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To the student 
 
 

 
As a science, engineering or medical graduate, it will be assumed by your 
future employer that you have certain skills.  These will include problem 
solving skills,  the ability to engage with apparatus that you may not have 
seen before,  the ability to plan and execute an experiment or some type of 
investigation,  the ability to collect, analyse and interpret data and very 
importantly the ability to communicate and present your findings either 
orally or in the form of a written report. 
 
The contents of this book may be viewed as a complementary course to the 
practicals that you will undertake in the laboratory as well as a reference 
manual.  As certain skills become necessary in the laboratory, you will have 
the opportunity to develop these skills using the examples and doing the 
exercises in this manual.   
 
It is thus intended that, (a) during your laboratory course, you will work 
through the exercises and examples in this manual at the appropriate stage, 
and (b) this book be used as a reference handbook when you do practical 
work in the laboratory and then write up your experience in the form of a 
report. The tasks in this book have been designed to assist you in developing 
these skills.    
 
It is intended this book to be used in a cooperative learning environment. We 
believe that working in groups of 3 is best for these activities. Compare your 
responses to those of your work partners. Help each other to figure out 
what is going on. Resolve any difficulties that you might have and call a tutor 
or lecturer if you need to. Do not proceed to the next activity until you are 
completely clear about what you have just completed.   



 

To the instructor 
 
 
 

Traditionally physics laboratory courses at introductory level have aimed to demonstrate various 
principles of physics introduced in lectures.  Experiments tend to be quantitative in nature and 
thus experimental and data analysis techniques are interwoven as distinct strands of the 
laboratory course.  It is often assumed that, in this way, students will end up with an 
understanding of the nature of measurement and experimentation.  Recent research studies 
have, however, questioned this assumption. They have pointed to the fact that students who 
have completed physics laboratory courses are often able to demonstrate mastery of the 
mechanistic techniques (e.g. calculating means and standard deviations, fitting straight lines, 
etc.), but lack an appreciation of the nature of scientific evidence, in particular the central role 
of uncertainty in experimental measurement.  Although one of the most important aspects of 
putting together a teaching sequence is bringing together the philosophy, logic and modes of 
thinking that underlie a particular knowledge area, introductory measurement is usually taught as 
a combination of apparently rigorous mathematical computations and vague rules of thumb. We 
believe that this is a consequence of the logical inconsistencies in traditional data analysis, which 
is based on the frequency interpretation of probability. This approach, often called 
“frequentist”, is the one used or implied in most introductory laboratory courses. 

In the frequentist approach, “errors” are usually introduced as a product of the limited 
capability of measuring instruments, or in the case of repeated measurements, as a consequence 
of the inherent randomness of the measurement process and the limited predictive power of 
statistical methods. These two different sources of “errors” cannot be easily reconciled, thus 
creating a gap between the treatment of a single reading and of ensembles of dispersed data. 
For example, the theory applicable to calculating a mean and a standard deviation is premised on 
the assumption of large datasets (20 or 30). Yet, when students perform an experiment in the 
laboratory they often take 5 or fewer readings. Furthermore, there is no logical way to model 
statistically a single measurement within this approach. 

Traditional instruction usually emphasizes random “error” for which there is a rigorous 
mathematical model, while systematic “errors” are reduced to the technical level of “unknown 
constants” that have to be determined by examining the experimental setup. The concept of 
“scale reading error”, usually taught at the beginning of the course, cannot be related to either 
random or systematic “errors” that are taught during the treatment of repeated measurements. 
Moreover, the term “error” misleads students by suggesting the existence of true and false 
experimental results, possibly endorsing the naïve view that an experiment has one 
predetermined “correct” result known by the instructor, while students’ measurements are often 
“in error.” Readers will be all too familiar with the phrase “due to human error” often used by 
students in order to explain unexpected results.  

We believe that the logical inconsistencies in the traditional approach to data treatment, 
together with the form of instruction that ignores students’ prior views about measurement, 
further cultivate students’ misconceptions about measurement in the scientific context.   



    

 

The need for a consistent international language for evaluating and communicating measurement 
results prompted (in 1993) the ISO (International Organization for Standardization) to publish 
recommendations for reporting measurements and uncertainties  based on the probabilistic 
interpretation of measurement.  Many standards bodies including   

BIPM  Bureau International des Poids et Mesures  
IEC  International Electrotechnical Commission  
IFCC  International Federation of Clinical Chemistry  
IUPAC  International Union of Pure and Applied Chemistry  
IUPAP  International Union of Pure and Applied Physics  
OIML  International Organization of Legal Metrology  
NIST  National Institute of Standards and Technology (US) 

have adopted these recommendations for reporting scientific measurements. A number of 
documents currently serve as international standards. The most widely known are the so-called 
VIM (International Vocabulary of Basic and General Terms in Metrology) and the GUM (Guide to 
the Expression of Uncertainty in Measurement). 

We believe this course based on the probabilistic approach advocated by ISO will help in setting 
up a systematic teaching framework at an introductory level and beyond, and promote a better 
understanding of the nature of measurement and uncertainty.  In addition, the coherence of the 
approach will foreground the central role of experiment in physics and the interplay between 
scientific inferences based on data and theory.   

 
AB, MSA, FEL, RMC 
November 2002 
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1  Introduction 
 
 
You arrive home after your first practical afternoon in the physics laboratory and say 
to your friend, “Today was the best day of my life !  I did a really interesting 
experiment in physics !  The fun part was comparing my measurements with those of the 
other students in the class.”   Your friend looks puzzled and asks… 
 
 
 
 
 
 
What do say to your friend? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
Your friend wants to find out more, and asks, “What do you mean by a ‘measurement’ ?” 
What explanation do you give to your friend? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_______________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

What is an experiment ? 
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1.1 Thinking about measurement 
 
You may now have concluded that the concept of a measurement is not entirely 
straightforward. Let us explore some of the elements that make up a measurement. 
 
Imagine that you are given a digital bathroom scale and told that we need to know your 
mass as accurately as possible. You stand on the scale and it indicates 77.5 kg.  The 
following discussion takes  place between you and your friends: 
 

A Good ! Your mass is 77.5 kg. 

B That is not your mass. You can only know your mass if you first take off all your 
clothes. 

C That will not help either as it all depends on whether you have eaten or not.  
You cannot find your mass after a large meal. 

D It depends on what you want. 
 
With whom do you most closely agree?  Explain your choice. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
It is clear that whatever it is we want to measure must be clearly defined. We refer to 
what we want to measure as the measurand. Although the measurand in the example 
above is a “mass” it is not well specified.  
 
What is the measurand in the situation described above?   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
 
 
 

Defining the measurand is 
an important step in the 
measurement process. 
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Imagine that you (and the rest of the physics class) are stranded on the island called 
Nometresticks where all memories of known measuring systems have been erased.   
Take a pen and try to tell each other in your group what the length of the pen is 
without using known units. All of you must use the same pen, of course, for this 
exercise. Write down what you said to the rest of the group.  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
You now come up with the bright idea of creating a scale using the width of your thumb.  
On the “ruler” below, mark out units of your thumb (Th).  
 
 
 
 
 
 
You have created a thumb-rule ! (Not to be confused with a “rule of thumb”!) 
 
Use your thumb-rule to measure the length of the pen in units of your thumb, 
estimating fractions of a thumb as best you can.  Each person in the group should do the 
same using their own thumb-rule. 
 
Student 1: Length of pen (in Thumbs): _____________ Th      [Measurement M1] 
 
Student 2: Length of pen (in Thumbs): _____________ Th     
 
Student 3: Length of pen (in Thumbs): _____________ Th        
 
 
 
 
 
 
 
Are all 3 values for the length of the pen recorded for M1 above the same ? If they are 
not all the same, what do you think is the main reason that they differ?  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

Th   

A measurement involves a comparison 
between the (unknown) measurand and 
something known that we can refer to. 
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Clearly each measurement was based on a slightly different scale depending on how wide 
each thumb is, i.e. you each used your own personal standard.  We therefore need to 
agree on a common standard if we are going to compare our measurements meaningfully.  
You might think that the most democratic way to do this is to have endless meetings 
between everyone in the class in order to agree on whose thumb width is the best to 
adopt. However, since we (the authors of this book) are in charge, we will simply decree 
that the standard thumb width will be the size shown below. This will be our standard 
reference thumb. The thumb-rule below is calibrated in units of the standard thumb. 
 
 
 
 
 
 
Use the standard thumb-rule above to measure the length of the pen, estimating 
fractions of a thumb as best you can.  Each person in your group should carry out the 
exercise without assistance from the others. 
 
Student 1: Length of pen (in Thumbs): _____________ Th      [Measurement M2] 
 
Student 2: Length of pen (in Thumbs): _____________ Th     
 
Student 3: Length of pen (in Thumbs): _____________ Th        
 
Compare your readings for M2 with those for M1.  Which do you think are better and why? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________  
 
 
 
 
 
 
 
 
Can you think of any type of measurement that does not involve a comparison ? 
 

5               6               7              8                9             10             11             12              13    Th        

A measurement involves comparing the measurand 
with a common reference standard. 
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What do you think is the main reason that all the readings in M2 are not exactly the 
same?   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
What do you think can be done in order to improve the agreement? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
The differences in our readings can be explained by the fact that each of you has 
judged things slightly differently. One way to reduce the effect of this is to calibrate 
the scale using finer gradations as shown below where each thumb is divided into ten, 
i.e. we have a scale calibrated in “deci-thumbs”. 
 
 
 
 
 
 
Measure the length of the pen, estimating fractions of a deci-ithumb as best you can.  
Each person in your group should carry out the exercise without assistance from the 
others. 
 
Student 1: Length of pen (in Thumbs): _____________ Th      [Measurement M3] 
 
Student 2: Length of pen (in Thumbs): _____________ Th     
 
Student 3: Length of pen (in Thumbs): _____________ Th        
 
Are all 3 values for M3 the same, or do they differ? _____________ 
 
If the 3 values differ, discuss whether you think it will help to divide the scale into 
centithumbs. If the 3 values are the same, what do you think will happen if we use a 
centithumb rule? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

5               6               7              8                9             10             11             12              13    Th       
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How many of these subdivisions do you think are possible? 
  
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Do you think that you could ever measure the “true” length of the pen this way?   
Can you think of a way to determine this? What about “going digital”? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
In the next chapter we will explore more of these issues. 
 
A note about units:  Specifying the units of a measurement is a way of referring to the 
reference standard that is being used.  The SI system of units is one of the most 
commonly used.  In this system, the metre is the reference standard for length.   
 
No measurement is meaningful without specifying the units you are using.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Do you know the origin of the “standard” metre that we use today?

The length of my pen is 6.8  
Huh?  6.8 what?   
            thumbs, zogs, metres, 
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1.2 Limits to what we know from a measurement 
 
Think about the following example: 
 
During the vacation you are helping a scientist work in her chemistry laboratory.  She 
says that she is doing a very important experiment and needs to weigh the chemical 
powder that is produced from a particular chemical reaction. She chooses to use a 
mechanical chemical balance which relies on known calibrated masses. 
 
The powder is placed in the left 
hand pan and three 1.0 g 
calibrated masses are placed in 
the right hand pan. What you see 
is shown alongside. 
 
 
Clearly the powder weighs more than 3.0 g. 
 
 
 
 
 
When a fourth 1.0 g mass is 
added, the balance tips over to 
the right: 
 
 
What can you say about the mass of the powder? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
One of the 1.0 g masses is removed 
and the chemist starts carefully 
adding 0.1 g masses to the pan. 
After adding two of the 0.1 g 
masses, the balance is still leaning 
to the left. 
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When a third 0.1 g mass is added, 
the balance once again leans to the 
right. 
 
 
 
 
 
What can you say at this stage about the mass of the chemical powder? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
What can the chemist do now? She doesn’t have calibrated masses that are smaller than 
0.1 g. 
 
There is a limit to the knowledge that the chemist has about the mass of the powder. 
All we can say is that the mass of the powder is between 3.2 g and 3.3 g. Even if we use 
smaller and smaller calibrated masses (0.01 g, 0.001 g, ...) our knowledge about the mass 
of the powder will never be perfect (unless we go on forever!). 
 
 
1.3 Purposes of measurement 
 
Imagine that you are baking a cake with some friends in your kitchen.   
The recipe says “add 50 grams of sugar”.  You put some sugar on your kitchen scale and 
the display reads  52.0 g.  
 
The following discussion takes place between you and your friends: 
 

A I think that it is OK. 

B I think that it is not OK. We have to measure again. 

C I think that it is not OK. We have to take out 2 grams of sugar. 
 
With whom do you most closely agree? 
 
Explain your choice carefully. 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
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Imagine now that you are now working with your friends in the chemistry laboratory at 
university. The experiment requires you to weigh out 50.0 grams of a particular 
chemical.  You pour some of the chemical powder onto a chemical balance in the 
laboratory and the display reads  52.0 g.  
 
The following discussion takes place between you and your friends: 
 

A I think that it is OK. 

B I think that it is not OK. We have to measure again. 

C I think that it is not OK. We have to take out 2.0 g of the chemical. 
 
With whom do you most closely agree?  Explain your choice carefully. 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
Compare your answers for the two situations above.  Explain why they are the same or 
different. 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
 
 
 
 
 
If we go back to the exercise about measuring the pen we can see that what we wanted was 
to find out information about the pen, i.e. after the measurement we could answer the 
question, “What do we know about the length of the pen?”.  However, in the two examples 
above, we argued about whether or not we were close to some specified reference. The 
questions in our minds here were, “Is this good enough for the purpose?” or “Are we close 
enough to the specification?”  You will encounter both types of measurement in science.  
What is important in the scientific context is that whatever the reason for performing the 
measurements, the results must be recorded in the same way.  
 
Thus, in the first example above, if you were asked, “How much flour did you use”, you might 
say, “Oh, about 52 g”, or you may say. “Oh, exactly 52 g”.  But what do we mean by these 
terms? Before we look into the formal ways of recording and communicating in science let us 
explore our own meanings of terms such as “approximate” and “exact”. 

