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THERMUS∗ – A Thermal Model Package for ROOT

S. Wheaton, J. Cleymans

Department of Physics, University of Cape Town,

Rondebosch 7701, Cape Town, South Africa

THERMUS, a package of C++ classes and functions allowing thermal model analyses to be
performed within the object-oriented ROOT framework of analysis, is introduced.

I. INTRODUCTION

With the appropriate choice of ensemble, the statistical-thermal model has proved extremely successful in
describing the hadron multiplicities and momentum spectra observed in relativistic collisions of both heavy ions and
elementary particles over a wide range of energies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

This success motivated the development of THERMUS– a thermal model analysis package of C++ classes and
functions for incorporation into the object-oriented ROOT framework [11]. Since all THERMUS classes inherit from
the ROOT base class TObject, they can be fully integrated into the interactive ROOT environment. In this way, one
has access to all of the ROOT functionality in a thermal analysis.

At present three distinct thermal model formalisms are implemented in THERMUS: the grand-canonical ensemble,
in which baryon number (B), strangeness (S) and charge (Q) are conserved on average; a strangeness-canonical
ensemble, in which strangeness is exactly conserved while B and Q are treated grand-canonically; and, finally, a
fully canonical ensemble in which B, S and Q are each exactly conserved. The structure of THERMUS is such that
extensions to include the quantum numbers carried by the heavier quarks will be easily achieved.

In this paper we begin with an overview of the thermal model, as applicable to THERMUS, before describing in
some detail the structure of the package.

II. OVERVIEW OF THE STATISTICAL-THERMAL MODEL

The statistical-thermal model assumes that at freeze-out all hadrons in the hadron gas resulting from a high energy
collision follow equilibrium distributions. The conditions at chemical freeze-out (when inelastic collisions cease) are
given by the hadron abundances, while the particle spectra offer insight into the conditions at thermal freeze-out
(when elastic collisions cease). Since THERMUS currently performs only chemical analyses, we will defer discussion
of momentum spectra analysis until THERMUS has been extended to include such functionality.

A. The Statistical Formalisms

Once evaluated, the hadron gas partition function gives all primordial thermodynamic quantities of the system by
simple differentiation. The exact form of the partition function, however, depends on the statistical ensemble under
consideration.
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1. The Grand-canonical Ensemble

This ensemble is the most widely used in applications to heavy ion collisions [1, 2, 3, 4, 5, 6, 7, 8]. Within the
grand-canonical ensemble, the quantum numbers of the system are conserved on average through the action of
chemical potentials. In other words, the baryon content, B, strangeness content, S and charge content, Q, are fixed
on average by µB, µS and µQ respectively. For each of these chemical potentials one can write a corresponding

fugacity using the standard prescription λ = eµ/T , where T is the temperature of the system.

As an example, the density of hadron species i with quantum numbers Bi, Si and Qi, spin-isospin degeneracy
factor, gi, and mass, mi, emitted directly from a fireball at temperature T is,

ni(T, µB, µS , µQ, γS) = gi

∫

d3p

(2π)3

[

γ
−|S̃i|
S e

√
m2

i
+p2/T λ−Bi

B λ−Si

S λ
−Qi

Q ± 1
]−1

, (2.1)

where, in addition to the fugacities already introduced, we include γS , raised to the power −|S̃i| (with |S̃i| the number
of strange and anti-strange quarks in hadron species i), to allow for possible incomplete equilibration in the strange
sector [12]. In Equation 2.1 quantum statistics is taken into account; the positive sign refers to fermions, while the
negative sign is applicable to bosons. In the Boltzmann approximation, the density can be analytically evaluated as
a second order modified Bessel function of the second kind,

ñi(T, µB, µS , µQ, γS) =
gi

2π2
m2

i TλBi

B λSi

S λ
Qi

Q γ|S̃i|
s K2

(mi

T

)

. (2.2)

The quantum-statistical result requires either an infinite summation over such K2-functions or else a numerical
integration.

