THERMUS V1.0
A Thermal Model Package for ROOT

User Guide V1.0

S. Wheaton

15 July 2004



0.1 Introduction

With the appropriate choice of ensemble, the statistical-thermal model has
proved extremely successful in describing the hadron multiplicities observed
in relativistic collisions of both heavy ions and elementary particles over a
wide range of energies.

This success motivated the development of THERMUS— a thermal model
analysis package of C++ classes and functions for incorporation into the
object-oriented ROOT framework. All THERMUS C++ classes inherit from
the ROOT base class TObject. This allows them to be fully integrated into
the interactive ROOT environment. They are compiled into shared libraries
which can be loaded in a ROOT session allowing all of the ROOT function-
ality in a thermal analysis.

Anyone is free to use THERMUS. However, in the event of work leading
to publication, the authors request that THERMUS be cited:

‘THERMUS — A Thermal Model Package for ROOT",
S. Wheaton and J. Cleymans, hep-ph/0407174

0.1.1 Software Requirements and Installation

Since several of the constraining functions in THERMUS use ‘Numerical
Recipes in C’ code (which is under copyright), it is required that THERMUS
users have their own copies of this software. Then, with ROOT already in-
stalled on your system, follow these steps:

e Download the THERMUS source (in the form of a zipped tar-file) from:

http://hep.phy.uct.ac.za/ THERMUS/

e Unzip and untar the downloaded file.

e Set an environment variable “THERMUS’ to point at the top-level di-
rectory containing the THERMUS code.



e Copy the following ‘Numerical Recipes in C’ functions to $ (THERMUS) /nrc:

broydn.c rsolv.c
fdjac.c fmin.c
Insrch.c nrutil.c
nrutil.h qrdcmp.c
grupdt.c rotate.c

e Use the makefiles in $(THERMUS) /functions, $(THERMUS)/nrc and
$ (THERMUS) /main to build the 1ibFunctions.so, 1ibNRCFunctions.so
and 1ibTHERMUS.so shared object files (run make all in each of these
directories).

e Finally, open a ROOT session, load the libraries and begin:

[ 1% root
3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 5k >k >k 3k 5k >k 3k 5k >k >k 3k 3k 3k >k >k 5k >k >k 5k >k 5k >k >k 5k 5k >k >k %k >k k %k k

WELCOME to ROOT
Version 3.10/02 16 February 2004

You are welcome to visit our Web site
http://root.cern.ch

X X K X X X x*
¥R X X X X X x*

3k 3k >k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k >k 5k >k 5k >k 3k >k 3k 5%k 3k 5%k >k 3k >k 3k 5%k >k 5%k >k 3k %k % % %k 5% %k % *k

FreeType Engine v2.1.3 used to render TrueType fonts.
Compiled for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.15.115, Dec 9 2003
Type 7 for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root [ ] gSystem—>Load("./1lib/libFunctions.so");

root [ ] gSystem->Load("./1ib/1libNRCFunctions.so");

root [ ] gSystem—>Load("./1ib/1ibTHERMUS.so");

At present three distinct thermal model formalisms are implemented in
THERMUS: the grand-canonical ensemble, in which baryon number (B),
strangeness (S), and charge (@) are conserved on average; a strangeness-
canonical ensemble, in which strangeness is exactly conserved, while B and
(@ are treated grand-canonically; and, finally, a canonical ensemble in which
B, S and @ are all treated canonically. The structure of THERMUS is such



that extensions to include also the quantum numbers carried by the heavier
quarks will be easily achieved. Currently THERMUS performs only chemical
analyses. In other words, no kinetic freeze-out analysis or momentum spec-
tra calculations are performed. It is our aim to include such functionality in
later versions of THERMUS.

As input to the various thermal model formalisms one needs first a set of
particles to be considered thermalised. When combined with a set of thermal
parameters, all primordial densities (i.e. number density as well as energy-
and entropy density and pressure) are calculable. Since the detectors mea-
sure only the conditions at freeze-out, one needs also the particle decays in
order to make sensible comparisons with the experimental yields.

In the sections to follow we explain the basic structure and functionality

of THERMUS by introducing the major THERMUS classes in a bottom-up
approach. We begin with a look at the TTMParticle object.!

0.2 TTMParticle

The properties of a particle applicable to the thermal model are grouped in
the basic TTMParticle object:

xxxxxxxxx LISTING FOR PARTICLE Delta(1600)0 *kkkk***x*

ID = 32114

Deg. = 4

STAT =1

Mass = 1.6 GeV
Width = 0.35 GeV
Threshold = 1.07454 GeV
B=1

S=0 S| =0

Tt is a requirement that all ROOT classnames begin with a ‘T’. THERMUS classnames
begin with “T'TM’ for easy identification.



Q=0
Charm = 0
Beauty = 0
Top = 0

UNSTABLE

Decay Channels:

Summary of Decays:
sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok sk ks s ks ok ke sk sk s sk sk s ok sk s sk sk ok ok

Besides the particle name, ‘Delta(1600)0’, its Monte Carlo ID is also
stored. This provides a far more convenient means of referencing the parti-
cle. The particle’s decay status is also noted. In this case, the A(1600)° is
considered unstable.

Currently only the default constructor is written. Particle properties are
thus input using the ‘setters’.

0.2.1 Inputting and Accessing Particle Decays

The TTMParticle class allows also the storage of a particle’s decays. These
can be entered from file. As an example, consider the decay file of the

A(1600)°:

11.67 2112 111

5.83 2212 -211
29.33 2214 -211
3.67 2114 111
22. 1114 211
8.33 2112 113
4.17 2212 -213
15. 12112 111
7.5 12212 -211

Each line in the decay file corresponds to a decay channel. The first
column lists the branching ratio of the channel, while the subsequent tab-
separated integers represent the Monte Carlo ID’s of the daughters (each line
(channel) can contain any number of daughters). The decay channel list of
a TTMParticle object is populated with TTMDecayChannel objects by the

4



SetDecayChannels(charx file) function with the decay file the argument:

root [ ] part->SetDecayChannels("./THERMUS/particles/Delta\(1600\)0_decay.txt")
root [ ] part->List()

sokokkkkkkk LISTING FOR PARTICLE Delta(1600)0 sskkskskskkk*

ID = 32114

Deg. = 4

STAT = 1

Mass = 1.6 GeV

Width = 0.35 GeV

Threshold = 1.07454 GeV

B=1

S=0 ISl =0

Q=20

Charm = 0

Beauty = 0

Top = 0

UNSTABLE

Decay Channels:

BRatio: 0.1167 Daughters: 2112 111

BRatio: 0.0583 Daughters: 2212 -211
BRatio: 0.2933 Daughters: 2214 -211
BRatio: 0.0367 Daughters: 2114 111

BRatio: 0.22 Daughters: 1114 211

BRatio: 0.0833 Daughters: 2112 113

BRatio: 0.0417 Daughters: 2212 -213
BRatio: 0.15 Daughters: 12112 111

BRatio: 0.075 Daughters: 12212 -211



Summary of Decays:

2112 20%
111 30.347
2212 10%
-211 42.66%
2214 29.33%
2114 3.67%
1114 22},
211 229,
113 8.33%
-213 4.17%
12112 15%
12212 7.5%

%k 3k 3k 5k >k >k 3k 5k >k >k 3k 3k 5k >k >k 3k 5k >k >k 3k 3k 5k >k >k 5k 3k 3k >k >k >k 3k %k 3k >k >k %k %k 5k >k %k %k %k % % % k

In addition to the list of decay channels, a summary list of TTMDecay
objects is generated in which each daughter appears only once together with
its total decay fraction. This summary list is automatically generated from
the decay channel list when the SetDecayChannels function is called.

An existing TList can be set as the decay channel list of the parti-
cle using the SetDecayChannels(TList* x) function. This function calls
UpdateDecaySummary () thereby automatically ensuring consistency between
the decay channel and decay summary lists.

The function SetDecayChannelEfficiency sets the reconstruction effi-
ciency of the specified decay channel to the specified percentage. Again a
consistent decay summary list is generated.

Access to the TTMDecayChannel objects in the decay channel list is achieved
through the GetDecayChannel method. If the extracted decay channel is sub-
sequently altered, UpdateDecaySummary must be called to ensure consistency
of the summary list.

0.2.2 The Destructor

Once the TTMParticle destructor is called, all heap-based TTMDecayChannel
and TTMDecay objects in the decay lists are deleted.