Thinking about the purpose of your measurement   
an important part of the whole process. 
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1.4 “Exactly approximate” 
 
Think about the following.  You are in the laboratory using a scale to determine the 
masses of two blocks of wood.   What you see on the scales is shown below: 
 
 
 

 
 
 

Block One          Block Two 
 
The following discussion takes place between you and your friends concerning the left 
hand scale: 
 

A I think that the reading on the left hand scale is exactly 48.0 grams. 

B I think that the reading on the left hand scale is approximately 48.0 grams. 

C I don’t agree with either of you. 
 
With whom do you most closely agree ?          Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
The following discussion takes place between you and your friends concerning the right 
hand scale: 
 

A I think that the reading on the right hand scale is exactly 48.0 grams. 

B I think that the reading on the right hand scale is approximately 48.0 grams. 

C I don’t agree with either of you. 
 
With whom do you most closely agree ?          Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

  40 g    50 g   40 g    50 g 
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Compare your answers above for the two scales. Explain why they are the same or different. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Clearly the reading on the scale for Block One is exactly 48.0 g. However, does this 
mean that the mass of the block is exactly 48.0 g? 
 
The following discussion now takes place between you and your friends concerning Block One: 
 

A I think that the mass of the block is exactly 48.0 grams. 

B I think that the mass of the block is approximately 48.0 grams. 

C I don’t agree with either of you. 
 
With whom do you most closely agree ?       Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
The lecturer comes along and wants to 
measure the mass of one of your 
blocks of wood.  The lecturer puts the 
block on an electronic balance and the 
display of the balance shows: 
 
 
The following discussion about the reading takes place: 
 

A I think that the reading on the digital display is exactly 48.8 grams. 

B I think that the reading on the digital display is approximately 48.8 grams. 

C I don’t agree with either of you. 
 
With whom do you most closely agree ?    Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

grams 
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The discussion now turns to what we can say about the mass of the block. 
 

A I think that the mass of the block is exactly 48.8 grams. 

B I think that the mass of the block is approximately 48.8 grams. 

C I don’t agree with any of you. 
 
With whom do you most closely agree ?     Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
The lecturer now changes the sensitivity on the 
balance and the display of the balance shows: 
 
 
The following discussion takes place about the reading: 
 

A I think that the reading on the digital display is exactly 48.82grams. 

B I think that the reading on the digital display is approximately 48.82 grams. 

C I don’t agree with either of you. 
 
With whom do you most closely agree ?   Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
The discussion now turns to what can be concluded about the mass of the block. 
 

A I think that the mass of the block is exactly 48.82 grams. 

B I think that the mass of the block is approximately 48.82 grams. 

C I don’t agree with any of you. 
 
With whom do you most closely agree ?   Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

grams 
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As you can see, the reading and the value of the measurand are not the same thing.  
Each reading provides some information about the measurand.  This will become clearer 
later but for now it is important to note that this difference exists. 
 
 
 
 
 
 
 
 
1.5 Measurement in science 
 
The enterprise of scientific enquiry is about understanding the phenomena of nature, 
and therefore the main purpose of a measurement in science is to provide knowledge 
about a particular quantity. What constitutes valid and reliable scientific knowledge is 
not easy to define and this issue has been explored by scientists, philosophers and 
sociologists for as long as modern science has existed.  For our purposes we can think of 
science as progressing along two separate but tightly interwoven fronts, namely theory 
and experiment.  The purpose of a theory is to describe and explain the results of 
experiments and to make predictions about the outcomes of future experiments.   
 
On the other hand, experiments involve systematic observations of events under 
conditions that are controlled and understood as well as possible. Experiments involve 
making measurements of various quantities with the aim of providing the most 
trustworthy information possible.  The quality of the data from an experiment depends 
critically on the design of the experiment, how carefully the procedures are carried out 
and how well all influences on the measurements are understood.    
 
There are well-defined concepts and procedures concerned with processing and 
reporting scientific measurements. For example, the concept of “work” in physics has a 
very particular meaning which is almost nothing to do with your everyday use of the 
word. Learning how to draw a force diagram is an important skill when learning 
mechanics. You will learn some very important ideas and procedures which are central to 
measurement in science. Some of the words that you will come across also have an 
“everyday” meaning, therefore you will need to be careful when thinking about the 
context within which these new ideas and procedures have particular significance.  
 
Since a key  purpose of the scientific enterprise is concerned with gaining knowledge 
about a quantity, an important aspect of all experimental work involves deciding what 
measurements to take and identifying all the factors that could influence the 
measurement result. These factors which might be related to any aspect of the 
experiment (the environment, the skill of the experimenter, the instrument used, etc.) 
all work against obtaining the “perfect” result.  During this course you will see how to 

There is a difference between the actual reading 
observed on the instrument that you are using, and what 
you can conclude about the value of the measurand. 
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incorporate these influences more formally into your analysis of the data from an 
experiment. You will come to understand that an important aspect of a scientific 
measurement is to reduce the effect of these factors on a measurement result, 
thereby improving your knowledge about the quantity you are measuring. 
 
 
 
 
 
 
 
 
Write down next to each factor whether you think it affected the result in a small way 
or a large way.   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________  
 
 
Because of the central role that measurements play in science, engineering and 
technology, it is important that scientific measurements are analyzed and recorded in  
ways that are meaningful to all scientists. International standards bodies have been set 
up for such purposes and publish guidelines dealing with various aspects of terminology, 
accepted ways of reporting particular types of measurements, etc.  Of interest to us 
are the guidelines of the International Organisation for Standardisation published in 
1993 and 1995 with regard to the general way in which data are to be treated and 
measurement results reported.  A large part of this course will therefore deal with 
aspects of metrology, the science of measurement.   

Think back to the experiment that you 
performed last time in the laboratory.  
Write down all the possible factors that 
could possibly have influenced your final 
result.   
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2  Measurement: basic concepts   
 
 
We will now begin to develop procedures for making and recording scientific 
measurements.  For this we need some mathematical tools which we will discuss in this 
and the following chapters. The first concept that we need is that of probability after 
which we will look at what it means to read both digital and analogue scales. 
 
 
2.1  Probability 
 
You can think of probability as the chance that an event will occur.  
 
Probability is usually expressed as a number between 0 and 1 (inclusive). 
A probability of 1 means that you are  100 % sure that the event will occur. 
A probability of 0 means that you are  100 % sure that the event will not occur. 
 
For example, say that you have a black bag which contains 4 different coloured balls 
(red, green, blue and yellow).  Without looking into the bag you wonder what the 
probability is of choosing the green ball from the bag.   
 
Clearly the probability of choosing the green ball is one in four, or 0.25, or 25 %. 
 
 
 
 
 
 
 
 
 
 
Say that you have 10 pairs of socks, each pair having a different pattern. However, they 
are all loose in a box under your bed. You need a matching pair and grab a single sock. As 
you put you hand into the box to grab a second sock, you wonder what is the probability 
of choosing the matching sock. 
    
Probability of grabbing the matching sock = ______________

Now try the following example.  
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2.2  Reading a digital scale 
 
Say that you are given an old, worn block of metal that is marked 84 g. 
 
If you are not allowed to weigh the block, how certain will you be that the mass of the 
block is really 84 g ?  Within which of the following ranges is it most likely for the mass to 
be:    83.95 g – 84.05 g,   83.5 g - 84.5 g,   83.0 g - 85.0 g,   80.0 g - 90.0 g ?     Explain. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Say now that the physics professor comes along and gives you a new shiny block that is also 
marked 84 g.  Discuss within which of the following ranges is it most likely for the mass to 
be:    83.95 g – 84.05 g,   83.5 g - 84.5 g,   83.0 g - 85.0 g,   80.0 g - 90.0 g ?     Explain. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
You now take a digital balance that is set to display one digit after the decimal point (in grams). 
 
You put the block on the balance and look at the display. 
 
 
You will probably agree that it is reasonable to record  
the reading as 83.4 g . 
 
You now set sensitivity of the digital balance to display two digits after the decimal 
point (in grams). This means that the balance is displaying readings to the nearest 0.01 g 
or one hundredth of a gram. 
 
It is clear that the second digit after the decimal point will either be a 0 or 1 or 2 or 3 
or 4 or 5 or 6 or 7 or 8 or 9. 
 
Without turning the page, can you predict for sure what the display will show as the last digit?  
Of course not.  
 
However, can you say what the probability is of the last digit being a 6 ?  
 
_________________________________________________________________ 

 
Do not proceed to the next page until you have completely answered the questions on this page. 

grams 

84 g 
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Before you looked at the display, there was no way of predicting with a greater 
certainty than 10% that the last digit would be a 6. 
 
 
You now see the following on the display. 
 
 
 
 
What will you now record as the reading on the display ? ______________________ 
 
 
We now set the digital balance to display three digits 
after the decimal point (in grams) i.e. the balance will 
now display the reading to the nearest 0.001 g. 
 
 
 
What will you now record as the reading on the display ? ______________ 
 
We are now at the end of the range of the display of the digital balance. What can we 
do if we want a reading with more decimal places ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Would it be possible to design and build an electronic balance that could display a 
reading with an infinite number of decimal places ?  Explain your answer. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

grams 

grams 

There were ten possibilities for the next digit, therefore there was a 
one out of ten chance of getting a particular digit.  So we can say that 
the probability of the next digit being a 6 , was 0.1   (or 10 %). 
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Let us now consider what we know about the mass of the block in each case, based only 
on the reading on the digital balance. 
 
 

   The display shows:    Inference about the mass of the block,  
   based only on the reading: 

 
 
 
 
 

 
The mass of the block lies between 
 
83.35 g and 83.45 g. 

 
 
 
 
 
 

 
The mass of the block lies between  
 
83.355 g and  83.365 g. 

 
 
 
 
 

 
The mass of the block lies between  

      
     _________ g and  _________ g. 

 
In each case above, we can say that that the mass of the block lies somewhere on an 
interval, the width of which reduces in size as the sensitivity of the electronic balance 
increases. 
 
 
 
 
 
 
 
 
Which one of the three readings above would you regard as the “best” and why? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 

Do you see that it is impossible in practice 
to reduce the width of this interval to zero. 
That is one practical reason why the “true 
value” of a quantity can never be known. 

grams 

grams 

grams 
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2.3 Reading an analogue scale 
 
We can use an analogue balance instead of a digital balance to measure the mass of the 
block. (An analogue balance will have a needle that is displaced in proportion to the 
weight of the object placed on the balance.) We now need to use our judgement to read 
the scale after the needle has come to rest. 
 
Let us imagine that when we put the mass on the balance, we see the following on the 
display: 
 
 
 
 
Write down the reading on the scale:  ________________________ 
 
How certain are you about this reading (“very certain”, “reasonably certain” or “not very 
certain”) ?  Explain your answer. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Check with your friends. Did you all record the same value ?  If not, why not ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
You might have thought that the reading was “between 80 g and 90 g.”  However, it is 
possible to use your judgement and record the reading to the nearest gram. 
 
Try it again. The reading on the scale = __________  (to the nearest gram) 
 
 
You now decide, in order to improve your measurement, to choose a scale that has 
markings (called “graduations”) every 1 gram. You now observe the following on the 
display: 
 
 
 
 
The reading on the scale is :  ________________________ 
 
You can now make a judgement to the nearest 0.1 gram. 

 80  90 100         grams 

100          grams 80 90 
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If you want to subdivide each graduation even further,  you now have a division marker 
every 0.1 g. You might need a magnifying glass to read the scale ! 
 
 
 
 
 
 
 
 
 
 
The reading on the scale is :  ________________________ 
 
 
 
 
 
 
 
 
 
 
 
Will you ever be able to find an instrument that gives you a reading of the mass of the 
block to an infinite number of decimal places? No, of course not. It will never be 
possible to manufacture such an instrument !  It is then clear that the “true” value of 
the mass can never be known. This is the case for all measurements, no matter what you 
are wanting to measure.  
 

80 90 100          grams 

It becomes impractical to continue to add more and more subdivisions. Eventually 
the scale becomes too small to read. No matter what analogue scale you are 
reading, you will always need to make a judgement about what the last digit is. 
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Let us now once again consider what can we know about the mass of the block in each 
case, if all we have is the reading on the analogue scale. 
 
 

   The analogue scale shows:    Inference about the mass of the  
   block,  based only on the reading: 

 
 
 
 
 

 
The mass of the block lies between 
 

     _________ g and  _________ g. 

 
 
 
 
 

 
The mass of the block lies between  
 
_________ g and  _________ g. 

 
 
 
 
 

 
The mass of the block lies between  

      
     _________ g and  _________ g. 

 
Once again, in each case above, we can say that that the mass of the block lies 
somewhere on an interval, the width of which reduces in size with more markings on the 
scale. It is important to note that when you decided upon the left and right hand of the 
intervals in the table above, you could do better than simply taking the nearest 
markings on the scale in each case. For example, in the first case above, although it is a 
true statement to say that “The mass of the block lies between 80 g and 90 g”, you can 
do much better that that.  
 
You might think that the best reading of the mass in the first case is 83 g. Then you 
should ask yourself, “what are the closest values to the best reading that you think are 
definitely not possible?” You might therefore decide that the reading is probably not 
less than 82 g and probably not more than 84 g, and therefore infer that the mass of 
the block lies between 82 g and 84 g. 
 
Go back and change your answers above if you need to. 
 
Also note that since there is a degree of judgement involved in each case, your friends 
might have come up with slightly different readings and intervals to yours. 
 

100  g 80 90 

100  g 
 80  90 

80 90 100  g 
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2.4 Measurement and uncertainty 
 
The broad aim of performing measurements in science is to increase our knowledge 
about some physical quantity which is referred to as the measurand.  For example, a 
measurand may be the length of a box, the vapour pressure of a given sample of water 
at 20 °C, or the speed of light in some medium.  The first thing that you, as the 
measurer, have to do is to specify the measurand. You need to ask yourself, “What do I 
want to measure? The next step is to think about what you already know about the 
measurand and to choose an appropriate measurement procedure and apparatus for 
making the measurement.  Clearly the purpose of the measurement also plays a role. 
 
We should not think about the measurand as possessing some “true value” that has to 
be uncovered but rather that the value of the measurand is based on the amount of 
information we have at hand.  If you really wanted to know the ultimate or true value of 
the measurand you will need an infinite amount of information !  
 