The chemical potentials µS and µQ are typically constrained in applications of the model by the initial strangeness
and baryon-to-charge ratio in the system under consideration.

2. The Strangeness-canonical Ensemble

As the number of particles in the fireball drops, so the conservation of quantum numbers on average becomes less
acceptable. Since strangeness is typically the least abundant of the quantum numbers under consideration, the exact
treatment of the S quantum number has first to be imposed. This is enforced in the strangeness-canonical ensemble.
In the expression for the strangeness-canonical partition function, ZS , only those states within the volume, V , with
exactly the desired strangeness content, S, are allowed.

The primordial particle density of hadron species i, nS
i , is then, assuming Boltzmann statistics, proportional to the

associated grand-canonical density of the hadron ñi [13, 14],

nS
i (T, µB, S, µQ, γS , V ) =

(

ZS−Si

ZS

)

ñi(T, µB, µS = 0, µQ, γS), (2.3)

with the partition function expressed in terms of modified Bessel functions of the first kind as

ZS = Z0 ×
+∞
∑

m=−∞

+∞
∑

n=−∞

I|3m+2n−S|(x1) I|n|(x2) I|m|(x3) y
−(3m+2n−S)
1 yn

2 ym
3 , (2.4)

where Z0 is the contribution of the non-strange hadrons and

xq = 2.
√

k+qk−q and yq =

√

k+q

k−q
(q = 1, 2, 3),

with

k±q =
∑

Hadrons j with Sj=±q

ñjV (q = 1, 2, 3). (2.5)
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The canonical correction thus amounts to a multiplicative factor given by the ratio of the partition function with
the strangeness of the considered hadron excluded to the complete partition function. This correction factor depends
strongly on the volume, V , within which exact conservation is imposed. This correction factor rapidly approaches
λSi

S so that for most applications to heavy-ion collisions a grand-canonical treatment is sufficient.

While strangeness is exactly conserved in this ensemble, the baryon- and charge content is fixed only on average
by the chemical potentials µB and µQ respectively.

3. The Canonical Ensemble

For small systems, such as pp, pp̄, and pA it is necessary to conserve each quantum number exactly [9, 10]. In such
a system, with content B, S and Q, the density, in the Boltzmann approximation, of hadron species i is

n
B,S,Q
i (T, B, S, Q, γS, V ) =

(

ZB−Bi,S−Si,Q−Qi

ZB,S,Q

)

ñi(T, µ = 0, γS), (2.6)

where ñi is the associated density in the grand-canonical ensemble and ZB,S,Q is the canonical partition function of
the system. Calculation of the partition function has been performed by many groups (see references in [15]). In
THERMUS the approach of [15] is adopted.

In this approach,

ZB,S,Q =
Z0

(2π)2

∫ 2π

0

dφS

∫ 2π

0

dφQ cos (SφS + QφQ − B arg ω)

× exp



2
∑

Mesons j

z1
j cos (SjφS + QjφQ)



 IB (2|ω|) , (2.7)

where,

ω ≡
∑

Baryons j

z1
j ei(SjφS+QjφQ),

z1
j ≡ gjV

(2π)
3

∫

d3p e−Ej/T ,

and Z0 is the total partition function of those hadrons with no net charges. Evaluation of the partition function
involves labour-intensive numerical integration and is only practical in very small systems.

B. Further Considerations

Although in the earlier discussion only expressions for the particle density were presented, the primordial energy
and entropy densities and pressure are also easily determined from the appropriate partition function.

An essential ingredient in any thermal model analysis is a complete treatment of resonances. Especially at low
temperatures it is important to take the width of these resonances into account. Resonance widths are included in
the thermal model by distributing the resonance masses according to Breit-Wigner forms [2, 9, 10, 16, 17, 18]. This
amounts to the following modification in the integration of the Boltzmann factor [17]:

∫

d3p exp

[

−
√

p2 + m2

T

]

→
∫

d3p

∫

ds exp

[

−
√

p2 + s

T

]

1

π

mΓ

(s − m2)2 + m2Γ2
, (2.8)



4

where Γ is the width of the resonance concerned, with threshold limit, mthreshold, and mass, m, and
√

s is integrated
over the interval [m - δm, m + 2Γ], where δm = min[m - mthreshold,2Γ].

