate the particle, energy,
and entropy densities, and pressure then use the corresponding functions in
the TTMThermalParticle classes to calculate these quantities in the required
way.

GenerateParticleDens calls PrimPartDens, which calculates the parti-
cle densities, including the canonical correction factors, which are then also
stored in the relevant data members accessible through the GetCorrFactor
method. The integrands featuring in the evaluation of the partition function
and correction factors can be viewed after calling PopulateZHistograms.
This function populates the array passed as argument with histograms show-
ing these integrands as a function of the integration variables ¢g and ¢q.
Since these histograms are created off of the heap, they must be cleaned up
afterwards.

Running GenerateEntropyDens populates each TTMDens0bj object in the
density hash table with only that part of the total entropy that can be unam-
biguously attributed to that particular particle. There is a term in the total
entropy that cannot be split; this is added to the total entropy at the end,
but not included in the individual entropies (i.e. summing up the entropy
contributions of each particle will not give the total entropy).

Figures 3 and 4 show, as a function of temperature 7" and fireball radius
R, the degree to which the baryon, strangeness and charge contents in the
model agree with that required, for B =2, S =0 and @ = 2 (as in pp colli-
sions) and B =24, S = 0 and @ = 12 (as in fully-central C' 4+ C collisions),
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respectively. As is evident from the figures, the constraints on the quantum
contents of the system are well enforced, particularly at low temperatures
and for small systems.

0.7.9 Example

As an example, we consider the strangeness-canonical ensemble, based on
the particle set and strangeness-canonical parameter set previously defined.
After instantiating the object, we populate the hash table with primordial
and decay particle densities:

root [ ] TTMThermalModelBQ modBQ(&set ,&parBQ)
root [ ] modBQ.GenerateParticleDens()

root [ ] parBQ.List()

sokokokkokokkokkokokkkkkdkokokokkk Thermal Parameters kskoksksksksksk kokokskok sk k k ks ok ok k

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.2 (to be FITTED)
start: 0.2
range: 0 -- 0.5
step: 0.001
muQ = -0.00636409 (*CONSTRAINED*)
B/2Q: 1.2683
gammas = 0.8 (FIXED)
Can. radius = 6 (FIXED)
radius = 6 (FIXED)

B/2Q Successfully Constrained

sk ok ok ok ok ok ok o ok ke sk o ok sk ok sk ok sk ok sk ke sk sk sk sk sk sk sk sk sk sk ok sk sk ok ke sk ok sk ok sk ok sk ok sk ok sk sk ok ok sk sk ok ok ok ok e ok ok ok e ok ok
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Figure 3: The accuracy, as a function of the fireball radius R and temperature
T, with which THERMUS constrains the baryon, strangeness and charge
contents, with B =2, § =0 and ) = 2, assuming vs = 1.
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Figure 4: The accuracy, as a function of the fireball radius R and temperature
T, with which THERMUS constrains the baryon, strangeness and charge
contents, with B =24, S = (0 and @ = 12, assuming vs = 1.
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One notices that the constraint on g is now automatically imposed.

The energy and entropy densities and pressure can be calculated once
GenerateParticleDens has been run:

root [ ] modBQ.GenerateEnergyDens ()
root [ ] modBQ.GenerateEntropyDens ()
root [ ] modBQ.GeneratePressure()
root [ ] modBQ.ListInfo()

sk sk ok sk ok sk ok ok ok ke ok ok sk ke sk sk sk ok sk ok ke ok ke ok e ok ke o ke sk ok ok ok sk ke sk ke sk ok sk ke sk ke sk sk ok sk sk ke sk sk sk ok sk ok sk ok sk ok sk ok sk ok ok
skokokokookokokokokokskokokokokkok sk ok okokokk Thermal Model Info skokokokskskskoskokok ok sk ok ok ok ok ok ok ok ok ok