Thus, the information we have about a measurand can be never 100% complete.  For 
example, we saw earlier that whether we are dealing with a digital or an analogue 
instrument, the information about the measurand from the reading is in fact an interval 
which cannot be reduced to a point. So, even if there are no other factors influencing 
the measurement the scale would limit what we know and the final result of a 
measurement will always be an interval. However, as we saw at the end of Chapter 1 
there are usually several factors that will influence the measurement. Each of these 
factors makes the interval associated with the final result bigger.  We call this interval 
the uncertainty.  Thus, the larger the uncertainty the less we know and the more we 
know the smaller the uncertainty.  When designing an experiment the aim is try and 
make the uncertainty as small as possible, but with knowledge that the uncertainty 
interval cannot be reduced to zero.  We will learn how to calculate uncertainties in the 
next chapter1. [Uncertainty is a technical term so do not confuse it with everyday 
usuage, such “I am uncertain whether I should go to the party tonight!]” 
 
 
 
 
                                                 
1 Many books and notes use the term “error” or “error analysis” when describing experiments. 
For example, it is common to see discussion about “random” and “systematic errors”. We will not 
use any of these terms and only use the term uncertainty which is well defined.  If you do have 
to learn the older type of data analysis in another course take great care to distinguish between 
the terms “error” and “uncertainty .” They are not synonyms, but represent completely different 
concepts. “Error” is an idealized concept that denotes the difference between the measured 
value and “a true value” of that quantity. Since the “true value” is never known, neither is the 
error.  Uncertainty on the other hand is a well defined term that can be calculated meaningfully 
as you will see later on. 
 
 

A measurement result in science is meaningless without a 
quantitative statement of the uncertainty. 
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One of the goals of measurement is to try and minimise the uncertainty when we perform an 
experiment.  This can be achieved by good experimental design as well as by collecting as much 
data as possible. At the end of Chapter 1 you were asked to write down all the factors that 
could influence the result of your measurement.  Each of these factors can be thought of as 
working against our having perfect knowledge about a measurand and adds to the overall 
uncertainty.  A crucial aspect of experimentation is to identify all such sources of 
uncertainty and to numerically estimate their effect on your measurement result.   
Common sources of uncertainty include: 
 
 (a) the effects of environmental conditions on the measurement; 
 (b) your judgement in reading analogue instruments; 
 (c) the sensitivity of your instruments (e.g. the digital scale); 
 (d) the rating or stated calibration of the instrument; 
 (e) approximations and assumptions that you make while doing the experiment; and 
 (f) variations in repeated readings made under apparently identical conditions. 
 
A measurement uncertainty is not meant to be an indication of “mistakes” that you 
might make in an experiment. If you are aware that you have made a mistake, then you 
should repeat your experiment. “Human error” is not a valid source of uncertainty. If 
you know that you did something “wrong”, then why don’t you do it correctly?  
 
 
2.5 Practical exercise 1: Measuring the length of a piece of wood 
 
You are supplied with the following apparatus: A ruler and a piece of wood. 
 
Estimate the length of the wood (before making a measurement):  __________ cm 
 
Now use the ruler to measure the length of the piece of wood. 
 
Reading on the ruler:  _____________ cm 
 
What can you say about the length of the wood?  
 
“The length of the wood is between ________ cm  and  __________ cm .” 
 
List all the factors that might have influenced your measurement. Think carefully.  
Write down next to each factor whether you think it affected your measurement in a 
small way or a large way.   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
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Did you try to line up one edge of the piece of wood as close as you could to the 0 on the 
ruler and then observe the reading of the other edge of the wood?  If so, why?  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
2.6 Practical exercise 2: Measuring the length of a piece of string 
 
You are supplied with the following apparatus: A ruler and a piece of string. 
 
Estimate the length of the string (before making a measurement):  __________ cm 
 
Now use the ruler to measure the length of the piece of string. 
 
Reading on the ruler:  _____________ cm 
 
What can you say about the length of the string ? 
 
“The length of the string is between ________ cm  and  __________ cm .” 
 
List all the factors that might have influenced your measurement. Think carefully.  
Write down next to each factor whether you think it affected your measurement in a 
small way or a large way.   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
How did you make your measurement? Did you try to line up the piece of string as close 
as you could to the 0 on the ruler and then record the reading of the other edge of the 
string?  Try it again by lying the piece of string down at any position near the middle of 
the ruler and observe both the left and right edges of the string. Which method do you 
think is better and why? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
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2.7 Practical exercise 3: Measuring the voltage across the terminals of a battery  
 
You are supplied with the following apparatus: A voltmeter, 2 connecting cables and a battery. 
 
Estimate the voltage of the battery (before making a measurement):  ________ volts 
 
What information did you use to make this estimate? How certain are you of this estimate? 
 
_________________________________________________________________ 
 
Now use to voltmeter to measure the voltage of the battery. 
 
Reading on the voltmeter with the battery connected:   ____________ volts 
 
Reading on the voltmeter when there is no battery connected:   _________ volts 
This is called the “zero” reading. 
 
What should you do if the meter does not read 0 volts when the battery is not connected? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Do you agree that the best reading to record for the reading of the voltage is given by: 
(the reading with the battery connected) minus (the reading without the battery connected). 
 
What can you say about the voltage of the battery based on all the information you now 
have?   
 
“The voltage of the battery is _______________________________ “ 
 
List all the factors that might have influenced your measurement of the voltage.  
Think carefully.  Write down next to each factor whether you think it affected your 
measurement in a small way or a large way.   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
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3   The standard uncertainty 

 
 
 
3.1 Density  
 
If your friend asks you … 
 
 
  
 
… then most likely you will say something like “density is the mass per unit volume.” This 
means that if you have a certain object and you measure both the volume and the mass 
of the object, then the density will be given by the mass divided by the volume.   
 
For example, if a block of wood has mass 1.3 kg and volume 0.2 m3 , then what is the 
density of the wood ?  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Although we often use the term “density” to relate mass and volume, there are many 
other types of density.  For example, have you come across the phrase “population 
density”? Population density tells us the number of people living in a particular area, 
often the number of people per square kilometre.  In physics we sometimes come across 
linear densities, such as the “linear charge density”,  which gives the amount charge per 
unit length, i.e. the number of coulombs per metre.   
 
What do you think “surface charge density” is, and what will the units be? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
In all the cases mentioned we can see that density tell us about how closely something 
is packed together into a volume, an area or a line.  Mathematically, this can be written 
as one quantity divided by another with the denominator usually being a length, an area 
or a volume.  Thus, the “ordinary” density d  can be written as d = m / V  where m is the 
mass and V  is the volume.  If m  is in kg and V  is in m3 then the density will have the 
units  kg m-3. 
 

What is “density?” 
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In the last chapter we looked at the concept of probability, but what is a probability 
density ? It is useful to first understand what a density function is. 
 
 
3.2 Density functions 
 
Think of a piece of straight wire which is 6 metres long.  Now have a look at the graph 
below which shows a plot of linear mass density versus the length of this wire. The 
graph shown is a flat line indicating that the linear mass density has the same value at 
each point along the length, i.e. the linear mass density function is a constant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case it is easy to see that we can obtain the mass of any portion of the wire by 
multiplying the value of the linear mass density by the length. For example, between 3.0 
m and 5.0 m the mass will be (5.0 − 3.0) m x 0.3 kg m-1 = 0.6 kg.  From the graph we can 
see that this calculation is represented by the shaded area.   
 

 

 

    0.0           1.0            2.0           3.0            4.0           5.0            6.0       

 

0.0 

linear mass 
density, m / l   
 
(kg m-1) 
 
 

0.4 

0.2 

length, l  
(m) 

 

As you can see there are different kinds of density and not 
just the well known one (mass per unit volume), which should 
really be called the “volume mass density”.  But nobody does 
this, as it is usually understood from the context. Sometimes, 
however, you might see the term “mass density” being used. 
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Even if the linear mass density function is not a constant, we can always calculate the 
mass between two points by calculating the area under the function.  For example, 
consider another wire but this time the linear mass density versus the length has the 
shape as shown below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the graph, describe in words how the density changes as a function of length.  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Shade the area on the graph that corresponds to the mass of the piece of wire between 
0.0 and 2.0 metres.  Now calculate this area. 
 
_________________________________________________________________ 
 
Shade the area on the graph that corresponds to the mass of the piece of wire between 
4.0 and 6.0 metres.  Now calculate this area. 
 
_________________________________________________________________ 
 
Clearly the second area is larger. What can you say about the mass of the wire? 
 
The mass of the wire between 0.0 and 2.0 metres = ___________ kg 
 
The mass of the wire between 4.0 and 6.0 metres = ___________ kg 
 
We can say that the mass per unit length of the wire increases in direct proportion to the 
length of the wire.  
 

  0.0            1.0            2.0            3.0           4.0            5.0           6.0       

 

0.0 

linear mass 
density, m / l   
 
(kg m-1) 
 
 

0.4 

0.2 

length, l  
(m) 
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3.3 Probability density and probability density functions 
 
Probability density p is simply the probability P  of a variable existing between two 
values which bound an interval. A probability density function p(x) describes the 
probability density p  as a function of the variable x. Note that we use the symbol p for 
probability density and P  for probability. 
 
Look at a probability density function (pdf) below, which describes the probability 
density p  as a function of the possible values of the mass  m  of an object.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Do you think the value of the mass is more likely to lie between 1.0 and 2.0 kg, or 
between 4.0 and 5.0 kg ?      Why ?  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
One way to think about this is that there is more probability squashed up between  
4.0 kg and 5.0 kg than between 1.0 kg and 2.0 kg. This is because the probability density 
function (pdf) increases linearly with mass.  
 
What is the probability that the mass of the object lies between 0.0 and 1.0 kg? 
Shade the appropriate area on the graph above and calculate the area. 
 
Probability that the mass lies between 0.0 and 1.0 kg =    ________  
 
What is the probability that the mass of the object lies between 4.0 and 5.0 kg ? 
   
Probability that the mass lies between 4.0 and 5.0 kg =    ________  

   0.0           1.0            2.0           3.0            4.0           5.0              

 

0.0 

probability 
density, p(m) 
 
      (kg-1) 
 
 

0.4 

0.2 

mass, m  
(kg) 
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What is the probability that the mass of the object is exactly 5.0 kg ? 
 
Probability that the mass is exactly 5.0 kg =    ________  
 
 
 
 
 
 
 
 
Without doing the calculation, what do you think is the total area under the whole pdf?   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Now calculate the area to see what you get.  Is this what you expected? 
 
 
 
 
 
 
 
Why do you think that the total area under any pdf is always equal to 1 ?   
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
3.4 A probabilistic model of measurement 
 
In 1993 the International Standards Organization (ISO) recommended that metrology 
(the science of measurement) is best served by adopting a probabilistic approach to 
data analysis.  The ISO recommendations have been adopted by the majority of world 
standards bodies such as IUPAP (International Union of Pure and Applied Physics), 
UIPAC (International Union of Pure and Applied Chemistry), BIPM (International Bureau 
of Weights and Measures), etc., and affects the way in which the results of 
measurements and uncertainties are reported in all scientific work.  
 

The area under a pdf is always equal to 1 and probability 
densities can only be evaluated for an interval ! 

You need to take care to distinguish between probability 
density and probability.  Although the value of the pdf is  
0.4 kg-1 at 5.0 kg, the probability associated with 5.0 kg is 
zero, since the area under a point is zero !   
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In some experimental situations you will have a set of repeated readings, and in others 
you will only have a single reading. However, the question that you need to ask yourself 
is the same, “From my data (and other information that I might have), what do I know 
about the measurand?”  The procedure that allows us to go from the data we have 
collected, to making a statement (an inference) about the measurand itself is based on 
probability theory. The mathematical functions that we use in this process are, in fact, 
probability density functions (pdf’s), which are used to model all the information that 
we have about the particular measurand.  
 
 
 
 
 
 
 
 
 
3.5 Probability density functions in metrology 
 
There are a large number of probability density functions that are useful in many areas 
ranging from physics to economics.  In the context of metrology, though, the three 
most common types (and the three that you will use in this course) are shown in the 
table below.  It should be noted that are other pdf’s that are useful but we will not deal 
with them here. 
 

 
The “flat”, uniform or  
rectangular pdf 
 

 
 
 
 

 
Usually used when you have 
a single digital reading. 

 
The triangular pdf 

 
 
 
 

 
Usually used when you have 
a single analogue reading. 

 
The “bell-shaped”  or  
Gaussian pdf 

 
 
 
 

Usually used when you have 
a set of repeated 
(scattered) readings. 

 
 
 
 
 

These are not firm rules, but guidelines 
for using pdf’s in this course. 

The most important thing to remember is that a pdf is a 
mathematical function which is used to depict all the 
information that you have about a particular measurand. 
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After you collect all the data from an experiment, whether that be a single reading or a 
set of repeated readings of the same measurand, all your knowledge about a measurand 
is described fully by a pdf. Consider the pdf below which describes our knowledge about 
the mass m of an object after an experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly the position of the centre of the pdf gives the most probable value of the 
measurand (called the “best approximation” of the measurand). 
 
Even though we know that the area under the triangle is equal to 1, this of course does 
not tell us how “fat” or “thin” the triangle is.  The “thinner” the pdf, the better 
knowledge we have about the measurand. Therefore we need a second number to tell us 
how spread out the pdf is. The “average width” of the pdf is a measure of the quality of 
our knowledge about the measurand and is referred to as the standard uncertainty, 
(symbol u).  In other words, the more spread out the pdf, the greater the standard 
uncertainty. On the other hand, the narrower the pdf is, the smaller the standard 
uncertainty.   
 
Therefore when we want to communicate the final result of an experiment to someone 
else, the best way would be to give full diagram of our final pdf, such as that shown 
above. However, since in practice this would be very time-consuming and tedious, we 
usually communicate the following information in order to summarise the pdf (and hence 
our knowledge): 

 The best approximation of the measurand (given by the 
location of the centre of the pdf) 

 The standard uncertainty u (given by the width of the pdf) 
 The shape of pdf we are using. 

 
In the example above, we could communicate our knowledge as, “the best approximation 
of m is 3.8 g, with a standard uncertainty of 0.2 g , using a triangular pdf.” 