0.3 TTMParticleSet

The thermalised fireballs considered in thermal models typically contain ap-
proximately 350 different hadron and hadronic resonance species. To fa-
cilitate fast retrieval of particle properties, the TTMParticle objects of all
constituents are stored in a hash table in a TTMParticleSet object. Other
data members of this TTMParticleSet class include the filename used to ini-
tiate the object and the number of particles. Access to the entries in the hash
table is through the particle Monte Carlo ID’s. The numerical ID of each
particle is converted into a string and stored as the fName data member of
its associated TTMParticle object. This is required since, in ROOT, access
to objects stored in container classes is through fName.

0.3.1 Instantiating a TTMParticleSet Object

In addition to the default constructor, the following constructors exist:

TTMParticleSet *set
TTMParticleSet *set

new TTMParticleSet(char *file);
new TTMParticleSet(TDatabasePDG *pdg) ;

The first constructor instantiates a TTMParticleSet object and inputs
the particle properties contained in the specified text file. As an example
of such a file, /$THERMUS/particles/PartList_PPB2002.txt contains a list
of all mesons (up to the K;(2045)) and baryons (up to the ) listed in the
July 2002 Particle Physics Booklet (195 entries). Only particles need be in-
cluded, since the anti-particle properties are directly related to those of the
corresponding particle. The required file format is as follows:

0 Delta(1600)0 32114 4 +1 1.60000 O 1
0 0.35000 1.07454 (npiO)
e stability flag (i.e. 1 for stable, 0 for unstable)

e particle name

e Monte Carlo particle ID (used for all referencing)

e spin degeneracy

e statistics (+1 for Fermi-Dirac, -1 for Bose- Einstein, 0 for Boltzmann)

7



[ Resonance Distribution

| R
25 3
Mass (GeV)

Figure 1: Distribution of resonances included in
/$ (THERMUS) /particles/PartList_PPB2002.txt.

e mass in GeV

e strangeness

e baryon number

e charge

e absolute strangeness content |S/|

e width in GeV

e threshold in GeV

e string recording the decay channel from which the threshold is calcu-
lated if the particle’s width is non-zero.

Figure 1 shows the distribution of resonances (both particle and anti-
particle) included in /$ (THERMUS) /particles/PartList PPB2002.txt. As
collider energies increase so the need to include also the higher mass reso-
nances rises.

It is also possible to use a TDatabasePDG object to instantiate a particle
set?.

2To have access to TDatabasePDG and related classes one must first load
/$RO0OTSYS/1ib/1ibEG.so



TDatabasePDG objects also read in particle information from text files.
The default file is /$RO0TSYS/etc/pdg_table.txt and is based on the pa-
rameters used in PYTHIAG.

root [ ] TDatabasePDG *pdg = new TDatabasePDG()
root [ ] pdg->ReadPDGTable()
root [ ] pdg->GetParticle(211)->Print()

pi+ 211 Mass: 0.1396 Width (GeV): Stable Charge: 3.0
Channel Code BranchingRatio Nd ............. Daughters..............
0 0 9.99877e-01 2 mu+(-13) nu_mu(14)
1 0 1.23000e-04 2 e+(-11) nu_e(12)

root [ ] TTMParticleSet set(pdg)
root [ ] set.GetParticle(211)->List()

skxkkkkkkx LISTING FOR PARTICLE pi+ s#kkkoksokskk

ID = 211
Deg. =1

STAT

I
|
[y

Mass 0.13957 GeV
Width = 0 GeV
Threshold 0 GeV

B=20

S=0 ISl =0
Q=1

Charm = 0

Beauty = 0

Top = 0

STABLE

3k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k 3k 5k >k 5k >k 5k >k 3k >k 3k >k >k 5k >k 5k >k 3k >k >k 5k >k 3k %k % %k %k 3k %k %k %k % %k %k

The constructor TTMParticleSet (TDatabasePDG *pdg) extracts just those
particles in the specified TDatabasePDG object in particle classes ‘Meson’,
‘CharmedMeson’, ‘HiddenCharmMeson’, ‘B-Meson’, ‘Baryon’, ‘CharmedBaryon’
and ‘B-Baryon’, as specified in /$RO0TSYS/etc/pdg_table.txt, and includes



them in the hadron set. Anti-particles must be included in the TDatabasePDG
object as they are not automatically generated in this constructor of the
TTMParticleSet class.

The default file read into the TDatabasePDG object, however, is incom-
plete; the charm, degeneracy, threshold, strangeness, |S|, beauty and topness
of the particle are not included. Although the TDatabasePDG: :ReadPDGTable
function and default file allow for isospin, i3, spin, flavor and tracking code to
be entered too, the default file does not contain these values. Furthermore,
all particles are made stable by default. Therefore, at present, avoid using
the TDatabasePDG class to instantiate a TTMParticleSet class, at least until
pdg-table.txt is improved.

0.3.2 Inputting Decays

Once a particle set has been defined, the decays to the stable particles in the
set can be determined. Firstly, let us instantiate a TTMParticleSet object
and list its stable constituents.

root [ ] TTMParticleSet set("./THERMUS/particles/PartList_PPB2002.txt")
root [ ] set.ListStableParticles()
*kokokkokokkkkkkkkk STABLE PARTICLES % kok ok ok ok %k ok % sk ok *k %
anti-Lambda
Sigma-
Omega
pio
KsiO
K+
n
Sigma+
anti-Sigma-
anti-Omega
KOS
anti-KsiO
Ksi-
anti-K+
anti-n
anti-Sigma+
pi+
anti-Ksi-
p
anti-pi+

10



anti-p
Lambda
KOL
3k 3k 5k 3k >k 3k 5k 5k >k 5k 5k 5k 3k 5k 5k %k 5k 5k 5k >k 5k 3k 5k >k 5k %k 5k 5k 5k >k 5k %k 5k 5k %k >k 5k %k %k 5k %k %k 5k %k k *k

This list of stable particles can be modified by adjusting the stability flags
of the TTMParticle objects included in the TTMParticleSet object.

Decays can be input using the InputDecays (char* dir) method. Run-
ning this function populates the decay lists of all unstable particles in the set
using the decay files listed in the directory specified in the argument. If a file
is not found, then the corresponding particle is set to stable. For each typ-
ically unstable particle in /$THERMUS/particles/PartList_PPB2002.txt,
there exists a file in /$THERMUS/particles listing its decays. The filename
is derived from the particle’s name (e.g. Delta(1600)0__decay.txt for the
A(1600)°). There are presently 195 such files with entries based on the
Particle Physics Booklet of July 2002. The decays of the corresponding
anti-particles are automatically generated, while a private recursive function,
GenerateBRatios, is invoked to ensure that only stable particles feature in
the decay summary lists.

root [ ] set.InputDecays("./THERMUS/particles/")
root [ ] TTMParticle *part = set.GetParticle(32114)
root [ ] part->List()

xxxxxxxxx LISTING FOR PARTICLE Delta(1600)0 *kkkk***x*

ID = 32114
Deg. = 4

STAT

I
[y

1.6 GeV
0.35 GeV
.07454 GeV

Mass
Width
Threshold

I
[

wn
]

IS|

]
o

11



Charm = 0
Beauty = 0
Top = 0
UNSTABLE

Decay Channels:

BRatio: 0.1167 Daughters: 2112 111
BRatio: 0.0583 Daughters: 2212 -211
BRatio: 0.2933 Daughters: 2214 -211
BRatio: 0.0367 Daughters: 2114 111
BRatio: 0.22 Daughters: 1114 211
BRatio: 0.0833 Daughters: 2112 113
BRatio: 0.0417 Daughters: 2212 -213
BRatio: 0.15 Daughters: 12112 111
BRatio: 0.075 Daughters: 12212 -211

Summary of Decays:

2112 65.3932Y%
111 67 .4244Y,
2212 42.4443Y,
-211 90.4787%
211 48.1469%

%k 3k 3k 5k >k >k 3k 5k >k >k 3k 3k 5k >k >k 3k 5k >k >k %k 3k 5k >k >k %k 3k 3k >k >k >k 3k 3k 3k >k >k %k 3k 5k >k %k %k %k % % % k

For particle sets based on TDatabasePDG objects, decay lists should be
populated through the function InputDecays (TDatabasePDG *). This func-
tion, however, does not automatically generate the anti-particle decays from
those of the particle. Instead, the anti-particle decay list is used. Since the
decay list may include electromagnetic and weak decays to particles other
than the hadrons stored in the TTMParticleSet object, each channel is first
checked to ensure that it contains just particles listed in the set. If not, the
channel is excluded from the hadron’s decay list used by THERMUS. As
mentioned earlier, care should be taken when using TDatabasePDG objects
based on the default file, as it is incomplete.