Particle set:
./particles/PartList_PPB2002.txt

Quantum statistics for S=0 hadromns

Boltzmann statistics for strange hadrons
Resonance width included

skkckokokokkkokkkkokkkokkkkkk Thermal Parameters kkskskskkskskkskskskkkkkkkkkkk

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.2 (to be FITTED)
start: 0.2
range: 0 -- 0.5
step: 0.001
muQ = -0.00636409 (*CONSTRAINED*)
B/2Q: 1.2683
gammas = 0.8 (FIXED)
Can. radius = 6 (FIXED)
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radius = 6 (FIXED)
B/2Q Successfully Constrained
sk o ok ok ok o o ok K o o o ks o o s o o ok ko o ks o ok o ok ko ok sk o o ko o ok sk o ok sk ok ok o o ok ko ok ok ok ok ok
kakokokokkokokkkok ok kkkokokkokk Thermal Quantities skskskskskoskskskskokkkkokskkkok ok kkok
S required in canonical volume: 0

S in canonical volume (model) = -0.00319327

B/2Q 1.2683 (constraint : 1.2683)

lambda_s 0.437324

Primordial Densities:

n = 0.452036
e = 0.463067
= 3.21852

sokskskokokokokkkkkkk STABLE PARTICLES skskskskokokokosk sk ok sk kok k
anti-Lambda
Sigma-
Omega
pio
KsiO
K+
n
Sigma+
anti-Sigma-
anti-Omega
KOS
anti-KsiO
Ksi-
anti-K+
anti-n
anti-Sigma+
pi+
anti-Ksi-

p
anti-pi+
anti-p
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Lambda
KOL
3k 3k vk 3k ok vk vk vk vk ok vk vk vk vk ok vk vk vk vk dk vk vk vk vk vk vk vk k bk k >k 3k >k 3k 3k ok >k 3k 5k >k dk dk >k >k >k >k

3k 3k 3k 3k >k ok 3k ok >k ok 3k ok 3k >k 3k 3k 3k >k ok K sk >k ok ok 3k 3k 3k sk ok 3k 5k 5k 3k 3k ok 3k sk >k >k >k 3k 3k sk >k ok ok k 3k >k >k ok 3k 5k 5k >k >k ok 5k >k >k >k %k 5k 5k
3k 2k ok ok 2k 2k dk ok ok 2k 2k ok ok %k 2k 3k ok %k 2k 3k ok ok 2k 2k 3k 3k ok ok 2k dk 5k 5k >k 2k 2k 5k ok >k 2k dk 2k 3k ok >k 2k 2k 3k 5k 2k *k 2k dk >k 5k >k 2k 2k 5k >k *k %k %k %k %k

One sees listed the properties of the fireball (S inside the canonical volume,
B/2@Q, and the Wroblewski factor (\g), as well as the total particle, energy
and entropy primordial densities). Now, suppose that we are interested in
the thermal densities of the A(1600)° and 7+:

root [ ] TTMDensObj *delta_dens = modBQ.GetDensities(32114)
root [ ] delta_dens->List()

*x*kx Densities for Particle 32114 k%
n_prim = 0.00138306

n_decay = 0

e_prim = 0.0022912
s_prim = 0.0139745
p_prim = 0.000221328

root [ ] TTMDensObj *piplus_dens = modBQ.GetDensities(211)
root [ ] piplus_dens->List()

*¥x* Densities for Particle 211 k*x*x
n_prim = 0.0488139
n_decay = 0.114392

e_prim = 0.0247039
s_prim = 0.20276
p_prim = 0.00742708

One notices that the 7 has a decay density contribution, while the A(1600)°
does not. This is because, unlike the A(1600)°, the 7T is considered stable.