0 
m (g) 

 

p(m) 
g -1 

 
 

2 

2u = 
6

a = 0.4 g 

3.2         3.4          3.6         3.8         4.0          4.2          4.4 
a 
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3.6 The standard uncertainty 
 
Depending on which pdf you use in your measurement, the standard uncertainty u (which 
is related to the width of the pdf) is calculated in a different way. You can look in 
Appendix G for more details on pdf’s. 
 

Type of pdf Standard uncertainty u  given by: 

 
The “flat”, uniform or  
rectangular pdf 
 

 
 
 
 

 
=

2 3
au  

 
The triangular pdf 

 
 
 
 

 
=

2 6
au  

 
The “bell-shaped”  or  
Gaussian pdf 

 
 
 
 

 
u = σ / n  (the standard 

deviation of the mean  
- see Chapter 5) 

 
We saw in the last chapter that uncertainty in a measurement is a quantitative measure 
of the factors that decrease your knowledge about the measurand. There are, broadly 
speaking, two ways of evaluating uncertainties, and both ways make use of pdf’s. 
 
For some types of uncertainty, for example the uncertainty associated with reading a 
scale, or the uncertainty associated with the internal calibration or “rating” of the 
instrument, you will use the knowledge that you have about the measurement process 
and the instrument that you are using. This is called a Type B evaluation of 
uncertainty, for which you will usually use a rectangular of triangular pdf.     
 
If you have a set of repeated readings of the same measurand which are dispersed 
(scattered) then you will evaluate the uncertainty associated with the scatter using 
statistical methods. This is called a Type A evaluation of uncertainty (see Chapter 5), 
for which you will always use a Gaussian pdf. 
 
These two categories apply to uncertainty and are not substitutes for the words 
“random” and “systematic”, as may be found in some books. Be very careful when using 
the terms “random error” and “systematic error”.   
 
After you have calculated the standard uncertainties for all the sources of uncertainty 
in your measurement then the total uncertainty for the measurement, called the 
combined standard uncertainty, is given by the square root of the sum of the squares 
of all the uncertainties in the measurement. 

 a 

 a 

2σ 
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For example, if you were making a measurement of a measurand m, and determined 
three sources of uncertainty for which you estimated the three standard uncertainties  
u1(m) , u2(m) and  u3(m) , then the combined standard uncertainty uc(m) for the 
measurement of m is given by 
     = + +2 2 2

1 2 3( ) ( ) ( ) ( )cu m u m u m u m . 
 
Note that u1(m) , u2(m) and  u3(m) may result from either Type A or Type B evaluations 
of uncertainty. 
 
As an illustration of a Type B evaluation of uncertainty,  we will consider the 
uncertainty associated with reading the scale of an instrument.   
 
 
3.7 Evaluating the standard uncertainty attributed to reading a scale 
 
We will look at two cases:  (a) a single digital reading;  and (b) a single analogue reading.  
We would like to emphasise at this stage that the uncertainty that we are considering 
here is from reading the scale only and that when carrying out an experiment there will 
several other sources of uncertainty that must also be evaluated and combined 
together to obtain the total uncertainty, as explained above. 
 
(a) A single digital reading. 
 
Consider the situation where you want to determine 
the mass of a block and you see the following on the 
display of your digital balance. 
 
 
Clearly the best approximation of the mass is 83.36 g. What about the standard 
uncertainty associated with reading the scale on the display ? Well, we saw previously 
that the 6 is representing the interval 83.355 g to 83.365 g, i.e. less than 83.355 g the 
digit would change to 5 and greater than 83.365 g it would show 7.  All that we can 
assume is that the value of the mass is distributed between the interval 83.355 g to 
83.365 g with equal probability.  The probability density function that will give us equal 
probabilities per unit mass (i.e. equal areas under the function per unit mass) is a 
rectangular function with limits 83.355 g to 83.365 g.   
 
 
 
 
 
 
 

grams 

Total area under p(m) graph 
= total probability P = 1 

 p(m) 
(g-1) 

m   (g) 
  83.355            83.360           83.365 

100 

0 



©  Department of Physics, University of Cape Town        35 
    
 

For a rectangular pdf, the standard uncertainty is given by  
 

(half of the width of the interval)
3

, 

 

so in this example the standard uncertainty  =  −1
2 (83.365 83.355)

3
  =  0.0029 g . 

 
Now try the following. What is the best approximation of the mass and the standard 
uncertainty for this reading if the meter shows: 
 
 
 
 
 
 
 
Best approximation: ______________ 
 
Standard uncertainty associated with reading the scale: _______________ 
 
 
(b) A single analogue reading. 
 
This case is slightly more complicated because it relies on your judgement. 
Assume that you are using an analogue meter and observe the following. 
 
 
 
 
 
 
 
You might decide that the best approximation of the mass is 83 g. Of course it could 
possibly be a bit larger or a bit smaller. So you now need to ask yourself, “what are the 
closest values to the best approximation that you think are definitely not possible?” You 
might therefore decide that the probability of the value being 82 g is zero and that the 
probability of the value being 84 g is also zero. So, as you go from your best 
approximation towards these “impossible” values you become less certain about the 
measurand.  The probability density function that models this behaviour is a triangular 
function with limits 82 g and 84 g as shown below. 
 
 
 

100        grams  80  90 

grams 
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For a triangular pdf, the standard uncertainty is  (half of the width of the interval)
6

. 

so in this example the standard uncertainty =  −1
2 (84 82)

6
 =   0.41 g . 

 
Now try the following. Determine the 
best approximation of the mass and the 
standard uncertainty associated with 
reading the scale, if the meter shows: 
 
Best approximation of the mass : ______________               
 
Standard uncertainty associated with reading the scale: _______________ 
 
 
 
 
 
 
 
3.8 Exercise: Using an analogue voltmeter to measure the voltage of a battery. 
 
You are supplied with the following apparatus: an analogue voltmeter, 2 connecting 
cables and a battery. 
 
Connect up the battery with the terminals of the voltmeter. 
 
Reading on the voltmeter with the battery connected:   ____________ volts 
 
This represents your best approximation for the voltage across the battery. 
 
Next you need to estimate the standard uncertainty associated with reading the scale 
on the voltmeter. 
 
Start by answering the following questions: 
What are the closest values to the best approximation that you think are definitely 
not possible for the reading ? 

100        grams  80  90 

Remember that the standard uncertainty associated with  
reading the digital or analogue scale is not the only 
source of uncertainty in the measurement.  

0.0 

1.0  p(m) 
(g-1) 

m (g) 
     82                   83                   84 

Total area under p(m) graph 
= total probability P = 1 
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Lower value:  ________________  Upper value: ______________  

 
You can use a triangular probability density function to model your knowledge about the 
voltage from reading the voltmeter scale.   Fill in values in the four boxes below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Standard uncertainty associated with reading the scale on the voltmeter:  ________ volts  
 
Say that you are told that the voltmeter has a “rated accuracy” of 2%. This means that the 
uncertainty associated with the calibration of the meter is 2% of the reading shown. 
 
Determine the  standard uncertainty associated with the rating of the voltmeter. 
 
Standard uncertainty associated with the rating of the voltmeter:  __________ volts 
 
The total uncertainty for the measurement of the voltage is then given by combining all 
the uncertainties. You don’t just add them up, but combine them in the following way: 
 

Total uncertainty = +2 2
scale calu u  

 
where:   scaleu  is the uncertainty associated with the reading the scale, and 
   calu   is the uncertainty associated with the rating of the meter. 
 
Any number of uncertainties contributing to the total uncertainty in a measurement can 
be combined in this way.  
 
Calculate the combined standard uncertainty for your measurement of the voltage of 
the battery. 
 
Combined standard uncertainty =  ____________ volts. 

 p(V) 
(V-1) 

0.0 
V (volts) 

You can calculate this 
value since the total area 
under p(V) versus V = 1 

(Best 
approximation) 
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4   More on Type B evaluations of uncertainty 
 
 
 
In Chapter 3, you learnt how to evaluate a Type B uncertainty associated with reading 
the scale of an instrument.  
 
What is  meant by a “measurand” ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
What is the purpose of making measurements in science? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
Why can the “true value” of a measurand never be known ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
Do not proceed to the next page until you have completely answered the questions 
on this page. 
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The purpose of making a measurement in science is to obtain information about a 
measurand. The first thing that the measurer, i.e. you,  has to do is to clearly specify 
the measurand. You need to ask yourself, “What do I want to measure?” The answer to 
this question gives you the “measurand”. You always need to be careful when you specify  
the measurand. For example, if you want to measure the length of a bar of iron to 
0.000001 of a metre, then it would be appropriate to also specify the temperature and 
pressure (and any other parameters) that might affect the result. 
 
We saw in the last chapter that the information about a measurand that we obtain in a 
measurement is always affected by sources of uncertainty. There are many effects 
which contribute towards the total uncertainty in a measurement, including the rating 
of the instrument, reading the scale of the instrument, etc.  All these effects need to 
be considered as part of the measurement process, and estimated numerically. The 
summary of all the sources of uncertainty in a measurement is called an “uncertainty 
budget”, just like the summary of all the expenses in a business is also called a budget.  
A scientific measurement is meaningless without a quantitative analysis of sources of 
uncertainty. 
 
 
 
 
 
For example, the Committee on Data for Science and Technology (CODATA) 
recommends the following values for some well known constants: 
 

Newtonian constant of gravitation, G :   6.673(10) x 10-11  m3 kg-1 s-2 
Elementary charge, e :    1.602176462(63) x 10-19  C 
Plank constant, h :     6.62606876(52) x 10-34  Js 
Proton mass, mp :    1.67262158(13) x 10-27  kg 

 
The values in brackets are the standard uncertainties for each constant. For example 
the standard uncertainty for the value of G  is 0.010 x 10-11   m3 kg-1 s-2 and the standard 
uncertainty for e  is 0.000000063 x 10-19  C. 
 
In the previous chapter we saw how all the information that we have about the 
measurand after the measurement may be modelled by a mathematical function called a 
probability density function. Usually we do not show the whole pdf, but summarise it by 
the  best approximation of the measurand together with the standard uncertainty.  
The best approximation of the measurand is given by the most probable value (usually 
the centre of the pdf) and the average width of the pdf gives the standard uncertainty.  
This information together forms the result of the measurement.  
 
 

This is true for all measurements, including some 
that you might have thought were known exactly. 
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4.1 More examples of single readings 
 
Before we continue with some new ideas, consider the following situations. Look at each 
example and determine the best approximation of the measurand and standard 
uncertainty associated with reading the scale (Type B evaluation) in each case. 
Remember that the uncertainty associated with reading the scale is only one out of 
many possible sources of uncertainty in each case below.  
 
(a) What is the position l  of the mark ?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Best approximation of l  = _______________  
 
Standard uncertainty u (l ) associated with reading the scale =  
 
 
 
Which probability density function did you use to model your knowledge about l ?    
 
_________________________ 
 
(b) What is the frequency f  shown on the meter ? 
 
Best approximation of f =  _______________  
 
Standard uncertainty u (f )  
associated with reading the scale =  
 
Which probability density function did you use to model your knowledge about f ?  
 
_________________________ 

Hz 

  46        47         48        cm 
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(c) What is the voltage  
     V  shown on the voltmeter ? 
 
 
 
 
 
 
 
Best approximation of V = ________________  
 
Standard uncertainty u (V ) associated with reading the scale = 
 
 
Which probability density function did you use to model your knowledge about V ?  
 
_________________________ 
 
 
(d) What is the current  
      I  shown on the ammeter ? 
 
 
 
 
 
 
Best approximation of I  =  ______________  
 
Standard uncertainty u (I ) associated with reading the scale = 
 
 
Which probability density function did you use to model your knowledge about I ?  
 
_________________________ 
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4.2 Coverage probability 
 
Imagine that you are doing an experiment in order to determine the mass of an object.  
Let us say that as a result of the experiment, you determine that the best 
approximation of the mass is 83.45 g with a standard uncertainty of 0.34 g.   
 
It is sometimes convenient to write the result as  83.45 ±  0.34 g. 
 
The result 83.45 g ± 0.34 g defines an interval on the “number line” (between 83.11 g 
and 83.79 g) in which we can expect a (large) fraction of the possible values of the mass 
to be found.    (Remember that we can never know the “true” value of the mass.) 
 
 
 
 
 
 
 
 
 
 
 
Another way of asking this question is “How confident are you that the value of the 
mass lies between 83.11 g and 83.79 g ?” 
 
Remember that the standard uncertainty is related to the “average width” of the pdf 
that you are using (see Appendix G for more details). The area of the pdf within the 
average width is about 68% of the total area of the pdf. (This is not strictly true, as it 
does depend of the particular pdf being used, although we don’t make a distinction 
here.)  
 
 
 
 
 
 
 
 
 
 
 
The shaded area in the pdf above is the area within one standard uncertainty of the best 
approximation. We call this area, expressed as a percentage, the coverage probability (or 
level of confidence).  

What fraction of the possible values of the 
mass lie between 83.11 g and 83.79 g? 

83.00    83.10     83.20    83.30    83.40    83.50    83.60    83.70    83.80    83.90      grams 

83.45 ± 0.34 g 

Area = 0.68  p(m) 
  g-1 

m (g) 



©  Department of Physics, University of Cape Town        43 
    
 

The coverage probability is a measure of the probability that the value of the measurand 
lies between  y − u  and y + u ,  where y  is the best approximation and u  is the standard 
uncertainty. Remember that you are 100% sure that the value of the measurand lies 
somewhere under the interval spanned by the entire pdf, since the area under the whole pdf 
is always unity. 
 
Therefore when you state the result of a measurement as “the best approximation of 
the mass is 83.45 g with a standard uncertainty of 0.34 g”, you understand that there 
is a 68% probability that the value of the mass exists somewhere within the 
interval 83.45 ±  0.34 g, with the most likely value (the best approximation of the 
measurand) being 83.45 g. 
 
Remember that there is a 32% probability that the measurand may exist outside of the 
interval 83.45 ±  0.34 g. 
 
Now consider the two situations below. Two independent experiments were completed in 
order to determine the mass m of an object. The final results of the two experiments 
are shown below as Gaussian pdf’s which are used to describe all available information 
about the measurand in each case. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
From these pdf’s it can be seen that both results have 83.50 g for the best approximation 
of m, but measurement A has u(m) = 0.12 g  and measurement B has u(m) = 0.06 g. 
 