As input to the various thermal model formalisms one thus needs first a set of particles to be considered thermalised.
When combined with a set of thermal parameters relevant to the ensemble under consideration, all primordial
quantities (i.e. number density as well as energy- and entropy density and pressure) are calculable. Once the decays
of each of the constituent hadrons is specified, the final particle densities can be determined and compared with
experiment.

III. IMPLEMENTATION IN THERMUS

Having briefly reviewed the thermal model we now discuss its implementation in THERMUS. The ba-
sic structure and functionality of THERMUS will be introduced by discussing the THERMUS classes in a
bottom-up approach. The finer details of each class are discussed in the THERMUS manual available online
(http://hep.phy.uct.ac.za/THERMUS/).

A. The Particle Object (TTMParticle)

The properties of a constituent of the hadron gas relevant to the thermal model are stored in a TTMParticle

object. These properties include its mass, width, Monte-Carlo ID, degeneracy, statistics and quantum numbers. In
addition, each TTMParticle object allows storage of the particle’s decay channels in a list of TTMDecayChannnel

objects. Each of these elements of the list includes the branching ratio for the channel as well as the Monte-Carlo
ID’s of each of the daughters. From this decay channel list a decay summary list is generated in which each daughter
appears only once.

B. The Parameter Set Object (TTMParameterSet)

The TTMParameterSet class is the base class from which the particular parameter set objects relevant to the
individual varieties of thermal model implemented in THERMUS are derived (three at the moment). Each parameter
set contains an array of TTMParameter objects which store the basic properties of a parameter (e.g. its name, value,
error etc.).

The type of each parameter can also be specified. For instance, a parameter may be set to ‘fit-type’, if it is to
be fitted, or ‘constrained-type’, if it is required that it be used to satisfy a certain constraint. These types refer to
intended actions at this point; such action can only be taken at a later stage once the parameter set is combined
with functions capable of implementing the intended actions. As an example, in grand-canonical treatments chemical
potentials are often constrained by the initial conditions in the colliding system. However, such constraints can only
be implemented once all densities in the hadron gas have been calculated.

C. The Thermal Particle Object (TTMThermalParticle)

Once a TTMParticle and TTMParameterSet object have been instantiated, these may be combined in a thermal
particle object. The TTMThermalParticle class is the base class from which the three classes corresponding to the
currently implemented varieties of the thermal model are derived.

Within the derived class relevant to a grand-canonical treatment of B, S and Q, the parameters cannot yet be
constrained (since a complete particle set is required for this). However, with the parameter values as specified, the
particle-, energy- and entropy densities as well as the pressure are calculable. These quantities can be calculated
assuming Boltzmann or Fermi-Dirac statistics, with or without resonance width.

http://hep.phy.uct.ac.za/THERMUS/


5

The derived classes relevant to the two ensembles imposing exact conservation contain just calculations within the
Boltzmann approximation. As we have seen, under this approximation, the thermal quantities are related to the
grand-canonical quantities through correction factors. These factors, however, can only be calculated once a full set
of hadronic constituents has been specified. At this level, with just one particle and a parameter set, the particle’s
correction factor has to be specified by the user. This structure was, however, maintained in order to allow analogous
implementation of all formalisms at the TTMThermalModel level.

Although the Boltzmann no-width approximation leads to analytic results for all of the thermal quantities, all other
calculations require numerical computation. In order to keep computation time reasonable, whenever possible, the
Gauss-Laguerre quadrature method is used for the momentum integrals required under the assumption of quantum
statistics and the Legendre method for the integrals required under the assumption of finite resonance width. A
systematic test of these integration techniques has been conducted. In regions where these methods fail, the more
labour-intensive TF1 and TF2 functions of ROOT are used. In practise, the more time-efficient algorithms work in
most physical situations.