An extremely useful function is ListParents(Int_t id) which lists all
of the parents of a particle with Monte Carlo ID id. This function uses
GetParents(TList *parents, Int_t id) which populates the list passed
with the decays to particle id. Note that these parents are not necessarily
‘direct parents’; the decays may involve unstable intermediates.

12



0.3.3 Customising the Set

The AddParticle and RemoveParticle functions allow further customisa-
tion of particle sets. Particle and anti-particle are treated symmetrically in
the case of the former; if a particle is added, then its corresponding anti-
particle is also added. This is not the case for the RemoveParticle function,
however, where particle and anti-particle have to be removed separately.

Mass-cuts can be performed using MassCut (Double_t x) to exclude all
hadrons with masses greater than x. Decays then have to be re-inserted to
exclude the influence of the heavier hadrons from the decay lists.

The function SetDecayEfficiency allows the reconstruction efficiency
of the decays from a specified parent to the specified daughter to be set.
Changes are reflected only in the decay summary list of the parent (i.e.
not the decay channel list). Note that running UpdateDecaySummary and
GenerateBRatios will remove any such changes by creating again a sum-
mary list consistent with the channel list.

In addition to these operations, users can input their own particle sets by
compiling their own particle lists and decay files.

0.3.4 The Destructor

When the destructor is called the heap-based TTMParticle entries in the
hash table are deleted.

0.4 The TTMParameter Class

This class groups all relevant information for parameters in the thermal
model. Data members include:

fName - the parameter name
fValue - the parameter value
fError - the parameter error
fFlag - a flag signalling the type of parameter (constrain, fit,

fixed, or uninitialised)
fStatus - a string reflecting the intended treatment or action taken

13



In addition to these data members, the following relevant to fit-type param-
eters are also included:

fStart - the starting value in a fit

fMin - the lower bound of the fit-range
fMax - the upper bound of the fit-range
fStep - the step-size

The constructor,

Double_t error),

TTMParameter *p = new TTMParameter( TString name, Double_t value,

and SetParameter (TString name, Double_t value, Double_t error)
function set the parameter to fixed-type by default. The parameter-type can
be modified using the Constrain, Fit or Fix methods.

0.5 The TTMParameterSet Class

The TTMParameterSet class is the base class for all thermal parameter set
classes. It contains a 6-element array of TTMParameter objects and the con-
straint information. All derived classes must contain the function GetRadius.
In this way, the base class is able to define a function GetVolume, which re-
turns the volume required to convert densities into yields.

TTMParameterSetBSQ (applicable to a grand-canonical approach),
TTMParameterSetBQ (applicable to a strangeness-canonical approach) and
TTMParameterSetCanBSQ (applicable to a fully B, S and @ canonical ap-
proach) are the derived classes coded at present.

0.5.1 TTMParameterSetBSQ

This derived class, applicable to the grand-canonical ensemble, contains the
parameters

T pp ps pg 7vs R

14



L ratio and

In addition, the initial 50

stored here.

It has the following constructor:

strangeness density of the system are

TTMParameterSetBSQ( Double_t temp, Double_t mub,
Double_t mus, Double_t muq, Double_t gs,
Double_.t r = 0., Double_t b2q = 0.,
Double_.t s = 0., Double_t temp_error = 0.,
Double_t mub_error = 0., Double_t mus_error
Double_t muq_error = 0., Double_t gs_error =
Double_t r_error = 0.);

= 0.
0.,

b

As one can see, all errors are defaulted to zero as is R, % and %.

Each parameter has a ‘getter’ (i.e. GetTPar) which returns a pointer to
the requested TTMParameter object. In this class, g and pg can be set to
constrain-type using ConstrainMuS and ConstrainMuQ, where the arguments
are the initial strangeness density and baryon-to-charge ratio respectively.
Each parameter of this class can be set to fit-type, using functions such as
FitT, where the fit parameters have reasonable default values, or fixed-type,

using functions such as FixMuB.

0.5.2 TTMParameterSetBQ

This derived class, applicable to the strangeness-canonical ensemble (strangeness
exactly conserved and B and () treated grand-canonically), has the parame-

ters

T wup pg s

R. R

where R, is the canonical or correlation radius; the radius inside which
strangeness is exactly conserved. The fireball radius R is used to convert
densities into total quantities. In addition, the initial % ratio is also stored
as well as the strangeness required inside the correlation volume.

It has the following constructor:

15




0.,

b

)

TTMParameterSetBQ( Double_ t temp, Double_t mub,
Double_t muq, Double_t gs, Double_t can.r,
Double .t r = 0., Double_t b2q = 0., Double.t S = 0.,
Double_t temp_error = 0., Double_t mub_error =
Double_t muq-error = 0., Double_t gs_error = 0.
Double_t can_r_error = 0., Double_t r_error = 0.

In addition to the same ‘getters’ and ‘setters’ as the previous derived class,
it is possible to set g to constrain-type by specifying the % ratio in the
argument of ConstrainMuQ. The strangeness required inside the canonical
volume is set through the SetS method. This value is defaulted to zero. The
function ConserveSGlobally fixes the canonical radius, R., to the fireball
radius, R. As in the case of the TTMParameterSetBSQ class, there exist func-

tions to set each parameter to fit- or fixed type.

0.5.3 TTMParameterSetCanBSQ

This set, applicable to the canonical model with exact conservation of B, S
and (), contains the parameters

It has constructor,
TTMParameterSetCanBSQ( Double_t temp, Int_t b, Double_t s,
Double_t q, Double_t gs, Doublet r = 0.,
Double_t temp_error = 0., Double_t b_error = 0.,
Double_t s_error = 0., Double_t g._error = 0.,
Double_t gs_error = 0., Double_t r_error = 0.);

Since all conservation is exact, there are no chemical potentials to satisfy
constraints. Again the same ‘getters’ and ‘setters’ and functions to set each
parameter to fit- or fixed type exist as in the case of the previously discussed
TTMParameterSet derived classes.

16




0.5.4 Example

As an example, let us define a TTMParameterSetBQ object. By default, all
parameters are initially of fixed type. Suppose we wish to fit 7" and pup and
use /i to constrain the initial % in Pb+Pb collisions:

root [ ] TTMParameterSetBQ parBQ(0.160,0.2,-0.01,0.8,6.,6.)
root [ ] parBQ.FitT(0.160)

root [ ] parBQ.FitMuB(0.2)

root [ ] parBQ.ConstrainMuQ(1.2683)

root [ ] parBQ.List()
kokokokokokokokokokokokkokkokkkkkkk Thermal Parameters sk kokkskskskokkskskkokkkkkkkkk

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.2 (to be FITTED)
start: 0.2
range: 0 -- 0.5
step: 0.001
muQ = -0.01 (to be CONSTRAINED)
B/2Q: 1.2683
gammas = 0.8 (FIXED)
Can. radius = 6 (FIXED)
radius = 6 (FIXED)

Parameters unconstrained

3k 3k 5k 3k >k 3k 5k 5k >k 5k 3k 5k >k 5k 5k %k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k 5k 5k >k 5k %k 3k 5k 5k >k 5k 3k 3k 5k 5k >k 5k 5k %k 5k %k %k 5k %k %k 5k 3k %k 5k %k %k 5k 5k %k >k %k k k
Note the default parameters for the T" and up fits. Obviously no constraining

or fitting can take place yet. We have simply signalled our intent to take these
actions at some later stage.

17



0.6 TTMThermalParticle

By combining a TTMParticle and a TTMParameterSet object a thermal par-
ticle can be created. The TTMThermalParticle class is the base class from
which thermal particle classes relevant to the three currently implemented
thermal model formalisms TTMThermalParticleBSQ, TTMThermalParticleBQ
and TTMThermalParticleCanBSQ are derived. Since no particle set is spec-
ified, the total S and B/2Q) of the fireball cannot be determined. Thus,
in the grand-canonical approach, the constraints cannot yet be imposed to
determine the values of the chemical potentials of constrain-type, while in
the strangeness-canonical and canonical formalisms, the canonical correction
factors cannot yet be calculated. Instead, at this stage, the chemical poten-
tials and/or correction factors must be specified.