Which one of the two measurements do you think is the “best” and why? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

Do not proceed to the next page until you have completely answered the questions on this page. 

m (g) 

83.50 ± 0.12 g 

Area = 0.68 

 p(m) 
  g-1 

m (g) 

83.50 ± 0.06 g 

Area = 0.68 

 p(m) 
  g-1 

        Experiment A                                                       Experiment B 
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The “best” result is always associated with the measurement with the smallest 
uncertainty. Measurement B has half the standard uncertainty of measurement A. 
Therefore our 68 % coverage probability is associated with a smaller interval (83.44 g 
to 83.56 g) for measurement B than measurement A (83.38 g to 83.62 g). In other 
words we have better knowledge about the value of the measurand from measurement 
B, since we have the same coverage probability associated with a narrower interval.  
 
 
4.3 Reporting the result of your measurement 
 
When reporting the result of a measurement, it is better to provide too much 
information rather than too little. For example, you should describe clearly the methods 
used to calculate your uncertainties, and present the data analysis in such a way that 
each of the important steps can be easily followed by the reader of your report. 
 
When reporting the result of a measurement, you should therefore give: 
(i) a clear statement of the measurand; and 
(ii) the best approximation of the measurand and its standard uncertainty (remember 
to give the units). 
 
Sometimes it is also necessary to state the coverage probability (see Appendix H) 
 
For example, the result of the measurement may be reported as:  
 
“…the best approximation of the mass was determined to be 83.45 g  with a standard 
uncertainty of 0.34 g (with a 68% coverage probability, using a Gaussian pdf).” 
  
You can now report your final results for the four examples given on the previous pages. 
Complete the information below. This is how you should always the result of a measurement. 
 
(a)  l  =  __________  ±  __________ cm    ( 68 % coverage probability) 

(b)  f  =  __________  ±  __________ Hz    ( 68 % coverage probability) 

(c)  V  =  __________  ±  __________ V      ( 68 % coverage probability) 

(d)  I  =  __________  ±  __________ mA    ( 68 % coverage probability) 

 
 
4.4  Significant digits 
 
If we determine a particular measurement result (after a series of calculations) to be  
m =  35.82134  ±  0.061352 kg,   how many digits should we quote in our result ?  
The uncertainty of  0.061352 kg tells us that we are uncertain about the second decimal 
place in  35.82134 kg.   Our final result is then written as  m  =  35.821  ±  0.061  kg.   
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You should generally quote your uncertainty giving two figures, and then round off your best 
approximation of the measurand to the same digit as the second digit in your uncertainty.  
 
Another example:   T = 0.00345474  ±  0.00069780  s    should be reported as 
T  =  0.00345  ±  0.00070  s     or   T  = (3.45 ± 0.70) × 10-3  s.    
 
You will thus often need to round off your calculations to an appropriate number of 
significant digits.  The general rules for rounding off are: 
(a) The last significant figure to be retained remains unaltered if the next digit is less 
than 5.  For example,  3.434  rounds off to  3.43 . 
(b) The last significant figure to be retained is increased by one if the next digit is 
greater than or equal to  5 .  For example,  3.436  rounds off to  3.44 . 
(c) Do not do a double round off: 3.4348  rounded off to three significant figures 
becomes  3.43 .         Do not round off  3.4348  to  3.435   to   3.44  ! 
 
Now try the following. Write down the following measurement results with an 
acceptable number of significant digits. 
 
  l   =   34.47  ±  0.4572  m  becomes   ______________________________ 
 
 
f   =   41074  ±  25.9 Hz  becomes    ______________________________ 
 
 
k   =   1.3743 × 105  ±  216   N m-1  becomes   ______________________________ 
 
 
I  =   23274.64746  ±  5.566 A    becomes   ______________________________ 
 
 
4.5 Instrument precision 
 
When you record data from using an instrument, the digits that you record are 
determined by the precision of the instrument (and your ability to use it).   For 
instance, when using a metre rule to measure distance, you can (with care) take a 
reading down to one tenth of a millimetre. Thus, such a reading should be recorded as  
121.7 mm,  but not  121.70 mm  or  121.700 mm.    Why not?     What is the difference 
between writing  121.7 mm  and  121.70 mm ?    
 
_________________________________________________________________ 
 
_________________________________________________________________ 
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4.6 Example 1: A single reading  
 
A group of students are doing an experiment in the 
laboratory.  They need to measure the level of water 
in a measuring cylinder.  What they see is shown 
alongside. The scale is in cm3. 
 
The students then discuss what to do. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Write down what the students should record as their final result for the water level. 
 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

 

 

I wonder what we 
should write down 
as our final result 
for the water level. 

58 

56 

57 

59 
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4.7 Example 2: A digital reading 
 
Some other students have set up an electric circuit 
and are using a digital voltmeter to measure the 
voltage across a component. They switch the power 
to the circuit on and off a few times, but the 
voltmeter consistently shows the following:  
 
The students think about what to do next. 
 
 
 
 
 
 
 
Write down what the students should record as the standard uncertainty associated 
with reading the digital display. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
The standard uncertainty that you calculated above is the uncertainty associated with 
observing the digital display of the voltmeter. Of course, there can be other sources of 
uncertainty associated with the voltage measurement. Think carefully and list your 
ideas here.  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

  

 volts 



48                                                                              ©  Department of Physics, University of Cape Town
                       
 

Say that you are told that the digital meter you using here has a percentage calibration 
uncertainty of 1%. Then the standard uncertainty associated with the rating of the 
instrument is: 
 
 
 
Now calculate the combined standard uncertainty for this measurement: 
 
 ( )cu V  = 
 
 
4.8 Example 3: The result of a measurement  
 
 
A group of students are busy analysing the data from their experiment. They use a 
probability density function (pdf) to model their knowledge about a measurand d  as 
shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
Write down all the information that you know about  d  from this pdf.  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________

0.0 
d (cm) 

 p(d )    

(cm-1) 

shaded area = 0.65 

23.0               23.3         23.5        23.7               24.0 

2.0 
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5   Type A evaluations of uncertainty 

 
 
 
In previous chapters you have come to understand what a measurement is, and how to 
use a probability density function to model your information about a measurand. The 
pdf may be summarised by your best approximation of the measurand and the standard 
uncertainty, which together form the result of the measurement. 
 
You have already learnt how complete a Type B evaluation of uncertainty to estimate 
the standard uncertainty associated with certain sources of uncertainty. In this 
chapter you will learn how to deal with dispersion (scatter) in a set of repeated 
readings (observations) of the same measurand. 
 
 
5.1 Dispersion in data 
  
Consider the following experiment being performed by yourself in the physics 
laboratory. A wooden slope is clamped near the edge of a table.  A ball is released from 
a height  h  above the table as shown in the diagram.   The ball leaves the slope 
horizontally and lands on the floor a distance  d  from the edge of the table.  Special 
paper is placed on the floor on which the ball makes a small mark when it lands and you 
use a long ruler to measure  d  and  h . You have been asked to investigate how the 
distance  d  on the floor changes when the height  h  is varied.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

floor 

slope 

ball 

h 

table 

 d 
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You decide to roll the ball once from a height h = 78.0 mm.  You then see a single spot 
on the paper where the ball landed : 
 
 
 
The first thing to do is to measure d  with a ruler.  Since the ruler has markings every  
1 mm, we can estimate the reading of d  to the nearest 0.1 mm. 
 
 
 
 
 
 
 
Say that you decide that the reading is d = 650.4 mm  (by reading the position at the 
centre of the spot). 
 
You decide to roll the ball a second time from the same height h = 78.0 mm and observe 
that the ball lands at a slightly different position.  You now see two spots on the paper. 
 
 
 
 
 
 
 
Using the metre stick you determine that d2 = 660.6 mm.  
You now have two readings for rolling the ball from the same height h = 78.0 mm :   
d1 = 650.4 mm  and  d2 = 660.6 mm.   
 
 
 
 
What should you write down if you were asked to record one value to represent the best 
value for d  ? 
 
Your best value for d = __________ mm . 
 
Why did you choose this value ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

62               63               64              65               66               67               68    

62               63               64              65               66               67               68    

We label d  for roll 1 as d1 
and d  for roll 2 as d2 . 
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Clearly a value halfway in between the two readings is a good idea, giving  
d  =  ½ (650.4 + 660.6)  =  655.5 mm. 
 
Say that you now decide to roll the ball a third time from the same height h = 78.0 mm, 
and the ball lands at a slightly different position.  You now see three spots on the paper. 
 
 
 
 
 
 
 
 
 
You now have three readings from rolling the ball from the same height h = 78.0 mm :   

d1 = 650.4 mm ,  d2 = 660.6 mm  and  d3 = 659.1 mm. 
 
Write down what you now think is the best value for d : _____________ mm 
 
 
You decide to roll the ball for a fourth time from h = 78.0 mm, and measure d4 = 669.6 mm. 
 
 
 
 
 
 
 
 
Write down what you now think is the best value for d :_____________ mm 
 
 
We see that there is clearly a dispersion, or scatter, in the readings for d.  Why do all 
the spots not occur exactly on top of each other?  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Do not proceed to the next page until you have completely answered  
the questions on this page. 

62               63               64              65               66               67               68    

spot for roll 3, 
d3 = 659.1 mm.  

62               63               64              65               66               67               68    

d4 = 669.6 mm 
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Actually, it is usually not possible to identify a single reason for what causes the observed 
scatter in the data.  Even if you do the experiment as carefully as possible, then there will 
still be a dispersion in the readings of d.    The important question is how to deal with this 
dispersion (in this case d). 
 
So far we have 4 rolls from the same height and have determined : 
 

d1 = 650.4 mm ,  d2 = 660.6 mm ,  d3 = 659.1 mm    and   d4 = 669.6 mm 
 
The best approximation for d  after one roll is clearly 650.4 mm.  After 2 or more rolls, 
the average, or arithmetic mean, of all the readings is usually the best value to use. 
Why is this the case ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
After 2 rolls, the average is  ________________ mm 
 
After 3 rolls, the average is  ________________ mm 
 
After 4 rolls, the average is  ________________ mm 
 
You can see that the average changes as we take more and more readings. 
 
  
 
 
 
 
 
 
 
It is not possible to give a firm answer to this question. Let us say that you decide to 
roll the ball a total of 50 times from the same height, h = 78.0 mm.  Then you might see 
the following pattern of spots on the paper:  
 
 

Now I am really confused !  How many readings should I take 
when doing an experiment and my data are showing a scatter ? 
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The first step is to use the metre rule to measure each d. 
 
 
 
 
 
 
 
 
 
 
 
 
The table below shows the readings. 
 
Table 5.1:  Readings of d (in mm) for h = 78.0 mm. 
650.4 654.4 656.3 653.6 642.3 666.3 665.8 654.5 662.3 660.7 
660.6 641.2 652.0 664.2 648.1 654.7 669.1 657.6 676.9 634.5 
659.1 648.2 649.7 643.6 643.6 648.5 658.3 653.5 649.4 662.5 
669.6 656.8 642.8 657.9 664.1 639.8 646.0 647.9 624.3 656.4 
655.6 662.1 651.5 651.0 652.0 646.0 638.8 656.0 671.4 651.1 

 
 
 
Look at the table on the next page. The data from Table 5.1 are listed together with 
the “running average”, which is the average calculated up to and including each reading. 
You can see that the average jumps around quite a bit when there are only a few 
readings. As the number of readings increases, the average approaches a constant 
value.  
 
Therefore when you see a dispersion in your readings in an experiment, then you should 
try to take as many readings as possible. Of course, it is usually not practical to take 
millions of readings, but you need to carefully consider how many repeated readings are 
necessary to give a reliable average. 
 
By looking at the table on the next page, decide how many rolls from h = 78.0 mm would 
be reasonable to give a reliable average for d .    Can you justify your answer ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

62               63               64              65               66               67               68    
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Roll 
number i 

di  
(mm) 

Running 
average of di 

 
 
When we only have a few 
readings, the running average 
changes a lot. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Around here, the running 
average changes a little. 
 
 
 
 
 
 
 
 
 
 
 

 
 

When we have many readings, 
the running average hardly 
changes at all. 

1 650.4 650.4 
2 660.6 655.5 
3 659.1 656.7 
4 669.6 659.9 
5 655.6 659.0 
6 654.4 658.3 
7 641.2 655.8 
8 648.2 654.9 
9 656.8 655.1 
10 662.1 655.8 
11 656.3 655.8 
12 652.0 655.5 
13 649.7 655.1 
14 642.8 654.2 
15 651.5 654.0 
16 653.6 654.0 
17 664.2 654.6 
18 643.6 654.0 
19 657.9 654.2 
20 651.0 654.0 
21 642.3 653.4 
22 648.1 653.2 
23 643.6 652.8 
24 664.1 653.3 
25 652.0 653.2 
26 666.3 653.7 
27 654.7 653.7 
28 648.5 653.6 
29 639.8 653.1 
30 646.0 652.8 
31 665.8 653.3 
32 669.1 653.8 
33 658.3 653.9 
34 646.0 653.7 
35 638.8 653.2 
36 654.5 653.3 
37 657.6 653.4 
38 653.5 653.4 
39 647.9 653.2 
40 656.0 653.3 
41 662.3 653.5 
42 676.9 654.1 
43 649.4 654.0 
44 624.3 653.3 
45 671.4 653.7 
46 660.7 653.9 
47 634.5 653.4 
48 662.5 653.6 
49 656.4 653.7 
50 651.1 653.6 

  653.6 
 

Average after 50 rolls 
 

The 50 readings 
are recorded in 
this column. 

The “running average” is the 
average calculated as a 
function of roll number. 

We can also conclude from this that the more readings we take, the more confident we 
feel about the average, i.e. the more reliable we think that our best approximation 
(given by the average) will be. 
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5.2 The Gaussian pdf 
 
For the data  dl, d2, ... , dN  , we have seen that the best approximation of the value of d  
is given by the average, or arithmetic mean, d  of the data: 
 

=

= ∑
1

1 N

i
i

d d
N

   

where N  is the number of readings (in this case 50). 
 