0.7.10 Imposing of Constraints

The ‘Numerical Recipes in C’ function applying the Broyden globally con-
vergent secant method of solving nonlinear systems of equations is employed
in THERMUS to constrain parameters. The input to the Broyden method
is a vector of functions for which roots are sought. Typically, in the thermal
model, solutions to the following equations are required (either separately or
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simultaneously):

(ﬂ)model ( B )colliding system _
QQ/V primordial 2Q ’

model __ Qcolliding system  _
Sprimordial S - 0’
(E/V ) model ( E ) required
—L — (= = 0.
N/V primordial N

Although, as written, these equations are correct, the quantities B/2Q),
S and E/N are typically of different orders of magnitude. Since the Broy-
den method in ‘Numerical Recipes in C’ defines just one tolerance level for
function convergence (TOLF), it is important to ‘normalise’ each equation:

( B/V )model ~ (2) colliding system / <£> colliding system .
QQ/V primordial 2Q 2Q ’

model __ qcolliding system colliding system  __
{Sprimordial S } /S - 07

E/V model ~ E required / E required .
N/V primordial N N .

This is the most democratic way of treating all constraints equally. How-
ever, this method obviously fails in the event of one of the denominators
being zero. For the equations considered above, this is only likely in the
case of the strangeness constraint, where the initial strangeness content is
typically zero. In this case, where the strangeness carried by the positively
strange particles S, is balanced by the strangeness carried by the negatively
strange particles S_, we write as our function to be satisfied,

(S/V)model / (‘S+ model /V + ‘S, model /V) = 0.

primordial primordial primordial

In this way, the constraints can be satisfied to equal relative degrees, and
equally well fractionally at each point in the parameter space. In addition
to the constraints listed above, THERMUS also allows for the constraining
of the total baryon plus anti-baryon density and the temperature-normalised
entropy density, s/T3.
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0.7.11 Calculation of the Wroblewski Factor

The Wroblewski factor [7] is defined as,

2 < 85 >
<ul >+ <dd>’

As =

where < uti > + < dd > is the sum of newly-produced u@ and dd pairs,
while all s5 pairs are newly-produced if S = 0 in the initial state.

In THERMUS, Ags is calculated in the following way:

e Using the primordial particle densities and the strangeness content of
each particle listed in the particle hash table, the s+5 and u+d+u+d
densities are determined.

e Assuming S = 0, #s = #35, and so the density of newly-produced ss
pairs is simply (s + 5)/2.

e From baryon number conservation, the net baryon content in the sys-
tem, ng, originates from the initial state. Thus, 3 x ng must correspond
to the density of u + d quarks brought in by the colliding nuclei. This
is subtracted from the total u + d 4+ @ + d density to yield the density
of newly-produced non-strange light quarks.

e Since #s = #5 and, amongst newly-produced non-strange light quarks,
u+d = u+d, further assuming that ug = 0 implies that u = u = d = d.
This allows the density of uu and dd pairs to be easily determined.

0.8 Thermal Fit Preliminaries

Often a single experiment releases yields and ratios that contain different
feed-down corrections. Each yield or ratio then has a different decay chain
associated with it. Since TTMThermalModel objects allow for just one as-
sociated particle set, they do not allow sufficient flexibility for performing
thermal fits to experimental data. Instead, TTMThermalFit classes had to
be developed. Before we discuss these classes, let us look at the TTMYield
object, which forms an essential part of the TTMThermalFit class.
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0.8.1 TTMYield

Information relating to both yields and ratios of yields can be stored in
TTMYield objects. These objects contain the following data members:

fName - the name of the yield or ratio,

fID1 - the ID of the yield or numerator ID in the case of a ratio,

fID2 - denominator ID in the case of a ratio (0 for a yield),

fFit - true if the yield or ratio is to be included in a fit (else predicted),
fSetl - particle set relevant to yield or numerator in case of ratio,

fSet2 - particle set relevant to denominator in case of ratio (0 for yield),
fExpValue - the experimental value,

fExpError - the experimental error,

fModelValue - the model value,
fModelError - the model error.

This class has the following constructor,

TTMYield( TString name, Double_t exp.val, Double_t exp._err,
Int_t idl, Int_t id2 = 0, Bool_t fit = true)

By default, TTMYield objects are set for inclusion in fits. The functions
Fit and Predict control the fit-status of a TTMYield object. Particle sets
(decay chains) are assigned using the SetPartSet method.