Use is made of the fact that, in the Boltzmann approximation, e, n and P
in the canonical and strangeness-canonical ensembles are simply the grand-
canonical values multiplied by a particle-specific correction factor. This al-
lows the functions for calculating e, n and P in the Boltzmann approxima-
tion to be included in the base class, which then also contains the correction
factor as a data member (by definition this correction factor is 1 in the grand-
canonical ensemble).

Both functions including and excluding resonance width, I', are included
(e.g. DensityBoltzmannNoWidth and EnergyBoltzmannWidth). When width
is included, a Breit-Wigner distribution is integrated over between the limits
max(m — 2T, threshold), m + 2.

0.6.1 TTMThermalParticleBSQ

This class, relevant to the grand-canonical treatment of B, S and @), has
constructor:

TTMThermalParticleBSQ(TTMParticle *part, TTMParameterSetBSQ *parm) ;

In addition to the functions for calculating e, n and P in the Boltzmann
approximation defined in the base class, functions implementing quantum
statistics for these quantities exist in this derived class (e.g. EnergyQStatNoWidth

18



and PressureQStatWidth). Additional member functions of this class cal-
culate the entropy using either Boltzmann or quantum statistics, with or
without width.

In the functions calculating the thermal quantities assuming quantum
statistics, it is first checked that p < m for bosons (the integrals diverge
otherwise). If this condition is not met, a warning is issued and zero is
returned.

Note: The chemical potentials pug and pgo are not automatically con-
strained in this class.

0.6.2 TTMThermalParticleBQ

This class, relevant to the strangeness-canonical treatment, has constructor:

TTMThermalParticleBQ( TTMParticle *part, TTMParameterSetBQ *parm,
Double_t corr);

At present this ensemble is only applied in the Boltzmann approximation.
Under this assumption, n, e and P are given by the grand-canonical results
up to a multiplicative correction factor. Since the total entropy does not split
into the sum of particle entropies, no entropy calculation is made in this class.

Note: The chemical potential 11 is not automatically constrained and
the canonical correction factor must be specified.

0.6.3 TTMThermalParticleCanBSQ

This class, relevant to the full canonical treatment of B, S and (), has con-
structor:

TTMThermalParticleCanBSQ( TTMParticle *part,
TTMParameterSetCanBSQ *parm,
Double_t corr);

At present, as in the case of TTMThermalParticleBQ, this ensemble is
only applied in the Boltzmann approximation. Also, since the total entropy
again does not split into the sum of particle entropies, no entropy calculation

19



is made here.

Note: The canonical correction factor must be specified.

0.6.4 Example

Let us make a thermal particle within the strangeness-canonical ensemble
from the A(1600)° and the parameter set previously defined. Since this par-
ticle has zero strangeness, a correction factor of 1 is passed as the third
argument of the constructor:

root [ ] TTMThermalParticleBQ therm_delta(part,&parBQ,1.)
root [ ] therm_delta.DensityBoltzmannNoWidth()
(Double_t)6.23153459733018657e-06

root [ ] therm_delta.EnergyBoltzmannWidth()
(Double_t)1.75220722982622689e-05

0.7 TTMThermalModel

Once a parameter- and particle set have been specified, these can be combined
into a thermal model. TTMThermalModel is the base class from which the
TTMThermalModelBSQ, TTMThermalModelBQ and TTMThermalModelCanBSQ
classes are derived. All derived classes define functions to calculate the pri-
mordial particle-, energy- and entropy densities, as well as the pressure.

These thermal quantities are stored in a hash table of TTMDens0Obj ob-
jects. Again access is through the particle ID’s. In addition to the individual
thermal quantities, the total primordial fireball strangeness-, baryon-, charge-
, energy-, entropy-, and particle densities, pressure, and Wroblewski factor
(As) are included as data members.

At this level, the constraints on any chemical potentials can be imposed
and the correction factors in canonical treatments can be determined. Also,
as soon as the primordial particle densities are known, the decay contribu-
tions can be calculated.

20



0.7.1 Calculating Particle Densities

Running GenerateParticleDens clears the current entries in the density
hash table of the TTMThermalModel object, constrains the chemical poten-
tials automatically where applicable, calculates the canonical correction fac-
tors where applicable, and then populates the density hash table with a
TTMDensObj object for each particle in the associated set. The decay con-
tributions to each stable particle are also calculated so that the density
hash table contains both primordial- and decay particle density contribu-
tions, provided of course that the decays have been entered in the associated
TTMParticleSet object.

Note: The summary decay lists of the associated TTMParticleSet
object are used to calculate the decay contributions. Hence, only
stable particles have decay contributions reflected in the hash ta-
ble. Unstable particles that are themselves fed by higher-lying
resonances do not receive a decay contribution.

In addition, the Wroblewski factor and total strangeness-, baryon-, charge-
and particle densities in the fireball are calculated.

Each derived class contains the private function PrimPartDens which
calculates only the primordial particle densities and hence the canonical cor-
rection factors where applicable. In the case of the grand-canonical and
strangeness-canonical ensembles, this function calculates the densities with-
out automatically constraining the chemical potentials first. The constrain-
ing is handled by GenerateParticleDens which calls external friend func-
tions which, in turn, call PrimPartDens. This separation is essential in the
case where there are chemical potentials to be constrained. In the purely
canonical ensemble this separation is retained just so that there is unifor-
mity between the derived classes. Since there is no constraining to be done,
and hence no repeated calculation by external functions, there is no real need
for a separate function in this case.

0.7.2 Calculating Energy- and Entropy Densities and
Pressure

GenerateEnergyDens, GenerateEntropyDens and GeneratePressure iter-
ate through the existing density hash table and calculate and insert respec-
tively the primordial energy density, entropy density and pressure of each

21



particle in the set. In addition, they calculate the total primordial energy
density, entropy density and pressure in the fireball respectively. These func-
tions require that the hash table already be in existence. In other words,
GenerateParticleDens must already have been run. If the parameters have
subsequently changed, then this function must be run yet again to recalcu-
late the correction factors or re-constrain the parameters.

0.7.3 Accessing the Thermal Densities

The entries in the density hash table are accessed using the particle Monte
Carlo ID’s. The function GetDensities(Int_t ID) returns the TTMDensObj
object containing the thermal quantities of the particle with the specified
ID. The primordial particle-, energy-, and entropy densities, pressure, and
decay density are extracted from this object using the GetPrimDensity,
GetPrimEnergy, GetPrimEntropy, GetPrimPressure, and GetDecayDensity
functions of the TTMDensObj class respectively. The sum of the primordial
and decay particle densities is returned by TTMDensObj: :GetFinalDensity.
TTMDensObj::List outputs to screen all thermal densities stored in a
TTMDensObj object.

ListStableDensities lists the densities (primordial and decay contri-
butions) of all those particles considered stable in the particle set associ-
ated with the model. Access to the total fireball densities is through sepa-
rate ‘getters’ defined in the TTMThermalModel base class (e.g. GetStrange,
GetBaryon etc).

0.7.4 Further Functions

GenerateDecayPartDens and GenerateDecayPartDens(Int_t id) (both de-
fined in the base class) calculate decay contributions to stable particles. The
former iterates through the density hash table and calculates the decay contri-
butions to all those particles considered stable in the set. The latter calculates
just the contribution to the stable particle with ID id. In both cases, the pri-
mordial densities must be calculated first. In fact, GenerateParticleDens ()

automatically calls GenerateDecayPartDens (), so this function does not
have to be run separately under ordinary circumstances. However, if one is
interested in investigating the effect of decays, while keeping the parameters
(and hence the primordial densities) fixed, then running these functions is
best (the hash table will not be repeatedly cleared and repopulated with the

22



same primordial densities).

ListDecayContributions (Int_t d_id) lists the contributions (in per-
centage and absolute terms) of decays to the daughter with ID d_id. The
primordial- and decay densities must already appear in the density hash ta-
ble (i.e. run GenerateParticleDens first). ListDecayContribution(Int_t
p-id, Int_t d_id) lists the contribution of the decay from the specified par-
ent (with ID p_id) to the specified daughter (with ID d_id). The percentages
listed by each of these functions are those of the individual decays to the total
decay density.