However, is this average value the whole story? What about the spread in the data? For 
example, compare the two sets of data shown below. The first set (Group A) is the same 
as discussed above. The second set of data are from another group of students (Group 
B) who also rolled the ball from the same height, h = 78.0 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What do you notice between the two sets of data ? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
Although the average of the two data sets is actually the same (653.6 mm), the data 
from group A are spread over a larger range than the data from group B.  Which group 
do you think did a more careful experiment? A careful experiment leads to better data. 
We usually say that the better data are of a higher quality.  Clearly the quality of the 
data from Group B is better than the quality of the data of Group A since the spread is 
smaller in B than for A.  We therefore need some way of quantifying the spread of dl, 
d2, ... , dN  about the mean d . This spread in the observed readings is a source of 
uncertainty in our knowledge about d , and you can see that the uncertainty in the 
measurement of Group B will be smaller than that for Group A. 

62               63               64              65               66               67               68    

Group A: 

Group B: 
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We already have the data dl, d2, ... , d50 and so the next step is to use a suitable  
probability density function which will allow us to model our knowledge about the 
measurand d. When we have a set of readings which show a dispersion, as we have 
above, it is appropriate to use a Gaussian (or “normal”) probability density function to 
depict our knowledge about the measurand.  
 
We can convince ourselves that the Gaussian is a good choice of pdf by thinking about 
the following.  We can group (or “bin”) our data by counting how many data readings fall 
within consecutive intervals of equal width.  For the data we are processing, a 
reasonable “bin” size is 5 mm (see later below why this is the case). Therefore our bins 
could be  620.0 mm to 624.9 mm,   625.0 mm to 629.9 mm , 630.0 mm to 634.9 mm, etc.   
 
Look carefully at the diagram on the next page to understand what we are doing. 
 
Another way of presenting this analysis of the data is to draw up a  frequency table (or 
distribution table).  The middle column in Table 5.2 below lists the number of readings 
falling within each  5 mm - wide bin .  We can then calculate the relative frequency for 
each bin, where 
 

Relative frequency = the number of readings in the bin
total number of readings

 = the number of readings in the bin
50

.  

 
Table 5.2: Frequency table for the data in Table 5.1. 

Bin Number of readings Relative frequency 
620.0 mm  to  624.9 mm 1 0.02 
625.0 mm  to  629.9 mm 0 0.00 
630.0 mm  to  634.9 mm 1 0.02 
635.0 mm  to  639.9 mm 2 0.04 
640.0 mm  to  644.9 mm 5 0.10 
645.0 mm  to  649.9 mm 8 0.16 
650.0 mm  to  654.9 mm 11 0.22 
655.0 mm  to  659.9 mm 9 0.18 
660.0 mm  to  664.9 mm 7 0.14 
665.0 mm  to  669.9 mm 4 0.08 
670.0 mm  to  674.9 mm 1 0.02 
675.0 mm  to  679.9 mm 1 0.02 

 Total:  50 Total:  1.00 
 
 
 

The sum of all 
the relative 
frequencies 
equals 1, of 
course. 
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The diagram below illustrates what we are doing. We are counting how many readings 
(spots on the paper) fall within each 5 mm – wide bin. 
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0 

Number 
of readings 
per bin 

12 

8 

4 

  620              630             640            650             660             670            680          d  (mm) 

We then plot a histogram (a vertical bar chart) which illustrates 
how the data are distributed. You can see that the shape of the 
histogram looks like a bell-shaped distribution.   
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The relative frequency tells us the fraction of readings falling within each bin.  As we 
take more and more readings, the histogram of relative frequencies approaches the 
(theoretical) probability of getting a reading between two values of d . We can overlap a 
Gaussian curve on top of the histogram of the relative frequencies from Table 5.2 .The 
more readings we have and the smaller we make our bin size, the closer the shape of 
the histogram of relative frequencies will approximate a smooth Gaussian distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is nothing mysterious about of choice of bin width (5 mm in this case). We could 
have chosen a wider or narrower bin width, if we wanted to. However, you need to 
choose a sensible bin width so that you can see how the data are distributed. To do this 
you need to look carefully at your data and consider the actual readings, as well as how 
many readings you have. 
 
For example, if we had chosen a bin width of 100 mm, then all the data would fall within 
the same 100 mm-wide bin: 
 
 
 
 
 
 
 
 
 
 
If we had chosen a bin width of 10 mm, then this would have been better. However, 
although you can start to imagine the shape of a bell-shaped Gaussian distribution, it is 
not that convincing, since the bins are still too wide. 

0.00 

Relative 
frequency  
 

0.24 

0.12 

   600           620           630          640           650          660          670           680           700    d (mm) 

 0.0 

Relative 
frequency  
 

1.0 

   600           620           630          640           650          660          670           680           700    d (mm) 
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On the other hand, if we had chosen a bin width of 1 mm, this would also not be good, 
since we have too few readings to see the shape of the distribution.  
 
 
 
 
 
 
 
 
 
 
A 1-mm bin width would be fine if we had many more readings. For example, if we had 
200 repeated readings instead of 50, then we might see something like the distribution 
shown below, which again looks like a bell-shaped Gaussian: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00 

Relative 
frequency  
 

0.40 

0.20 

   600           620           630          640           650          660          670           680           700    d (mm) 

0.00 

Relative 
frequency  
 

0.12 

   600           620           630          640           650          660          670           680           700    d (mm) 

0.00 

Relative 
frequency  
 

0.06 

0.03 

   600           620           630          640           650          660          670           680           700    d (mm) 
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5.3   The experimental standard deviation of the mean 
 
A Gaussian probability density function therefore seems to be suitable choice when  
dealing with sets of dispersed readings (see Appendix G).  We have already seen that 
the best approximation of the value of the measurand (d  in this case) is given by 
arithmetic mean or average d  of the data: 
 

=

= ∑
1

1 N

i
i

d d
N

     (1) 

where N  is the number of readings (in this case 50). 
 

For the 50  readings in Table 5.1:  d  =  ___________ mm . 
 
What about the standard uncertainty ?   
 
What we are looking for is some measure of the “average scatter” of the data, which is 
related the average width of the Gaussian pdf. This will be a measure of the standard 
uncertainty in the result. One way to get the average width of the pdf would be to take 
each reading di , subtract it from d , add them all up, and then divide by the number of 
readings N.   
 
Can you see what would be the result of calculating this ? 
 

In other words,   
=

−∑
1

1 ( )
N

i
i

d d
N

 = _______ ?  

 
The result of this calculation will always be zero !  Why is this the case? Think carefully ! 
Convince yourself that this is true by using the four readings: 
d1 = 650.4 mm ,  d2 = 660.6 mm ,  d3 = 659.1 mm    and   d4 = 669.6 mm 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

Therefore we use the square of the deviations − 2( )id d  and calculate 
=

−
− ∑ 2

1

1 ( )
1

N

i
i

d d
N

. 

 
This expression is called the variance.  Note that we divide by − 1N  and not N   
(because we are using the mean d in the calculation). The variance gives us a measure of 
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the spread of the data. The square root of the variance is called the experimental 
standard deviation  ( )s d , i.e. 

=

= −
− ∑ 2

1

1( ) ( )
1

N

i
i

s d d d
N

.    (2) 

 
Now we have two quantities, the average d and the standard deviation ( )s d , which give 
the best approximation of the measurand together with a measure of the spread of the 
data, respectively.  
 
The standard uncertainty associated with the dispersion in the data is given by the 
experimental standard deviation of the mean ( )s d  where  
 

     =
( )( ) s ds d
N

.      (3) 

 
You can see that ( )s d  is smaller than ( )s d . The reason for this is quite technical, 
therefore all we say here is the following. The experimental standard deviation of the 
mean ( )s d is the average width of a Gaussian pdf which is not the Gaussian curve that 
appears in the figures above. What you need to imagine is repeating the experiment 
many times and calculating the averages of the data sets obtained from each separate 
repeated experiment. The distribution of all these averages will also be Gaussian in 
shape, and ( )s d is then related to the width of this Gaussian pdf. 
 
Calculating the standard uncertainty associated with the scatter in data, using 
equations 2 and 3, is called a Type A evaluation.  
 
There are two ways of calculating an experimental standard deviation of the mean:  
(a) using equations 2 and 3 above (by hand) ; and 
(b) using the same formulae “buried” in the statistics functions in your scientific calculator. 
 
 
(a) Using the equations for ( )s d  and ( )s d  by hand. 
 
See the table on the next page. 
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(a) Using the equations for ( )s d  and ( )s d  by hand. 
 
Complete the table below and calculate  ( )s d  and ( )s d  using  
equations 1, 2 and 3.  Look carefully at the structure of this table. 
 
Roll 
number 

di 
(mm) 

(di  −d ) 
(mm) 

(di  −d )2 
(mm2) 

1 650.4         -3.26          10.63 
2 660.6          6.94          48.16 
3 659.1          5.44          29.59 
4 669.6        15.94        254.08 
5 655.6          1.94            3.76 
6 654.4          0.74            0.55 
7 641.2       -12.46        155.25 
8 648.2         -5.46          29.81 
9 656.8          3.14            9.86 
10 662.1          8.44          71.23 
11 656.3          2.64            6.97 
12 652.0         -1.66            2.76 
13 649.7         -3.96          15.68 
14 642.8       -10.86        117.94 
15 651.5         -2.16            4.67 
16 653.6         -0.06            0.00 
17 664.2        10.54        111.09 
18 643.6       -10.06        101.20 
19 657.9          4.24          17.98 
20 651.0         -2.66            7.08 
21 642.3       -11.36        129.05 
22 648.1         -5.56          30.91 
23 643.6       -10.06        101.20 
24 664.1        10.44        108.99 
25 652.0         -1.66            2.76 
26 666.3        12.64        159.77 
27 654.7          1.04            1.08 
28 648.5         -5.16          26.63 
29 639.8       -13.86        192.10 
30 646.0         -7.66          58.68 
31 665.8        12.14        147.38 
32 669.1        15.44        238.39 
33 658.3          4.64          21.53 
34 646.0         -7.66          58.68 
35 638.8       -14.86        220.82 
36 654.5          0.84            0.71 
37 657.6          3.94          15.52 
38 653.5         -0.16            0.03 
39 647.9         -5.76          33.18 
40 656.0          2.34            5.48 
41 662.3   
42 676.9   
43 649.4   
44 624.3   
45 671.4   
46 660.7   
47 634.5   
48 662.5   
49 656.4   
50 651.1   

Σ (di  −d )2  :   

The easiest way 
is to use a table.   

 

d  =   __653.66__ mm . 
(from equation 1) 
 
s (d )  = _______________   mm      
(from equation 2) 
 

( )s d  =  _______________  mm    
(from equation 3) 
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(b) Using the statistics functions in your scientific calculator.  
 
See Appendix I for help with using the statistics functions in your scientific calculator.  
 

( )s d   = _______________   mm      (from formula in your calculator) 
 

( )s d  = _______________  mm    (using =
( )( ) s ds d
N

) 

 
 
Compare your results for ( )s d and ( )s d  obtained using (a) equations 1, 2 and 3 by hand, 
and (b) the same formulae buried in your calculator.  They should be identical.  
 
 
You can now write down your final result for d  at h =  78.0 mm. 
 
For h = 78.0 mm, the best approximation of d  is __________ mm   
with a standard uncertainty of    __________ mm . 
 
 
Note that you will not always “see” a scatter in your repeated readings of the same 
measurand. Sometimes you may repeat an experiment a number of times, and all of your 
readings will be identical. This happens when your apparatus is not sensitive enough to 
display scatter in the readings. In other words, the instrument itself is putting all the 
readings into the same bin.  
 
When your repeated data turn out to be identical, then you can only undertake Type B 
evaluations of uncertainty, as if you only had a single reading. However, if your data are 
scattered, then you also need to calculate the uncertainty associated with the scatter 
using a Type A evaluation, as described in this chapter. 
 
 
 
 
 
 
 
 
These students are confused since until you actually repeat the reading, you will not know 
whether or not it will be different from the first reading obtained. If you do observe a 
scatter, then you should repeat your readings many times. Calculating the average and 
experimental standard deviation of the mean (giving the standard uncertainty) is a way of 
dealing with the dispersion based on using a Gaussian pdf. This is called a Type A evaluation 
of uncertainty. 

There are some students who think that you must repeat 
an experiment so that you can calculate an average. 
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5.5 Type A evaluation of uncertainty: Example 1 
 
A group of students are doing the rolling ball experiment and release the ball 10 times 
from the same height h = 400 mm. 
Their data after ten releases are: 
            Release   Reading (mm)  

 1      436.6 
 2      426.1 
 3      438.3 
 4      426.1 
 5      434.0        
 6      438.8      
 7      429.2   
 8      430.6 
 9      435.3   
 10     450.2 

                  
 
 
 
 
 
 
 
Write down what you think the students should record as their final measurement 
result for d. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
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5.6 Type A evaluation of uncertainty: Example 2 
 
When they are finished, the two groups discuss how they can improve their rolling ball 
experiment next time. 
 
 
 
 
 
 
 
 

                   
 
 
 
 
 
 
  

A                          B 
 
 
With which group do you most closely agree?    (Circle ONE):    
 
 
Explain your choice. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

B   A 

If we practice enough we will 
be able to perfect our 
technique so that only one 
reading will give us the value 
of d  with no uncertainty.  

No,  that is not 
possible. 
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6   Evaluations of uncertainty: a practical example 
 
 
In this chapter you will do an experiment to measure the speed of sound in air and use the 
opportunity to further develop your understanding about measurement and uncertainty. 
 
 
6.1 The speed of sound experiment 
 
Say that you have just returned from doing an experiment on a sports field. A starter’s 
pistol (used to start races at athletic meetings) was fired several times, and each time 
a large group of students used stopwatches to record the time between hearing the 
original bang and the echo after the sound reflected back from a wall which was about 
80 metres away. In this way a large number of readings for the time t  were collected. 
The distance d  was measured once by a smaller group of students using a measuring 
tape.  
 
 
 
 
 
 
 
 
The aim of the experiment is to measure the speed of the sound in air vs  which may be 
calculated by = 2sv d t .  In order to know something about vs , we first need to analyse 
our data for  t  and d  separately. 
 
 
6.2 Analysing the time data 
 
A set of data for t  which were taken by a previous class is given below so that we can 
all work with the same values. However, you are welcome to use your own data for the 
exercises below.  
 
Table 6.1:  Readings of time t (in seconds) obtained in a speed of sound experiment. 
 