The functions GetStdDev and GetQuadDev return the number of standard

and quadratic deviations between model and experimental values, respec-
tively, i.e.,

(Model Value — Exp. Value)/Exp. Error,
and,

(Model Value — Exp. Value)/Model Value,

respectively, while List outputs the contents of a TTMYield object to screen.
Access to all remaining data members is through the relevant ‘getters’ and
‘setters’.
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0.9 The TTMThermalFit Class

This is the base class from which the TTMThermalFitBSQ, TTMThermalFitBQ
and TTMThermalFitCanBSQ classes are derived. Each TTMThermalFit object
contains:

e a particle set, the so-called base set, which contains all of the con-
stituents of the hadron gas, as well as the default decay chain to be
used,

a parameter set,

a list of TTMYield objects containing yields and/or ratios of interest,

data members storing the total x? and quadratic deviation, and

a TMinuit fit object.

A string descriptor is also included in the base class to identify the type
of model on which the fit is based. This is used, for example, to determine
the number of parameters in the associated parameter sets.

Each derived class defines a private function, GenerateThermalModel,
which creates (off the heap) a thermal model object, based on the base par-
ticle set and parameter set of the TTMThermalFit object, with the specific
quantum statistics/resonance width/excluded volume requirements, where
applicable.

0.9.1 Populating and Customising the List of Yields of
Interest

The list of yields and/or ratios of interest can be input from file using the
function InputExpYields, provided that the file has the following format:

333 Exp_A 0.02 0.01

-211 211 Exp_.B 0.990 0.100
-211 211 Exp_C 0.960 0.177
321 -321 Exp_C 1.152 0.239

where the first line corresponds to a yield, and has format:

Yield ID /t Descriptor string /t Exp. Value /t Exp. Error/n
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while the remaining lines correspond to ratios, and have format:

Numerator ID /t Denominator ID /t Descriptor string /t Exp. Value
/t Exp. Error/n

A TTMYield object is created off the heap for each line in the file, with a
name derived from the ID’s and the descriptor. This name is determined by
the private function GetName, which uses the base particle set to convert the
particle ID’s into particle names and appends the descriptor. In addition to
all of the Monte Carlo particle ID’s in the associated base particle set, the
following THERMUS-defined identifiers are also allowed:

o ID = 1: Npgre,
e ID=2: h™,
e ID =3: h'.

By default, each TTMYield object inserted in the list of yields of interest
by the method InputExpYields is assigned the base particle set and set for
inclusion in fits.

A TTMYield object can also be added to the list using AddYield. Such
yields should, however, have names that are consistent with those added by
the InputExpYields method; the GetName function should be used to ensure
this consistency. Only yields with unique names can be added to the list,
since it is this name which allows retrieval of the TTMYield objects from the
list. If a yield with the same name already exists in the list, a warning is is-
sued. The inclusion of descriptors ensures that TTMYield objects can always
be given unique names.

RemoveYield(Int_t id1l,Int_t id2,TString descr) removes from the
list and deletes the yield with the name derived from the specified ID’s
and descriptor by GetName. The GetYield(Int_t idl,Int_t id2,TString
descr) method returns the required yield.

0.9.2 Generating Model Values

Values for each of the yields of interest listed in a TTMThermalFit object are
calculated by the function GenerateYields. This method uses the current
parameter values and assigned particle sets to calculate these model values.
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GenerateYields firstly calculates the primordial particle densities of all
constituents listed in the base particle set. This it does by creating the rele-
vant TTMThermalModel object from the base particle set and the parameters,
and then calling GenerateParticleDens. In this way, the density hash table
of the newly-formed TTMThermalModel object is populated with primordial
densities, as well as decay contributions, according to the base particle set
(recall that GenerateParticleDens automatically calculates decay contribu-
tions in addition to primordial ones). GenerateYields then iterates through
the list of TTMYield objects, calculating their specific decay contributions.
New model values are then inserted into these TTMYield objects. In addi-
tion, the total x? and quadratic deviation are calculated, based solely on
the TTMYield objects which are of fit-type. ListYields lists all TTMYield
objects in the list.