0.7.5 TTMThermalModelBSQ

This class has constructor:

TTMThermalModelBSQ( TTMParticleSet *particles,
TTMParameterSetBSQ *parameters,
Bool t gstats = true, Bool t width = true)

In the grand-canonical ensemble quantum statistics can be employed, and
hence there is a flag specifying whether to use Fermi-Dirac and Bose-Einstein
statistics or Boltzmann statistics. As can be seen, the constructor, by de-
fault, includes both the effect of quantum statistics and resonance width. The
flags controlling the inclusion of quantum statistics and resonance width are
set using the SetQStats and SetWidth functions respectively. The functions
that calculate the particle-, energy-, and entropy densities, and pressure then
use the corresponding functions in the TTMThermalParticleBSQ class to cal-
culate these quantities in the required way. Alternatively, the statistics data
member (fStat) of each TTMParticle included in the associated set can be
used to fine-tune the inclusion of quantum statistics.

In this ensemble, at this stage, both pg and i can be constrained (ei-
ther separately or together). In order to accomplish this, the pg and pg
parameters in the associated TTMParameterSetBSQ object must be set to
constrain-type.

It is also possible to constrain pup by the ratio % at freeze-out. This is
accomplished by the ConstrainEoverN method. In this case, running this
function will adjust pp such that % has the required value, regardless of the

23



parameter type of upg.

0.7.6 TTMThermalModelBQ

This class contains the following additional data members:

flnZtot - log of the total partition function

f1nZ0 - log of the non-strange component of the partition function
fExactMuS - equivalent strangeness chemical potential

fCorrP1 - canonical correction for S=+1 particles

fCorrP2 - canonical correction for S=+2 particles

fCorrP3 - canonical correction for S=+3 particles

fCorrMi - canonical correction for S=-1 particles

fCorrM2 - canonical correction for S=-2 particles

fCorrM3 - canonical correction for S=-3 particles

and has constructor:

TTMThermalModelBQ( TTMParticleSet *particles,
TTMParameterSetBQ *parameters,
Bool_t width = true)

Since this ensemble is only applied in the Boltzmann approximation for
S # 0 hadrons, there is no flag for quantum statistics. It is possible, however,
to apply quantum statistics to the S = 0 hadrons. This is achieved by the
SetNonStrangeQStats function. By default, quantum statistics is included
for the non-strange hadrons by the constructors.

Resonance width can be included for all hadrons. This is achieved through
the SetWidth function. The constructor, by default, applies resonance width.
The functions that calculate the particle-, energy-, and entropy densities, and
pressure then use the corresponding functions in the TTMThermalParticle
classes to calculate these quantities in the required way.

GenerateEntropyDens uses the energy- and particle density functions in
TTMThermalParticleBQ to calculate the entropy. Each TTMDensObj object
in the hash table is populated with only that part of the total entropy that
can be unambiguously attributed to that particular particle. There is a term
in the total entropy that cannot be split. This is added to the total en-
tropy at the end but not included in the individual entropies (i.e. summing

24



up the entropy contributions of each particle will not give the total entropy!).

At this stage, in this formalism, yig can be constrained (this is automat-
ically realised if this parameter is set to constrain-type), while the correla-
tion radius (R.) can be set to the fireball radius R by applying the func-
tion ConserveSGlobally to the associated TTMParameterSetBQ object. The
equivalent strangeness chemical potential is calculated from the canonical
correction factor for S = +1 particles. In the limit of large VT® this ap-
proaches the value of g in the associated grand-canonical treatment.

It is also possible to constrain up to the required % value using the

ConstrainEoverN method. In this case, running this function will adjust pup
such that % has the required value, regardless of the parameter type of up.

25



0.7.7 TTMThermalModelCanBSQ

This class has constructor:

TTMThermalModelCanBSQ( TTMParticleSet #*particles,
TTMParameterSetCanBSQ *parameters,

Bool_t width = true);

and contains the following additional data members:

flnZtot - log of the total canonical partition function
fMuB, fMuS,fMuQ - chemical potentials

fCorrpip - correction for ‘pi+ like’ particles
fCorrpim - correction for ‘pi- like’ particles
fCorrkm - correction for ‘K- like’ particles
fCorrkp - correction for ‘K+ like’ particles
fCorrk0 - correction for ‘KO like’ particles
fCorrak0 - correction for ‘a-KO like’ particles
fCorrproton - correction for ‘p like’ particles
fCorraproton - correction for ‘a-p like’ particles
fCorrneutron - correction for ‘n like’ particles
fCorraneutron - correction for ‘a-n like’ particles
fCorrlambda - correction for ‘Lambda like’ particles
fCorralambda - correction for ‘a-La like’ particles
fCorrsigmap - correction for ‘Sigma+ like’ particles
fCorrasigmap - correction for ‘a-Sigma-+ like’ particles
fCorrsigmam - correction for ‘Sigma- like’ particles
fCorrasigmam - correction for ‘a-Sigma- like’ particles
fCorrdeltam - correction for ‘Delta- like’ particles
fCorradeltam - correction for ‘a-Delta- like’ particles
fCorrdeltapp - correction for ‘Delta+-+ like’ particles
fCorradeltapp - correction for ‘a-Delta++ like’ particles
fCorrksim - correction for ‘Ksi- like’ particles
fCorraksim - correction for ‘a-Ksi- like’ particles
fCorrksio - correction for ‘Ksi0 like’ particles
fCorraksio - correction for ‘a-Ksi0 like’ particles
fCorromega - correction for ‘Omega like’ particles
fCorraomega - correction for ‘a-Omega like’ particles

Since this ensemble is only applied in the Boltzmann approximation, there
is no flag for quantum statistics. However, resonance width can be included.
This is achieved through the SetWidth function. The constructor, by default,

26



applies resonance width. The functions that calculate the particle-, energy-,
and entropy densities, and pressure then use the corresponding functions in
the TTMThermalParticle classes to calculate these quantities in the required
way.

GenerateEntropyDens() wuses the energy density functions of
TTMThermalParticleCanBSQ to calculate the entropy. Each TTMDensObj ob-
ject in the hash table is populated with only that part of the total entropy
that can be unambiguously attributed to that particular particle. There is
a term in the total entropy that cannot be split. This is added to the total
entropy at the end but not included in the individual entropies (i.e. summing
up the entropy contributions of each particle will not give the total entropy!).

The canonical correction factors are calculated by GenerateParticleDens.
GetCorrFactor (TTMParticle xpart) then returns the correction factor cor-
responding to the specified particle.

0.7.8 Example

As an example we consider the strangeness-canonical ensemble based on the
particle set and strangeness-canonical parameter set previously defined. Af-
ter instantiating the object we populate the hash table with primordial- and
decay particle densities:

root [ ] TTMThermalModelBQ modBQ(&set,&parBQ)
root [ ] modBQR.GenerateParticleDens()
(Int_t)O
root [ ] parBQ.List()
Rokkkkkkkkkkkkkkkkkkkkk Thermal Parameters sksksksksksksk sk sk sk sk sk sk sk sk sk sk sk ok ok ok

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.2 (to be FITTED)
start: 0.2

range: 0 -- 0.5

27



step: 0.001

muQ = -0.00636409 (*CONSTRAINED*)
B/2Q: 1.2683
gammas = 0.8 (FIXED)
Can. radius = 6 (FIXED)
radius = 6 (FIXED)

B/2Q Successfully Constrained

3k 3k 5k 3k >k 3k 5k 5k >k 5k 3k 5k >k 5k 5k %k 5k 5k 5k %k 5k 5k 5k >k 5k %k 5k 5k 5k >k 5k %k 3k 5k 5k >k 5k 3k 3k 5k 5k >k 5k 5k %k 5k %k %k 5k 5k %k 5k 3k %k 5k %k %k 5k 5k %k >k %k k k
One notices that the constraint on jig is now automatically imposed.