D. The Particle Set Object (TTMParticleSet)

The TTMParticleSet object contains a hash table of TTMParticle objects. The Monte-Carlo particle ID’s are
used to access these hadronic constituents quickly and efficiently from the set.

Associated with a particle set is a list of stable particles. In the context of the application of a thermal model,
these are either particles which decay some time after reaching the detectors, or particles whose decays have been
corrected for by the experimentalists. Once this list of stable particles is specified, the feed-down contributions to just
these stable daughters are calculated and recorded in the decay summary list of each constituent. This allows for fast
calculation of the feed-down contributions without continual re-calculation of the decay fractions to stable hadrons.
By leaving the decay channel lists unaltered, this is not achieved at the cost of loss of information. Maintaining
the decay channel information allows the possibility to extend THERMUS at a later stage to include also thermal
freeze-out analysis of momentum spectra.

Although users are able to build their own particle sets, the THERMUS distribution contains a text file listing all
hadrons with u, d and s quarks listed by the Particle Data Group [19], as well as text files listing the particle decay
channels. Using these files is the easiest way to instantiate a TTMParticleSet object and populate the decay lists of
its constituents.

E. The Thermal Model Object (TTMThermalModel)

Combining a TTMParticleSet and TTMParameterSet object one can form a TTMThermalModel object. Derived
classes exist for each of the previously discussed formalisms.

At this level, chemical potentials can be successfully constrained and canonical correction factors can be calculated,
since all hadronic constituents and parameters are specified. Running GenerateParticleDens calculates all
primordial particle densities after first automatically constraining the chemical potentials if required or calculating
the canonical correction factors if relevant. If a particle is considered stable then a decay contribution is calculated
based on the decays in the individual TTMParticle objects. These particle densities are stored in a hash table of
TTMDensObj objects. Objects of this class allow storage of all thermodynamic quantities of a particle. Again access
to the elements in this hash table is through the Monte-Carlo ID’s.

Functions to calculate the energy and entropy densities and pressure of each particle also exist, but since they
depend on the correction factors and chemical potentials determined from the particle densities, these functions must
be run after GenerateParticleDens. When called, these functions cycle through the existing elements of the density
hash table and insert the required quantity into each TTMDensObj object.
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F. The Thermal Fit Object (TTMThermalFit)

Since experimental groups frequently apply different feed-down corrections to particles, the TTMThermalModel

class is not sufficiently flexible to allow fits to data. Instead a separate TTMThermalFit class has been developed with
derived classes for each of the three formalisms. In these classes it is possible to ascribe to each particle yield or ratio
of interest a particle set (or separate sets for the numerator and denominator in the case of ratios) with a different
decay chain. In this way, feed-down chains can be fine-tuned to match the specifics of a particular experimental
result. The yields or ratios of interest are stored as TTMYield objects in a list. Each TTMYield object contains the
Monte-Carlo ID of the yield (or numerator and denominator ID’s in the case of a ratio) as well as a further descriptive
string. In addition to these identifiers, each TTMYield object includes a pointer (or pointers) to the relevant particle
set (or sets), as well as the experimental and model values and errors.

The function GenerateYields cycles through the list and generates model predictions for each of the yields or
ratios of interest based on the given parameter set and relevant particle sets.

The FitData function performs a fit of those parameters in the associated TTMParameterSet object of ‘fit-type’.
Use is made of the ROOT TMinuit fitting class. On completion of the fit, the parameter set contains the best-fit
parameters and the list of yields and ratios of interest are populated with the best-fit model predictions.

IV. CONCLUSION

In conclusion, an analysis package has been developed allowing thermal model analyses to be performed within
the ROOT framework of analysis. This package is available freely from http://hep.phy.uct.ac.za/THERMUS/. A
detailed user guide and installation instructions are also available at this site.

Subsequent to developing this package, the authors of THERMUS became aware of the release of a statistical
hadronisation package (SHARE) written in FORTRAN and Mathematica [20]. THERMUS, however, has the advantage
of being written for incorporation into ROOT.
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