0.9.3 Performing a Fit

The FitData(Int_t flag) method initiates a fit to all experimental yields
or ratios in the TTMYield list which are of fit-type. With flag=0, a x? fit
is performed, while flag=1 leads to a quadratic deviation fit. In both cases,
fit_function is called. This function determines which parameters of the
associated parameter set are to be fit, and performs the required fit using
the ROOT TMinuit fit class. On completion, the list of TTMYield objects
contains the model values, while the parameter set reflects the best-fit param-
eters. Model values are calculated by the GenerateYields method. For each
TTMYield object in the list, a model value is calculated— even those that have
been chosen to be excluded from the actual fit. In this way, model predictions
can be determined at the same time as a fit is performed. ListMinuitInfo
lists all information relating to the TMinuit object, following a fit.

0.9.4 TTMThermalFitBSQ

The constructor,

char *file)

TTMThermalFitBSQ( TTMParticleSet *set, TTMParameterSetBSQ *par,

instantiates an object with the specified base particle set and parameter set
and inputs the yields listed in the specified file in the TTMYield list.
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The specifics of the fit, i.e. the treatment of quantum statistics, resonance
width and excluded volume corrections, are handled through the SetQStats,
SetWidth and SetExclVol methods, respectively. By default, both reso-
nance width and quantum statistics are included, while excluded volume
corrections are excluded.

0.9.5 TTMThermalFitBQ

The constructor,

TTMThermalFitBQ( TTMParticleSet *set, TTMParameterSetBQ *par,
char *file)

instantiates an object with the specified base particle set and parameter set
and inputs the yields listed in the specified file in the TTMYield list.

The specifics of the fit, i.e. the treatment of resonance width and quantum
statistics for the non-strange hadrons, are handled through the SetWidth and
SetNonStrangeQStats methods, respectively. By default, both resonance
width and quantum statistics for the non-strange hadrons are included.

0.9.6 TTMThermalFitCanBSQ

The constructor,

TTMThermalFitCanBSQ( TTMParticleSet *set, TTMParameterSetCanBSQ *par,
char *file)

instantiates an object with the specified base particle set and parameter set
and inputs the yields listed in the specified file in the TTMYield list.

The inclusion of resonance width in the fit is handled through the SetWidth
method. By default, resonance width is included.
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0.9.7 Example

As an example, consider a fit to fictitious particle ratios measured in Au+Au
collisions at some energy. We will assume a grand-canonical ensemble, with
the parameters T', up and pg fitted, and pg fixed to zero. In the grand-
canonical ensemble, ratios are independent of the fireball radius (this is not
true in the canonical ensemble). For this reason, there is no need to specify
the treatment of the radius. Furthermore, we will ignore the effects of reso-
nance width and quantum statistics.

We begin by instantiating a particle set object, based on the particle list
distributed with THERMUS. After inputting the particle decays, a parame-
ter set is defined:

root [ ] TTMParticleSet set("./particles/PartList_PPB2002.txt")
root [ ] set.InputDecays("./particles/")
root [ ] TTMParameterSetBSQ par(0.160,0.05,0.,0.,1.)
root [ ] par.List()
ok Aok KRRk kR kKR Kok Rk Rk ok Thermal Parameters #skkskksokkokkokkokkokk ok ok ok

T = 0.16 (FIXED)
muB = 0.05 (FIXED)
muS = 0 (FIXED)
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

muC = 0 (FIXED)
gammac = 1 (FIXED)

Parameters unconstrained

3k 2k ok ok 3k 2k 3k ok ok 2k 3k ok ok %k 2k 3k ok >k 2k 3k ok ok dk 2k 3k 3k ok ok 2k 3k k 5k ok 2k 2k k ok >k >k 2k 3k 3k ok >k 2k 2k 3k 5k >k >k 2k k¢ >k 5k >k dk 3k 5k >k *k %k %k %k %k

One notices that all parameters are, by default, of fixed-type.