The energy and entropy densities and pressure can be calculated once
GenerateParticleDens has been run.

root [ ] modBQ.GenerateEnergyDens()
root [ ] modBQ.GenerateEntropyDens ()
root [ ] modBQ.GeneratePressure()

root [ ] modBQ.ListInfo()
3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 5k >k 3k 3k 5k >k 3k 5k >k >k 3k 3k >k >k >k 5k 5k >k 3k 5k 3k >k >k 5k 5k >k >k >k 5k >k >k 5k 5k >k >k >k 5k 3k >k >k >k >k >k %k >k >k %k %k >k kkk

Kokokkokokkkkokkkokkkkkokokokokk Thermal Model TInf o skskskskskskokskskskskkkskokokokkk & ok

Particle set:
./THERMUS/particles/PartList_PPB2002.txt

Quantum statistics for S=0 hadrons

Boltzmann statistics for strange hadrons
Resonance width included

kokokokokokokokokokokokokokkokkkkkkk Thermal Parameters skkokkskskskokkskskkokkkkkokkkk
Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)
start: 0.16

28



range: 0.05 -- 0.18

step: 0.001
muB = 0.2 (to be FITTED)
start: 0.2
range: 0 -- 0.5
step: 0.001
muQ = -0.00636409 (*xCONSTRAINED*)
B/2Q: 1.2683
gammas = 0.8 (FIXED)
Can. radius = 6 (FIXED)
radius = 6 (FIXED)

B/2Q Successfully Constrained
s o Ko o K oK o oK ok o ok o K sk o sk o K oK o K oK KoK o oK ok o ok o K ok ok ok K ok o Kok sk o ok o ko sk ok ko sk ok K ok ok ok
sokkkokokkkokk Rk kKR kkokokkk Thermal Quantities skkskoskskskoskskskokkskskkokskokskkkokk
S required in canonical volume: 0
S in canonical volume (model) = -0.00319327

B/2Q 1.2683 (constraint : 1.2683)

lambda_s = 0.437324

Primordial Densities:

0.00345599
0.00354032
0.0246068

n o B
]

ssokokokokokkkkoskokskk STABLE PARTICLES skskokokskok skkkskokok sk
anti-Lambda
Sigma-
Omega
pio

29



Ksi0

K+

n

Sigma+
anti-Sigma-
anti-Omega
KOS
anti-KsiO
Ksi-
anti-K+
anti-n
anti-Sigma+
pi+
anti-Ksi-

p

anti-pi+
anti-p
Lambda

KOL

3k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k 3k 5k >k 5k >k 5k >k 3k >k 3k >k >k 5k >k 5k >k 3k >k >k 5k >k 3k %k % %k %k 3k %k %k %k % %k %k

3k 3k 3k 5k >k ok 3k 5k >k >k 3k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k >k 5k 3k 5k >k >k 3k 3k 3k 5k >k 3k 3k 5k >k >k >k 5k 3k 5k >k >k %k %k 3k 5k >k >k %k >k 3k >k %k %k %k 5k % %k %k %k %k

3k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k >k 5k >k 5k >k 5k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k 5k 3k 5k >k 3k >k 3k 5%k >k 5%k >k %k 5%k 3k % >k 3%k %k %k % %k %k

One sees listed the properties of the fireball (S inside the canonical vol-

1une,§§

B and \g, as well as the total particle-, energy- and entropy primor-

dial densities). Now suppose we are interested in the thermal densities of the

A(1600)° and 7.

root [ ] TTMDensObj *delta_dens

root [ ] delta_dens->List()
**xxx Densities for Particle 32114 *xxx

n_prim = 1.0574e-05

n_decay = 0

e_prim = 1.7517e-05

s_prim = 0.00010684

p_prim = 1.69214e-06

root [ ] TTMDens0bj *piplus_dens
root [ ] piplus_

dens->List ()

= modBR.GetDensities(32114)

= modBQ.GetDensities(211)

**xxx Densities for Particle 211 ***x

30



n_prim = 0.000373201
n_decay = 0.000874568

e_prim = 0.000188871
s_prim = 0.00155018
p_prim = 5.67828e-05

One notices that the 7% has a decay density contribution, while the
A(1600)° does not. This is because, unlike the A(1600)°, the 7" is sta-
ble.

0.8 Thermal Fits

Often a single experiment releases yields and ratios that contain different
feed-down corrections. Each yield or ratio then has a different decay chain
associated with it. Since TTMThermalModel objects allow for just one as-
sociated particle set, they do not allow sufficient flexibility for performing
thermal fits to experimental data. Instead TTMThermalFit classes had to
be developed. Before we discuss these classes, let us look at the TTMYield
object which forms an essential part of the TTMThermalFit class.

0.8.1 TTMYield

Information relating to both yields and ratios of yields can be stored in these
objects. TTMYield objects contain the following data members:

fName - the name of the yield or ratio

fID1 - the ID of the yield or numerator ID in the case of a ratio

fID2 - denominator ID in the case of a ratio (0 for a yield)

fFit - true if the yield or ratio is to included in a fit (else predicted)
fSet1 - particle set relevant to yield or numerator in case of ratio
fSet2 - particle set relevant to denominator in case of ratio (0 for yield)
fExpValue - the experimental value

fExpError - the experimental error

fModelValue - the model value
fModelError - the model error

31



This class has the following constructor,

TTMYield( TString name, Double_t exp_val, Double_t exp_err,
Int_t idl, Int_t id2 = 0, Bool_t fit = true)

By default, TTMYield objects are set for inclusion in fits. The functions
Fit and Predict control the fit-status of a TTMYield object. Particle sets
(decay chains) are assigned using the SetPartSet method.

The functions GetStdDev and GetQuadDev return the number of standard-
and quadratic deviations between model and experimental values respec-
tively, i.e.,

(Model Value—Exp. Value)
Exp. Error

and

(Model Value—Exp. Value)
Model Value

respectively, while List outputs the contents of a TTMYield object to screen.
Access to all remaining data members is through the relevant ‘getters’ and
‘setters’.

0.9 TTMThermalFit

This is the base class from which the TTMThermalFitBSQ, TTMThermalFitBQ
and TTMThermalFitCanBSQ classes are derived. Each TTMThermalFit object
contains:

e a particle set (the so-called base set) which contains all the constituents
of the hadron gas as well as the default decay chain to be used,

a parameter set,

a list of TTMYield objects containing yields and/or ratios of interest,
e data members storing the total chi-square and quadratic deviation, and

e a TMinuit fit object.

Each derived class defines a private function GenerateThermalModel
which creates off the heap a thermal model object based on the base particle
set and parameter set with the specific quantum statistics/resonance width
requirements of the TTMThermalFit object.

32



0.9.1 Populating and Customising the List of Yields of
Interest

The list of yields and/or ratios of interest can be input from file using the
function InputExpYields, provided that the file has the following format:

333 STAR 0.02 0.01

-211 211 BRAHMS 0.990 0.100
-211 211 PHENIX 0.960 0.177
321 -321 PHENIX 1.152 0.239

where the first line corresponds to a yield and has format:
Yield ID /t Descriptor string /t Exp. Value /t Exp. Error/n
while the remaining lines correspond to ratios and have format:

Numerator ID /t Denominator ID /t Descriptor string /t Ezp. Value /1
Exp. Error/n

A TTMYield object is created off the heap for each line in the file with a
name derived from the ID’s and the descriptor. This name is determined by
the private function GetName, which uses the base particle set to convert the
particle ID’s into particle names and appends the descriptor. In addition to
all of the Monte Carlo particle ID’s in the associated base particle set, the
following THERMUS-defined identifiers are also allowed—

o ID =1: Nygp,
e ID=2: h™,
e ID=3hn".

By default, each TTMYield object inserted in the list of yields of interest
by the method InputExpYields is assigned the base particle set and is set
for inclusion in fits.

A TTMYield object can also be added to the list using AddYield. Such
yields should, however, have names that are consistent with those added by
the InputExpYields method. The GetName function should be used to en-
sure this consistency. Only yields with unique names can be added to the
list, since it is this name which allows retrieval of the TTMYield objects from

33



the list. If a yield with the same name already exists in the list a warning
is issued. The inclusion of descriptors ensures that TTMYield objects can
always be given unique names.

RemoveYield(Int_t idl,Int_t id2,TString descr) removes from the
list and deletes the yield with the name as derived from the specified ID’s
and descriptor by GetName. The GetYield(Int_t idl,Int_t id2,TString
descr) method returns the required yield.

0.9.2 Generating Model Values

Values for each of the yields of interest listed in a TTMThermalFit object are
calculated by the function GenerateYields. This method uses the current
parameter values and assigned particle sets to calculate these model predic-
tions.

GenerateYields firstly calculates the primordial particle densities of all
constituents listed in the base particle set. This it does by creating the rele-
vant TTMThermalModel object from the base particle set and the parameters
and then calling GenerateParticleDens. In this way, the density hash table
of the newly formed intermediate TTMThermalModel object is populated with
primordial densities as well as decay contributions according to the base par-
ticle set (recall that GenerateParticleDens automatically calculates decay
contributions in addition to primordial ones).