0.671 0.442 0.554 0.216 0.701 0.440 0.665 0.501 0.346 0.535 
0.525 0.421 0.541 0.453 0.460 0.391 0.484 0.377 0.549 0.816 
0.561 0.464  0.634 0.637 0.477 0.269 0.504 0.425 0.289 0.563 
0.592 0.484 0.343 0.605 0.351 0.337 0.636 0.578 0.521 0.476 
0.513 0.687 0.378 0.426 0.482 0.632 0.596 0.575 0.533 0.405 
 

high wall 

students with a 
starter’s pistol 
and lots of 
stopwatches 
to record 
readings of t. 

d 
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It is clear just by looking at Table 6.1 that the time readings are dispersed.  Why do 
you think this is so?  What are the possible causes of the scatter? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
In order to understand what we are doing, it is useful to present our time data 
graphically. The first step is to draw up a frequency table.  Let us choose a bin width 
of 0.05 s,  i.e. 0.200-0.249, 0.250-0.299 , etc.  Count how many data points fall within 
each bin and complete your table by calculating the relative frequency.  
 
Table 6.2: Frequency table for the data in Table 6.1. 

Bin Number of 
readings in bin 

Relative  
frequency 

0.200 - 0.249   
0.250 - 0.299   
0.300 - 0.349   
0.350 - 0.399   
0.400 - 0.449   
0.450 - 0.499   
0.500 - 0.549   
0.550 - 0.599   
0.600 - 0.649   
0.650 - 0.699   
0.700 - 0.749   
0.750 - 0.799   
0.800 - 0.849   

 Total: 50 1.00 
 
 
Now draw a histogram (vertical bar chart) of the relative frequencies on the graph 
paper overleaf.  
 
 



68                                                                              ©  Department of Physics, University of Cape Town
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Look at the shape of your histogram.  It is reasonable to believe that from the way that 
the data are dispersed, we can model our knowledge about the time t  with a Gaussian 
probability density function.  The relative frequency is related to the probability  ( )p t  
of obtaining a reading of t  between two values. As the number of readings in each bin 
approaches infinity and the width of the bins approaches zero, the relative frequency 
approaches this probability.   
 
Since we have chosen a Gaussian pdf to model what we know about the data (i.e. that 
they are dispersed in a particular way), the best approximation of the measurand (in 
this case the time) is given by the mean of the data  t and the standard uncertainty 
associated with the scatter in the data is given by the experimental standard deviation 
of the mean ( )s t , 
 

 where       
=

= ∑
1

1 N

i
i

t t
N

           and          =

−
=

−

∑ 2

1
( )

( )
( 1)

N

i
i

t t
s t

N N
  .  

 
 
It is appropriate to use the formulae for t  and ( )s t  in this case because we have 
chosen a Gaussian probability density function to model what we know about the 
measurand. The best approximation of the time is associated with the midpoint of the 
Gaussian and the scatter is described by the average width of the Gaussian. The more 
dispersed (scattered) the data are, the broader the Gaussian pdf will be.  
 
Use the statistical functions on your calculators to calculate  t  and ( )s t : 
 
t = ___________________   seconds      and   ( )s t  = ________________ seconds 
 
We can infer that the best approximation of the time t  is _________ seconds with a 
standard uncertainty of  __________ seconds.  
 
 
We have completed a Type A evaluation of the standard uncertainty for the time t 
since we have used statistical considerations (i.e. the two formulae above) in our 
analysis of the set of data for t . Note that there might be other sources of 
uncertainty in our measurement of t, such as the uncertainty related to calibration of 
the stopwatch which we could estimate using a Type B evaluation. However, in most 
cases where we observe a scatter in repeated readings, the uncertainty calculated using 
a Type A evaluation will usually be the largest. 
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6.3 Analysing the distance data. 
 
The single reading of the distance d  was observed to be  ____________ metres   
(using the measuring tape). 
 
Since we only have a single reading for d  we undertake a Type B evaluation of ( )u d . 
 
What can we say about the distance d ? We can model our knowledge about d  using a 
triangular pdf. The group who made the distance measurement were also asked to 
estimate  a−   and a+ , by asking themselves, “What is the minimum value that we are 
100% sure that d  is not, and what is the maximum value that we are 100% sure that d  
is not?”  Complete the pdf below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then    ( )u d   =   (half of the width of the interval)
6

  =    + −−1
2 (   )

6
a a   =  ___________ 

 
Therefore the best approximation of the distance d  is _________ metres with a 
standard uncertainty of  __________ metres.  
 
 

d (m) 

Reading from measuring tape =  

a− =  a+ =  

0 

 p(d) max = The total area 
under the pdf = 1 
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6.4  The final result for the speed of sound vs 
 
We now have information about the time t  and the distance d , and want to say 
something about the speed of sound, vs  which is related to t  and d  by = 2sv d t . 
 
Using the best approximations for d  and t , the best approximation of  vs = _________ m s-1 
 
What about the uncertainty in vs ? 
Well, we have a standard uncertainty for t   and a standard uncertainty for d, and need 
to use these to determine the standard uncertainty in vs . 
 
However, you first need to understand something about “propagation of uncertainties” 
which is dealt with in the next chapter. 
 
You will therefore only complete section 6.5 after you have read chapter 7. 
 
 
6.5  Completing the analysis of the final result for the speed of sound vs 
 
 
In order to calculate ( )su v  we use the equation ( )su v  =  
 
 
which gives ( )su v  = ____________________ m s-1 
 
Therefore vs  =  __________  ±   __________ m s-1. 
 
This is our final result for the speed of sound in air as measured in this experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Do you think that the value that you calculated for the 
standard uncertainty  ( )su v  represents all the sources of 
uncertainty in sv ?  Think carefully. 
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7   Working with uncertainties 

 
 
 
 
 
 
 
 
 
Discuss your answer with your friends. 
Listen to each other’s points and view and try to reach some agreement. 
Write you a full answer below.  Think carefully. 
 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
Do not proceed to the next page until you have completely answered this question.

What is the difference between readings 
and the result of a measurement ? 
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The answer to the question on the previous page is not complicated.  
 
Readings are the values that you observe and record from the instrument that you are 
using which may be either an analogue or digital instrument. For a digital instrument, 
what you observe is shown on the display. When you are using an analogue instrument, 
you might have to use your judgement to read the scale. But in both cases you end up 
with readings. However, at the end of the day what you want is not only to collect some 
data, but to obtain information about the measurand. A measurement is the entire 
process of obtaining information about a measurand.  Study the flowchart on the next 
page to remind yourself what is meant by a measurement. 
 
In the previous chapters you have learnt how to model your knowledge about a measurand 
using a mathematical function called a probability density function (pdf). This approach 
provides a consistent way of making an inference from data about a physical quantity being 
measured (the measurand) which includes quantifying the level of reliability that is attached 
to the inference.  
 
When reporting the result of a measurement you should always give: 
(i) the best approximation of the measurand; and 
(ii) its standard uncertainty. 
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yes Are more  
readings necessary 

and possible? 

Are more  
readings 

necessary ? 

no 

Decide what to measure (the measurand) and 
choose the best instrument for the measurement. 

Take a single reading. 

no 

yes 

yes Another reading 
is obtained. 

no Are more readings 
possible ? 

Use a suitable probability density 
function to model what you know 

about the measurand. This entire 
process shown 
here is “the 
measurement.” 

What is a measurement? 

Only a single 
reading exists. 

Two or more readings 
exist, which may or may 

not be identical. 

You finally have the  
 result of the measurement as  

described by the pdf. 
You can summarize the final result by  

stating the best approximation of  
the measurand and the  
standard uncertainty. 

In this flow diagram,  
 
a            indicates an action , 
 
a              indicates a decision , 
 
and a            indicates a product. 
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7.1 Propagation of uncertainties 
 
Very often you will need to calculate a quantity  R  from a set of measurements of  N  
other quantities,  w1 , w2  , .. , wN , in other words R  = f (w1 , w2  , .. , wN).  The question 
then is how to estimate the standard uncertainty ( )u R  from your estimates of the 
standard uncertainties of the  N   measured quantities.  The uncertainty ( )u R  is 
obtained by combining the individual standard uncertainties ui , whether arising from a 
Type A evaluation or a Type B evaluation, according to the following general formula:  
 

=

 ∂
=  ∂ 
∑

2

1
( ) ( ) 

N

i
i i

fu R u w
w

( + correlation terms). 

 
This can be a complicated process, therefore some general results are given in the table 
below for the case where R  is calculated from only two measurements:  ± ( )A u A   and  
± ( )B u B . The formula for ( )u R  depends on the form of the equation used to calculate 

R, where  R  = f (A, B ), and  a,  b  and  c  are constants (numbers).  
 
 
Table 7.1  Equations for the propagation of uncertainties through calculations 

Form of equation from which  
result  R  is calculated 

Formula for calculating  
the standard uncertainty ( ) u R  

 

             R   =   a A  ±  b B  +  c  

 
    { } { } { }= +

2 2 2( )    ( )  ( )u R a u A b u B  

      or 

    { } { }= +
2 2( )   ( )  ( )u R a u A b u B  

 
 

                  R   =   c A a B b 
       

 

         = +     
     

2 2 2( ) ( ) ( )   u R u A u Ba b
R A B

 

      or 

        = +   
   

2 2( ) ( )( )    u A u Bu R R a b
A B

 

  
 
 
Now try the following examples: 
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(a) Example 1  
 
To determine the activity of a radioactive sample, a series of observations were made 
with a gamma ray detector.   The counts with the radioactive sample  N  was measured 
to be 145 counts per minute with a standard uncertainty ( ) u N of 12 counts per minute.  
The background radioactivity  B   was measured to be  26 counts per minute with a 
standard uncertainty ( ) u B  of 6 counts per minute. 
 
The counts associated with the radioactive sample only No  is then given by   
 

No  =   N  −  B = ________ counts per minute 
 
What about the standard uncertainty ( ) ou N ?  
 
Look at Table 7.1 and choose the appropriate formula for  ( ) ou N :  
 
Then ( ) ou N =  ____________  counts per minute, and we can then write  
   
No  = _________  ±   __________ counts per minute. 
 
 
(b) Example 2 
 
Now let us presume that we are trying to measure the acceleration due to gravity  g  by 
observing the period  T  of a pendulum of length  l .     Say that we determine that:     
T = 0.763 ± 0.021 s  (where  ( ) u T results from a Type A evaluation of uncertainty); and  
l  =  0.1430  ±  0.0029 m    (where  ( ) u l results from a Type B evaluation of uncertainty). 
 

To determine g ,  we use the formula:              π= 2 lT
g

.               

Therefore    π
=

2

2
4  lg
T

   =    _____________ m s-2   

(using the best approximations for T and l  as given above)   
 
What about ( ) u g , the standard uncertainty in the measurement of g ? 
 
From Table 7.1 above, the appropriate formula for ( ) u g =  
 
Then ( ) u g  =  ___________  m s-2     and we can write  
   
g  = _________  ±   __________ m s-2 . 
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(c) Example 3 
 
A ruler is being used to measure the length  l  of a black rod. 
 
 

 

 

 

 

 

 
The best approximation of l  is given by rright − r left   = ___________ − ____________ 
 
             = _________________________ 
 
What about u (l ), the standard uncertainty in the measurement of l  ? 
 
We need to determine both  ( )rightu r and ( )leftu r  

 
Using triangular pdf’s: 

( )rightu r  =  −1
2 (                        )

6
  =   ______________ mm 

 

( )leftu r   =  −1
2 (                        )

6
  =    ______________ mm 

 
Look at the table above and choose the appropriate formula  for u (l ):  
 

u (l ) =   
 
Then u (l )  =  ______________  mm     and we can write  
   
l  = __________  ±   __________ mm . 
 
 
(d) Example 4 
 
Go back to section 6.5 and complete the analysis for the speed of sound experiment by 
calculating the standard uncertainty for ( )su v . 
 

62               63              64               65              66               67               68     cm 

l 

rleft rright 
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7.2 Comparing different measurements  
 
Consider the following situation.  Let us say that one group of scientists (Group A) has 
measured a time for a particular chemical reaction to be completed to be 7.34 ± 0.05 s 
where 0.05 s is a standard uncertainty.  A second group of scientists (Group B) 
complete a similar experiment and measure the time for the same chemical reaction to 
be 7.38 ± 0.03 s. 
 
 
 
 
 
 
The answer is quite simple. If the two intervals defined by the two results overlap, then 
the two results agree to within the stated standard uncertainties. 
 
It is easy to understand if you draw the intervals on a number line: 
 
 
 
 
 
 
 
 
 
 
 
We say that the results of Groups A and B agree within their stated experimental 
uncertainties. 
 
A third group of scientists (Group C) measured the time for the same chemical reaction 
to be 7.46 ± 0.06 s. You can see that the results of Groups B and C agree within their 
stated uncertainties, but the results of Groups A and C do not agree with each other. 
 
Which one of the groups (A, B and C) do you think have the best results ?  
Explain your answer carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

 7.28       7.30      7.32      7.34      7.36      7.38      7.40       7.42      7.44      7.46      7.48      7.50       7.52    s 

Group A 

Group B 

Group C 

Do the two results agree with each other? 
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Now try the following exercise.  In each case, decide whether or not the two results (A 
and B) agree with each other.  
 

  
Result A 

 

 
Result B 

 

Do the two results agree 
within their experimental 
uncertainties ? (yes / no) 

(a) 4.16 ± 0.04 s 4.16 ± 0.03 s  
(b) 4.16 ± 0.04 s 4.18 ± 0.03 s  
(c) 4.16 ± 0.04 s 4.21 ± 0.03 s  
(d) 4.16 ± 0.04 s 4.23 ± 0.03 s  
(e) 4.16 ± 0.04 s 4.27 ± 0.03 s  
(f) 4.16 ± 0.04 s 4.27 ± 0.04 s  

 
 
 
7.3 Repeatability and reproducibility 
 
Repeatability (of results of measurements) has to do with the closeness of the 
agreement between the results of repeated measurements of the same measurand 
carried out under the same conditions of measurement.  These conditions are called 
repeatability conditions, which include the same measurement procedure; the same 
observer; the same measuring instrument used under the same conditions; the same 
location; and repetition over a short period of time. 
  