Next, we change the parameters T, ug and pug to fit-type, supplying
sensible starting values as the arguments to the appropriate functions. For
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all other properties of the fit (step size, fit range etc.), we accept the default
values:

root [ ] par.FitT(0.160)
root [ ] par.FitMuB(0.05)
root [ ] par.FitMuS(0.)
root [ ] par.List()

Fokokok kKoK kkokokokkkokkdokokkkk Thermal Parameters kskokskskskskskkokokskskkkk dokokokk

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.05 (to be FITTED)
start: 0.05
range: 0 -- 0.5
step: 0.001
muS = 0 (to be FITTED)
start: 0
range: 0 -- 0.5
step: 0.001
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)
muC = 0 (FIXED)
gammac = 1 (FIXED)

Parameters unconstrained
sk sk o sk o sk ok e ok ok sk ok sk sk sk o ke ok ke sk ok sk sk sk s sk sk sk o sk sk ke sk sk o ke sk sk sk sk ok ke ook ok sk ok sk o ke ok sk ok e ok ke ok ke ok o ok o ok ok

Next, we prepare a file (‘ExpData.txt’) containing the experimental data:

-211 211 Exp_A 0.990 0.100
-211 211 Exp_ B 0.960 0.177
-211 211 Exp_.D 1.000 0.022
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321

321

321

-2212
-2212
-2212
-2212
-3122
-3122
-3312
-3334

As one can see, there are multiple occurrences of the same particle-anti-
particle combination. This is why additional descriptors are required. In
this case, the descriptors list the particular experiment responsible for the
measurement. In other situations, the descriptors may describe whether feed-
down corrections have been employed or some other relevant detail that, to-
gether with the ID’s, uniquely identifies each yield or ratio.

We are now in a position to create a TTMThermalFitBSQ object based on
the newly-instantiated parameter and particle sets and the data file. Since
quantum statistics and resonance width are included by default, we have to

-321
-321
-321
2212
2212
2212
2212
3122
3122
3312
3334

Exp_B
Exp_D
Exp_C
Exp_A
Exp_B
Exp_D
Exp_C
Exp_B
Exp_C
Exp_C
Exp_C

P O O OO0 OO =

explicitly turn these settings off:

root
root
root
root

]
L]
]
]

3k 3k 3k 3k ok ok 3k ok 3k ok 3k ok 3k >k 3k 3k >k >k ok 3k ok >k >k 3k ok 5k %k >k %k 5k 5k %k

anti-pi+/pi+ Exp_A:

anti-pi+/pi+ Exp_B:

anti-pi+/pi+ Exp_D:

K+/anti-K+ Exp_B:

FIT YIELD

.152
.098
.108
.650
.679
.600
.714
.734
.720
.878
.062

Experiment:

FIT YIELD

Experiment:

FIT YIELD

Experiment:

FIT YIELD

Experiment:

4

5

.239
111
.022
.092
.148
.072
.050
.210
.024
.0564
.410

O OO OO OO0 OoOoOoOOo

0.99

0.96

1.152

TTMThermalFitBSQ fit (&set,&par,"ExpData.txt")
fit.SetQStats (kFALSE)
fit.SetWidth(kFALSE)
fit.ListYields()

0.1

0.177

0.022

0.239



K+/anti-K+ Exp_D:

FIT YIELD
Experiment: 1.098 +- 0.111
K+/anti-K+ Exp_C:
FIT YIELD
Experiment: 1.108 +- 0.022
anti-p/p Exp_A:
FIT YIELD
Experiment: 0.65 +- 0.092
anti-p/p Exp_B:
FIT YIELD
Experiment: 0.679 +- 0.148
anti-p/p Exp_D:
FIT YIELD
Experiment: 0.6 +- 0.072
anti-p/p Exp_C:
FIT YIELD
Experiment: 0.714 +- 0.05
anti-Lambda/Lambda Exp_B:
FIT YIELD
Experiment: 0.734 +- 0.21
anti-Lambda/Lambda Exp_C:
FIT YIELD
Experiment: 0.72 +- 0.024
anti-Ksi-/Ksi- Exp_C:
FIT YIELD
Experiment: 0.878 +- 0.054
anti-Omega/Omega Exp_C:
FIT YIELD
Experiment: 1.062 +-  0.41