GenerateYields then iterates through the list of TTMYield objects, cal-
culating their specific decay contributions. New model predictions are then
inserted into these TTMYield objects. In addition, the total chi-squared and
quadratic deviation are calculated, based solely on the TTMYield objects
which are of fit-type. ListYields lists all TTMYield objects in the list.

0.9.3 Performing a Fit

The FitData(Int_t flag) method initiates a fit to all experimental yields
or ratios in the TTMYield list which are of fit-type. With flag=0 a chi-square
fit is performed, while flag=1 leads to a quadratic deviation fit. In both cases
fit_function is called. This function determines which parameters of the
associated parameter set are to be fit, and performs the required fit using
the ROOT TMinuit fit class. On completion, the list of TTMYield objects

34



contains the model predictions, while the parameter set reflects the best-
fit parameters. Model predictions are calculated by the GenerateYields
method. For each TTMYield object in the list a model value is calculated—
even those that have been chosen to be excluded from the actual fit. In
this way model predictions can be determined at the same time as a fit is
performed. ListMinuitInfo lists all information relating to the TMinuit
object after a fit has been performed.

0.9.4 TTMThermalFitBSQ

The constructor

TTMThermalFitBSQ( TTMParticleSet #*set, TTMParameterSetBSQ *par,
char *xfile)

instantiates an object with the specified base particle set and parameter set
and inputs the yields listed in the specified file in the TTMYield list.

The specifics of the fit (i.e. the treatment of quantum statistics and reso-
nance width) is handled through the SetQStats and SetWidth methods. By
default, both resonance width and quantum statistics are included.

0.9.5 TTMThermalFitBQ

The constructor

TTMThermalFitBQ( TTMParticleSet *set, TTMParameterSetBQ *par,
char *file)

instantiates an object with the specified base particle set and parameter set
and inputs the yields listed in the specified file in the TTMYield list.

The specifics of the fit (i.e. the treatment of resonance width) is handled
through the SetWidth method. By default, resonance width is included.

35



0.9.6 TTMThermalFitCanBSQ

The constructor

TTMThermalFitCanBSQ( TTMParticleSet *set, TTMParameterSetCanBSQ #*par,
char *xfile)

instantiates an object with the specified base particle set and parameter set
and inputs the yields listed in the specified file in the TTMYield list.

The specifics of the fit (i.e. the treatment of resonance width) is handled
through the SetWidth method. By default, resonance width is included.

0.9.7 Example

As an example, consider a fit to fictitious RHIC particle ratios measured in
AuAu collisions at 130 AGeV. We will assume a grand-canonical ensemble
with the parameters T', up and pg fitted and pi fixed to zero. In the grand
canonical ensemble ratios are independent of the fireball radius (this is not
true in the canonical ensemble). For this reason there is no need to specify
the treatment of the radius. Furthermore we will ignore the effects of reso-
nance width and quantum statistics.

We begin by instantiating a particle set object based on the particle list
distributed with THERMUS. After inputting the particle decays, a parame-
ter set is defined:

root [ ] TTMParticleSet set("./THERMUS/particles/PartList_PPB2002.txt")
root [ ] set.InputDecays("./THERMUS/particles/")
root [ ] TTMParameterSetBSQ par(0.160,0.05,0.,0.,1.)
root [ ] par.List()
*okokokokokokokokokokokokkkkkxxxkxkx Thermal Parameters kkskkskskskskskkkkkkkkkkkkk

T = 0.16 (FIXED)
muB = 0.05 (FIXED)
muS = 0 (FIXED)
muQ = 0 (FIXED)

36



gammas = 1 (FIXED)
radius = 0 (FIXED)
Parameters unconstrained

3k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k >k 5k >k 5k >k 5k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k 5k 3k 5k >k 3k >k 3k 5k >k 5%k >k %k 5%k 3k % >k 3% %k %k % %k %k

One notices that all parameters are by default of fixed-type.

Next we change the parameters T', ug and ugs to fit-type, supplying sensible
starting values as the arguments to the appropriate functions. For all other
properties of the fit (i.e. step size, fit range etc) we accept the default values:

root [ ] par.FitT(0.160)
root [ ] par.FitMuB(0.05)
root [ ] par.FitMuS(0.)
root [ ] par.List()
*okok Kok kR kokk Kok kokkokkokkkokk Thermal Parameters sk kskkskskkskkokkokkokkkok ko kok

T = 0.16 (to be FITTED)
start: 0.16
range: 0.05 -- 0.18
step: 0.001
muB = 0.05 (to be FITTED)
start: 0.05
range: 0 -- 0.5
step: 0.001
muS = 0 (to be FITTED)
start: O
range: 0 -- 0.5
step: 0.001
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

Parameters unconstrained

>k 3k >k 3k >k 3k >k 3k >k 3k 5k 3k 5k >k 5k >k 5k >k 5k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k 5k >k 5k >k 3k >k 3k 5k >k 5k >k %k 5%k 3k % %k 3% %k %k % % %k

37



Next we prepare a file (‘RHIC.dat’) containing the experimental data:

-211 211 BRAHMS 0.990 0.100
-211 211 PHENIX 0.960 0.177
-211 211 PHOBOS 1.000 0.022
321 -321 PHENIX 1.152 0.239
321 -321 PHOBOS 1.098 0.111
321 -321 STAR 1.108 0.022
-2212 2212 BRAHMS 0.650 0.092
-2212 2212 PHENIX 0.679 0.148
-2212 2212 PHOBOS 0.600 0.072
-2212 2212 STAR 0.714 0.050
-3122 3122 PHENIX 0.734 0.210
-3122 3122 STAR 0.720 0.024
-3312 3312 STAR 0.878 0.054
-3334 3334 STAR 1.062 0.410

As one can see there are multiple occurrences of the same particle-anti-
particle combination. This is why additional descriptors are required. In
this case the descriptors list the particular RHIC experiment responsible for
the measurement. In other situations the descriptors may describe whether
feed-down corrections have been employed or some other relevant detail that
together with the ID’s uniquely identifies the yield or ratio.

We are now in a position to create a TTMThermalFitBSQ object based on
the newly instantiated parameter- and particle sets and the data file. Since
quantum statistics and resonance width are included by default we have to
explicitly turn these settings off:

root [ ] TTMThermalFitBSQ fit (&set,&par,"RHIC.dat")
root [ ] fit.SetQStats(kFALSE)
root [ ] fit.SetWidth(kFALSE)

root [ ] fit.ListYields()
3k 3k 3k 3k 3k 3k 3k 3k 3k >k >k 5k >k >k 5k 5k >k 3k 5k >k >k >k >k >k %k >k >k %k %k %k k k

anti-pi+/pi+ BRAHMS:

FIT YIELD

Experiment: 0.99 +- 0.1
anti-pi+/pi+ PHENIX:

FIT YIELD

Experiment: 0.96 +- 0.177
anti-pi+/pi+ PHOBOS:

FIT YIELD

38



Experiment: 1 +- 0.022
K+/anti-K+ PHENIX:

FIT YIELD
Experiment: 1.152 +- 0.239
K+/anti-K+ PHOBOS:
FIT YIELD
Experiment: 1.098 +- 0.111
K+/anti-K+ STAR:
FIT YIELD
Experiment: 1.108 +- 0.022
anti-p/p BRAHMS:
FIT YIELD
Experiment: 0.65 +- 0.092
anti-p/p PHENIX:
FIT YIELD
Experiment: 0.679 +- 0.148
anti-p/p PHOBOS:
FIT YIELD
Experiment: 0.6 +- 0.072
anti-p/p STAR:
FIT YIELD
Experiment: 0.714 +-  0.05
anti-Lambda/Lambda PHENIX:
FIT YIELD
Experiment: 0.734 +- 0.21
anti-Lambda/Lambda STAR:
FIT YIELD
Experiment: 0.72 +- 0.024
anti-Ksi-/Ksi- STAR:
FIT YIELD
Experiment: 0.878 +- 0.054
anti-Omega/Omega STAR:
FIT YIELD
Experiment: 1.062 +- 0.41

3k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 5k 3k 5k >k 5k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k 5k >k 3k >k 3k 5k >k 5k >k 3k 3k 3k 5k >k 5k >k %k 5%k 3k 5k >k 5k >k >k 5%k >k 5%k %k % %k %k 5% %k % k

One can see that all ratios are set for inclusion in the fit (i.e. each is a ‘FIT
YIELD’). By default, all ratios are assigned the same decay chain as the
base particle set of the thermal fit object. This can be changed if required
by assigning a specific particle set to the numerator and denominator of the
ratio using the TTMYield: :SetPartSet method.