2k 3k 3k 3k ok 3k 3k >k >k 3k dk 3k >k ok 3k 3k 3k ok 3k 5k >k >k 3k dk 3k 3k >k 3k 3k 5k 3k >k >k 3k 3k >k 5k >k ok 3k 3k >k >k >k 3k 3k 3k >k >k 3k 3k 5k 3k >k >k ok 3k >k 5k >k >k 3k 3k >k %k %k %k 5k %k

One can see that all ratios are set for inclusion in the fit (i.e. each is a ‘FIT
YIELD’). By default, all ratios are assigned the same decay chain as the base
particle set of the thermal fit object. This can be changed, if required, by
assigning a specific particle set to the numerator and denominator of a ratio,
using the TTMYield: :SetPartSet method.

Next, let us simply generate the model values corresponding to each of
the TTMYield objects in the list, based on the current parameters. Part of
the output of ListYields is shown here:
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root [ ] fit.GenerateYields()
root [ ] fit.ListYields()
s s s o o o ko o o ks s o sk sk s o sk ok ok sk o ok o

K+/anti-K+ Exp_B:

FIT YIELD
Experiment: 1.152 +- 0.239
Model: 0.986478 +- 0

Std.Dev.: -0.692562 Quad.Dev.: -0.167791

K+/anti-K+ Exp_D:

FIT YIELD
Experiment: 1.098 +- 0.111
Model: 0.986478 +- 0

Std.Dev.: -1.00471 Quad.Dev.: -0.113051

K+/anti-K+ Exp_C:

FIT YIELD
Experiment: 1.108 +- 0.022
Model: 0.986478 +- 0

Std.Dev.: -5.52375 Quad.Dev.: -0.123188

anti-p/p Exp_A:

FIT YIELD
Experiment: 0.65 +- 0.092
Model: 0.535261 +- 0

Std.Dev.: -1.24716 Quad.Dev.: -0.21436

Each experimental measurement now has a corresponding model value, shown
together with its x? and quadratic deviation. The total x? and quadratic de-
viation are also easily obtained:

root [ ] fit.GetChiSquare()
(Double_t)1.50228928916394807e+02
root [ ] fit.GetQuadDev()
(Double_t)1.93739598445467975e+00
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Suppose, for some reason, that we wish to exclude Experiment D’s K+ /K~

ratio from the future fit:

root [ ] fit.GetYield(321,-321,"Exp_D")->Predict()
root [ ] fit.GenerateYields()

root [ ] fit.GetChiSquare()
(Double_t)1.49219493574695520e+02

root [ ] fit.GetQuadDev()
(Double_t)1.92461541998607411e+00

One sees that the total x? and quadratic deviation are modified (the predicted
ratio is excluded from their calculation). This ratio is still included in the

listing though:

root [ ] fit.ListYields()
sk ke ke o o sk sk sk sk ok ke o s sk sk sk k ke o o sk Kok 3k k ke o s sk ok ok

K+/anti-K+ Exp_B:

FIT YIELD
Experiment: 1.152 +- 0.
Model: 0.986478 +-

Std.Dev.: -0.692562 Quad.Dev.:

K+/anti-K+ Exp_D:
PREDICTED YIELD
Experiment: 1.098 +- 0.
Model: 0.986478 +-
Std.Dev.: -1.00471 Quad.Dev.

K+/anti-K+ Exp_C:

FIT YIELD
Experiment: 1.108 +- 0.
Model: 0.986478 +-

Std.Dev.: -5.52375 Quad.Dev.:

anti-p/p Exp_A:

FIT YIELD
Experiment: 0.65 +- 0.
Model: 0.535261 +-

Std.Dev.: -1.24716 Quad.Dev.:
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Finally, we perform a x? fit:

root [ ] fit.FitData(0)

sk ok ok ok 3k ok ok ok ok 3k ok ok ok ok sk ok ok ok sk sk ok sk sk ok skoskok sk T TTTNG ok ok ok ok ok ok sk ok ok ok 3k 5k ok ok ok 3k 3k ok ok ok 3k 3k ok ok ok %k 5k

T = 0.159361 (%% FITTING %)
muB = 0.0345583 (%% FITTING »*x*)
muS = 0.0099537 (*x FITTING **)
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

muC = 0 (FIXED)
gammac = 1 (FIXED)

Parameters unconstrained

3k 3k 3k 3k >k 2k 3k 5k ok ok 3k ok >k ok 3k 3k 3k >k 2k k 5k >k ok ok 3k 3k 3k >k ok 3k 5k 5k 3k 3k 3k 5k 5k >k >k 2k 3k 3k 3k >k 2k 2k 3k 3k >k >k 3k 3k 5k 5k >k >k ok 3k >k >k >k %k %k 5k

kR ok kokkkokkokkokkokk ChiSquare = 3.63571 skkskkakkskokskokdokkokkokk

S/V = 0.00215014
B/2Q = 0.841173
New Minimum!
T = 0.159361 (** FITTING **)
muB = 0.0345583 (*xx FITTING **)
muS =  0.0099537 (** FITTING *%*)
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

muC = 0 (FIXED)
gammac = 1 (FIXED)

Parameters unconstrained
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3k 3k 3k 3k 2k 3k 3k >k >k 3k dk 3k 3k ok 3k 3k 3k 3k 3k 3k ok ok 3k 5k >k >k dk 3k 3k 5k 3k k dk 3k 3k >k 3k >k 2k dk 3k >k >k ok 3k 5k >k >k >k 3k 3k 3k >k >k >k 3k 5k >k >k >k %k 5k % %k

Once completed, the associated parameter set contains the best-fit values
for the fit parameters:

root [ ] fit.GetParameterSet()->List()
skokok ok ok kokokokok kokkkkokkokkk Thermal Parameters kskoksksksksksk kokokskok sk k% sk sk ok ok k

T = 0.159 +- 0.118264 (FITTED!)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.0344416 +- 0.0251108 (FITTED!)
start: 0.05
range: 0 -- 0.5
step: 0.001
muS = 0.00991061 +-  0.00956142 (FITTED!)
start: O
range: 0 -- 0.5
step: 0.001
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)
muC = 0 (FIXED)
gammac = 1 (FIXED)

Parameters unconstrained

3k 3k 3k 3k 3k 3k 3k >k ok 3k dk 3k ok ok 3k 3k ok 3k 3k 3k ok ok 3k 3k >k >k k 3k 3k ok 3k dk k 3k 3k >k >k k 2k dk 3k >k k ok 3k 5k ok >k >k 3k 3k 5k >k >k >k 3k 5k >k >k >k %k 5k %k %k
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All other details of the fit are output to screen by the ListMinuitInfo
function:

root [ ] fit.ListMinuitInfo()
FCN = 3.63561
EDM = 6.99938e-06

Errdef = 1
Full accurate covariance matrix calculated
FCN=3.63561 FROM MIGRAD STATUS=CONVERGED 167 CALLS 168 TOTAL
EDM=6.99938e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 T 1.59000e-01 1.18264e-01 2.20944e-04 7.43567e-01
2 muB 3.44416e-02 2.51108e-02 1.69163e-05 -1.03966e+00
3 muS 9.91061e-03 9.56142e-03 1.86392e-05 -1.28828e+00
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=1

9.504e-03 2.451e-03 9.225e-04
2.451e-03 6.390e-04 2.404e-04
9.225e-04 2.404e-04 9.200e-05
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2 3

1 0.99474 1.000 0.995 0.986

2 0.99675 0.995 1.000 0.992

3 0.99167 0.986 0.992 1.000

o1
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