Next let us simply generate the model predictions corresponding to each

39



of the TTMYield objects in the list based on the current parameters. The
first part of the output of ListYields() is shown here:

root [ ] fit.GenerateYields()
root [ ] fit.ListYields()
3k 3k 3k 3k 3k 3k 3k 3k 3k >k >k 5k >k >k 3k 5k >k 3k 5k >k >k >k >k >k %k >k >k %k %k %k k k

anti-pi+/pi+ BRAHMS:

anti-pi+/pi+ PHENIX:

anti-pi+/pi+ PHOBOS:

K+/anti-K+ PHENIX:

K+/anti-K+ PHOBOS:

K+/anti-K+ STAR:

anti-p/p BRAHMS:

FIT YIELD
Experiment: 0.99 +-
Model: 0.999911 +-

0.1
0

Std.Dev.: 0.0991146 Quad.Dev.: O.

FIT YIELD
Experiment: 0.96 +-
Model: 0.999911 +-

0.177
0

Std.Dev.: 0.225488 (Quad.Dev.: 0.0

FIT YIELD
Experiment: 1 +-
Model: 0.999911 +-

Std.Dev.: -0.00402463 Quad

FIT YIELD
Experiment: 1.152 +-
Model: 0.986478 +-

0.022
0

.Dev.:

0.239
0

00991234

39915

-8.85496e-05

Std.Dev.: -0.692562 Quad.Dev.: -0.167791

FIT YIELD
Experiment: 1.098 +-
Model: 0.986478 +-

0.111
0

Std.Dev.: -1.00471 Quad.Dev.: -0.

FIT YIELD
Experiment: 1.108 +-
Model: 0.986478 +-

0.022
0

Std.Dev.: -5.52375 Quad.Dev.: -0.

40

113051

123188



FIT YIELD

Experiment: 0.65 +- 0.092
Model: 0.535261 +- 0
Std.Dev.: -1.24716 Quad.Dev.: -0.21436

Each experimental measurement now has a corresponding model value shown
together with its chi-square and quadratic deviation. The total chi-square
and quadratic deviation is also easily obtained:

root [ ] fit.GetChiSquare()

(Double_t)1.50228928916395091e+02

root [ ] fit.GetQuadDev()

(Double_t)1.93739598445468442e+00

Suppose for some reason that we wish to exclude the PHOBOS g—f ratio
from the future fit:

root [ ] fit.GetYield(321,-321,"PHOBOS")->Predict()
root [ ] fit.GenerateYields()

root [ ] fit.GetChiSquare()
(Double_t)1.49219493574695775e+02

root [ ] fit.GetQuadDev()
(Double_t)1.92461541998607899e+00

One sees that the total chi-square and quadratic deviation are modified (the
predicted ratio is excluded from their calculation). This ratio is still included
in the listing though:

root [ ] fit.ListYields()
3k 3k 3k 3k 3k 3k 3k 3k 3k >k >k 5k >k >k 3k 5k >k 3k 5k >k >k >k >k >k %k >k >k %k %k %k k k

anti-pi+/pi+ BRAHMS:

FIT YIELD
Experiment: 0.99 +- 0.1
Model: 0.999911 +- 0

Std.Dev.: 0.0991146 Quad.Dev.: 0.00991234

anti-pi+/pi+ PHENIX:
FIT YIELD

41



anti-pi+/pi+ PHOBOS:

K+/anti-K+ PHENIX:

K+/anti-K+ PHOBOS:

K+/anti-K+ STAR:

anti-p/p BRAHMS:

Experiment: 0.96 +-
Model: 0.999911 +-

0.

Std.Dev.: 0.225488 Quad.Dev.:

FIT YIELD
Experiment: 1 +-
Model: 0.999911 +-

Std.Dev.: -0.00402463 Quad

FIT YIELD
Experiment: 1.152 +-
Model: 0.986478 +-

0.

Std.Dev.: -0.692562 Quad.Dev.:

PREDICTED YIELD
Experiment: 1.098 +-
Model: 0.986478 +-

Std.Dev.: -1.00471 Quad.Dev.:

FIT YIELD
Experiment: 1.108 +-
Model: 0.986478 +-

Std.Dev.: -5.52375 Quad.Dev.:

FIT YIELD
Experiment: 0.65 +-
Model: 0.535261 +-

Std.Dev.: -1.24716 Quad.Dev.:

Finally, we perform a chi-square fit:

root [ ] fit.FitData()

42

177
0
0.0

022
0

.Dev.:

.239

0
-0

111

0
-0.

.022

0
-0.

.092

0
-0.

39915

-8.85496e-05

.167791

113051

123188

21436



sk ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk skok ok ok kkoskokk FTTTING sk ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok 5k ok ok ok %k sk 5k

T = 0.16238 (** FITTING *x*)

muB = 0.0354279 (x* FITTING *x*)
muS = 0.0102783 (xx FITTING **)
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

Parameters unconstrained
sk ok ok ok ok ok ok ok ok ok ok s ok sk ok sk sk ok ok ok ok ok sk ok e ok ok ok ook e ok e ok o ok sk ok e sk ok ok sk ok ke ok e ok s ok s ok e ok sk ok sk ok ok ok ok ok

*okkokkokkokkokkokkkokkk ChiSquare = 3.63864 ok kokkokkokkskkkkkkk

S/V = 1.66511e-05
B/2Q = 0.862741
New Minimum!

T = 0.16238 (** FITTING *%)
muB = 0.0354279 (%% FITTING *x*)
muS = 0.0102783 (%% FITTING *x*)
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

Parameters unconstrained

3k 3k 3k 3k >k ok 3k 3k >k >k 3k 3k 5k >k >k 3k 5k >k >k 3k 5k >k >k >k 5k 3k 5k >k >k 3k 5k 3k 5k >k 3k 3k 5k >k >k >k 5k 3k 5k >k >k %k %k 3k 5k >k >k %k >k 3k >k %k %k %k >k % %k %k %k %k

Once completed the associated parameter set contains the best-fit values for
the fit parameters.

root [ ] fit.GetParameterSet()->List()
skkokkokokkkkkkkkkkkkkkxkkkx Thermal Parameters sk kskskskskkkskkkkkkkkkkkkxx
T 0.159 +- 0.118264 (FITTED!)
start: 0.16
range: 0.05 -- 0.18

43



step: 0.001

muB = 0.0344416 +- 0.0251108 (FITTED!)
start: 0.05
range: 0 -- 0.5
step: 0.001
muS = 0.00991061 +-  0.00956141 (FITTED!)
start: 0
range: 0 -- 0.5
step: 0.001
muQ = 0 (FIXED)
gammas = 1 (FIXED)
radius = 0 (FIXED)

Parameters unconstrained
st ok ok ok ok ok ok ok ok ok ok s ok sk ok sk ok ok ok ok ok ok sk ok e ok ok ok ook e ok e ok o ok sk ok e ok ok ok s ok ke ok e ok s ok s ok ke ok sk ok sk ok ok ok sk ok

All other details of the fit are output to screen by the ListMinuitInfo ()
function.

root [28] fit.ListMinuitInfo()
FCN = 3.63561
EDM = 6.99933e-06

Errdef = 1
Full accurate covariance matrix calculated
FCN=3.63561 FROM MIGRAD STATUS=CONVERGED 167 CALLS 168 TOTAL
EDM=6.99933e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 T 1.59000e-01 1.18264e-01 2.20944e-04  7.43567e-01

2 muB 3.44416e-02 2.51108e-02 1.69163e-05 -1.03966e+00

3 muS 9.91061e-03 9.56141e-03 1.86392e-05 -1.28828e+00
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=1

9.504e-03 2.451e-03 9.225e-04
2.451e-03 6.390e-04 2.404e-04
9.226e-04 2.404e-04 9.200e-05
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3
1 0.99474 1.000 0.995 0.986

44



2 0.99675 0.995 1.000 0.992
3 0.99167 0.986 0.992 1.000

45