Reproducibility (of results of measurements) has to do with the closeness of the 
agreement between the results of measurements of the same measurand carried out 
under changed conditions of measurement. A valid statement of reproducibility requires 
specification of the conditions changed. The changed conditions may include the 
principle of measurement; the method of measurement; the observer; the measuring 
instrument; the reference standard; the location; and time. 
 

Measurements can only be meaningfully compared if the 
uncertainties associated with each measurement are known.  If you 
do not know the uncertainties associated with two measurements it 
is not possible to compare them, no matter how “close” or “far” the 
best approximations seem to be to each other. 
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Consider the following situation. Two groups of students are doing a rolling ball 
experiment (see Chapter 5) and need to measure the distance d  when the ball is 
released from a height h = 78.0 mm.  If  you roll the ball from the same height  
(say h = 78.0 mm) a few times and consider the closeness of the spots made by the ball 
on the floor, then this has to do repeatability, while if you compare your final result for 
d  with that of another group doing the same experiment, then that has to do with 
reproducibility.  
 
The readings for the two groups after 10 releases are shown below. 
 

   Group A  Group B            
Release   d  (mm)  d  (mm) 

 
     1     440.3  432.0 
     2     438.4  444.8 
     3     433.2  426.4 
     4     422.9  433.3 
     5     432.0    440.8    
     6     440.3  431.0 
     7     435.1   444.2 
     8     438.0  438.2 
     9     424.7  437.5 
    10     433.6    429.4    

 
The first step, of course, is to determine the final results for d  from the two groups. 
You can use the statistical formulae to determine the mean and experimental standard 
deviation of the mean for each group. 

where       
=

= ∑
1

1 N

i
i

d d
N

           and          =

−
=

−

∑ 2

1
( )

( )
( 1)

N

i
i

d d
s d

N N
  .  

 
Be care when you use the statistical functions in your calculator. Remember that the  
standard uncertainty associated with the dispersion in a data set is given by the 
experimental standard deviation of the mean ( )s d .  
 
Group A :  d  =  _____________ mm    ( )s d  =  ________________ mm 
 
Group B:   d  =  _____________ mm    ( )s d  =  ________________ mm 
 
or 
 
d  from Group A  =   _________  ±  __________ mm ( 68 % coverage probability) 
 
d  from Group B  =   _________  ±  __________ mm ( 68 % coverage probability) 

Have groups A 
and B measured 
the same value 
for d  ? 
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Do the two results agree with each other ?  Explain your answer carefully.  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
7.4 Relative and percentage uncertainty 
 
Say that you have completed an experiment to measure the mass m of an object and 
your result is that the best approximation of m  is  83.5 g with a standard uncertainty 
of 5.2 g.  
 
Sometimes it might be useful to consider the relative uncertainty for m, which is 
simply the ratio of your standard uncertainty u (m ) over best approximation of m , 
which in this case is    5.2 / 83.5   =   0.062. 
 
We can then say that “the best estimate of m  is  83.5 g with a relative uncertainty of  
0.062.” 
 
Another way of giving the uncertainty is to quote the percentage uncertainty, which is 
simple the relative uncertainty quoted as a percentage.   
 
In this example we could say that “the best estimate of m  is  83.5 g with a percentage 
uncertainty of 6.2% .” 
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7.5 Comparing results: Example 1 
 
Two groups of students compare their results for  d  in a rolling ball experiment 
obtained by releasing the ball from h = 80.0 mm.  The means and experimental standard 
deviation of the means for their readings are shown below. 
 

Group A:    d   =   436.3  ±  5.2  mm   (coverage probability of 68%) 
 

Group B: d   =   442.4  ±  5.2  mm   (coverage probability of 68%) 
 
 
 
 

                   
 

 

A                   B 
 
 
With which group do you most closely agree?    (Circle ONE):    
 
 
Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

 
 

B   A 

Our result agrees 
with yours. 

No,  your result 
does not agree  
with ours. 
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7.6 Comparing results: Example 2 
 
Two groups of students compare their results for  d  obtained by releasing a ball from 
height  h = 80.0 mm.       Their readings for 10 releases are shown below. 
 
  Group A Group B            
Release  d  (mm) d  (mm) 

 
     1    440.3   432.3 
    2    438.7   441.2 
    3    433.3   426.7 
    4    422.0   433.3 
    5    432.4    440.3    
    6    430.4   435.7 
    7     434.9   439.8 
    8     441.5    430.6 
    9    420.3   423.1 
  10    432.5     435.5    
       
 Average:    432.6    433.8 
 

A              B 
 
 
Which group do you agree with ?  Justify your answer. 
 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 

 

Our result 
agrees with 
yours. 

No,  your result 
does not agree  
with ours. 
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8   Working with uncertainties: a practical example 

 
 
 
8.1 The golden cylinder 
 
After finishing your science degree you end up working as a scientist in the country of 
Bugstralia. The king of Bugstralia needs a new crown and has ordered his jeweller to 
bring him a sample of the metal that will be used.  The jeweller does so and declares 
that it is pure gold.  The king does not trust his jeweller and wants you to check 
whether the jeweller is honest by determining the density of the sample (which is a 
small cylinder) : 
 
 
 
You decide to use two different methods and compare the results with each other and 
with the table of densities below.   
 
Book values of densities of some metals ( in  g cm-3 ) taken from the “Handbook of 
Chemistry and Physics” (72nd Edition, CRC Press). The standard uncertainty for each 
value below is less than 0.001 g cm-3. 
 
Aluminium  2.70     Iron   7.87 
Copper   8.96     Zinc   7.14 
Silver   10.5     Tin   7.30  
Platinum  21.4     Gold   19.3 
Lead   11.3    Uranium  19.1 
 
 
8.2 Experiments 
 
Look at Appendix H to remind yourself how to use the vernier callipers. 
 
 
 
 
 
 

Don’t forget to consider your units carefully ! 
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• Method 1 :  Using a triple beam balance and a vernier callipers. 
 
Measurement of the length of the cylinder using the vernier callipers: 
 
Reading with vernier callipers closed lc  = ______________ 
 
Standard uncertainty of closed reading  ( )cu l = ______________ 
 
Reading with vernier callipers open (cylinder between the jaws) lo  = ______________ 
 
Standard uncertainty of open reading ( )ou l  =  ______________ 
 
Best approximation of the length of cylinder l  = lo − lc  = ______________ 
 
Standard uncertainty of length ( )u l  (using equation { } { }= +

2 2( ) ( ) ( )o cu l u l u l  ) =  ____________ 
 
Measurement of the diameter of the cylinder using the vernier callipers: 
 
Reading with vernier callipers closed dc  = ______________ 
 
Standard uncertainty of closed reading  ( )cu d = ______________ 
 
Reading with vernier callipers open (cylinder between the jaws) do = ______________ 
 
Standard uncertainty of open reading ( )ou d =  ______________ 
 
Best approximation of the diameter of cylinder d = do − dc  = ______________ 
 
Standard uncertainty of diameter  ( )u d =  ______________ 
 
Calculation of the volume of the cylinder: 
 
Equation for the volume of a cylinder  V  =  
 
Best approximation of the volume of cylinder V  = ______________ 
 
Equation to use for the standard uncertainty of the volume  ( )u V : 
 
Standard uncertainty of the volume  ( )u V =  ______________ 
 



86                                                                              ©  Department of Physics, University of Cape Town
                       
 

Measurement of the mass of the cylinder using the triple beam balance: 
 
Best approximation of the mass of the cylinder m =  ______________ 
 
Standard uncertainty of the mass  ( )u m  =  ______________ 
 
Calculation of the density of the cylinder: 
 
Equation to use for the density of the cylinder ρ  : 
 
Best approximation of the density of the cylinder ρ  = ______________ 
 
Equation to use for the standard uncertainty of the density  ρ( )u  = 
 
Standard uncertainty of the density  ρ( )u  =  ______________ 
 
Final result for the density using method 1: 
 
ρ1 =  ____________ ± ______________ g cm-3   (  ____% coverage probability) 
 
 
 
• Method 2 :  Using a triple beam balance and a measuring cylinder 
 
Measurement of the volume of the cylinder using the measuring cylinder: 
 
Fill the measuring cylinder about halfway with water. 
 
Best approximation of the initial level of water Vi  = ______________ 
 
Standard uncertainty of initial level  ( )iu V  = ______________ 
 
Now place the metal cylinder into the measuring cylinder. 
 
Best approximation of the final level of water Vf  = ______________ 
 
Standard uncertainty of final level  ( )fu V  = ______________ 
 
Best approximation of the volume of cylinder V  = Vf − Vi  = ______________ 
 
Equation to use for the standard uncertainty of the volume ( )u V  :  
 
Standard uncertainty of volume ( )u V  =  ______________ 



©  Department of Physics, University of Cape Town        87 
    
 

 
Measurement of the mass of cylinder using the triple beam balance: 
 
Mass of the cylinder from method 1 : m =  ___________ ± ___________ g 
 
Calculation of the density of the cylinder: 
 
Equation to use for the density of the cylinder ρ  = 
 
Best approximation of the density of the cylinder ρ  = ______________ 
 
Equation to use for the standard uncertainty of the density  ρ( )u  = 
 
Standard uncertainty of the density  ρ( )u  =  ______________ 
 
Final result for the density using method 2: 
 
ρ2 =  ____________ ± ______________ g cm-3   (  ____% coverage probability) 
 
 
8.3 Conclusions and discussion: 
 
You have now measured the density of the cylinder using two different methods.  Write 
down your results here: 
 
Method 1 :   ρ1 =  ____________ ± ______________ g cm-3    
 
Method 2 :   ρ2 =  ____________ ± ______________ g cm-3    
 
 
 
 
 
In order for you to answer this question, draw a number line below and show the two 
intervals defined by your two results. 
 
 
 
 

Do these two 
results agree 
with each 
other ? 
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What criterion should you use to decide whether or not your two results agree with one 
another? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
Write a statement below concerning the agreement of your two results. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
Are you now able to say anything about the jeweller’s claim that the metal is pure gold ? 
Compare your results with the table of book values of densities of different metals at 
the beginning of this section.  Write a clear statement about what you can conclude 
from your experiment. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
 
 



©  Department of Physics, University of Cape Town        89 
    
 

9   The uncertainty budget 
 
 
 
 
  
 
 
 
 
 
 
The probability density function that you use as part of the measurement process 
describes everything that that you know about the measurand. You can summarize the 
result of the measurement by stating the best approximation of the measurand, 
together with its standard uncertainty. 
 
Therefore when you write as the result of an experiment, for example: “the mass of 
the powder is 3.25 ± 0.15 g with a coverage probability of 68%”, you may infer from this 
that the best approximation (most likely value) of the mass is 3.25 g, and the standard 
uncertainty is 0.15 g, which together define an interval within which the measurand 
exists with a probability of 68%. In other words we can say that we are 68% sure that 
the mass exists between 3.10 g and 3.40 g.   
 
 
9.1 Combined standard uncertainty 
 
The combined standard uncertainty uc of a measurement result is obtained by 
combining the individual standard uncertainties ui , whether arising from a Type A 
evaluation or a Type B evaluation.   
 
If you were making a measurement of a measurand m, and determined three sources of 
uncertainty for which you estimated the three standard uncertainties  
u1(m) , u2(m) and  u3(m) , then the combined standard uncertainty uc(m) for the 
measurement of m is given by 
 
     = + +2 2 2

1 2 3( ) ( ) ( ) ( )cu m u m u m u m . 
 

You have come to realise in this course that although the readings 
you get from a measuring instrument are exact numbers, the 
information you have about the measurand based on these readings 
is never prefect. Therefore the result of a measurement is only 
complete when accompanied by a quantitative statement of its 
uncertainty.  
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9.2 The uncertainty budget 
 
An uncertainty budget is an evaluation (usually presented in the form of a table) of all 
the contributions of uncertainty in a particular measurement (together with numerical 
estimates). These uncertainty components are then used to calculate the combined 
standard uncertainty uc for the measurement result. An uncertainty budget is a useful 
way to present how you dealt with all the uncertainties in a measurement. 
 
It is best to consider of a few examples. 
 
 
9.3  A measurement using an analogue voltmeter 
 
Consider the situation where you are using an analogue voltmeter to measure the 
voltage across the terminals of a battery.  
 
List every effect that you think might contribute to the total uncertainty in such a 
measurement. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
After connecting the 
voltmeter across the 
terminals of the battery, 
what you see on the 
voltmeter is shown alongside. 
 
 
 
 
Say that you decide that the reading batteryV is  1.54 volts, and using a triangular pdf, you 
determine the standard uncertainty ( )batteryu V on this scale reading to be: 
 

 −
=

1
2 (1.57 1.51)( )

6batteryu V   =   0.012 volts. 
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When we disconnect the 
voltmeter from the battery, the 
scale shows: 
  
 
 
 
 
 
 
As you can see, the voltmeter doesn’t quite read 0.00 V when the battery is 
disconnected.   It reads 0.02 V. This is the “zero reading.”  You might decide that the 
standard uncertainty of this reading is also 0.012 volts (the same as when the battery 
was connected), 
    i.e.    ( )zerou V    =   0.012 volts 
 
Note that even if the meter read 0.00 V with no battery connected, then the standard 
uncertainty for the “zero reading” would still have to be evaluated. 
  
It is usually not the case that you be  100 %  confident that the instrument (in this case 
an analogue voltmeter) gives a perfect reflection of the input (i.e. the voltage across 
the terminals of the battery). All analogue and digital instruments have some internal 
calibration setting, referred to as the “rating” of the instrument. The uncertainty 
associated with this rating is usually indicated by the manufacturers of the instrument 
and is often quoted as a percentage. 
 
Say that we are told that the meter we are using here has a percentage calibration 
uncertainty of 1%. Then the uncertainty associated with the rating of the instrument is: 
 

( )ratingu V   =   0.01 (1.54 V)   =   0.015 V. 
 
There may be other sources of uncertainty associated with the instrument, such as the 
influence of the temperature of the surroundings, or the contact resistance in the 
probes.  Let us say that these are negligible in this case.  
 
 
 
 
 
 
 
 
 
 

You also need to think about how you used the instrument 
and whether or not this might have introduced some 
uncertainty to the result. 
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After you have determined all the possible sources of uncertainty and assigned a 
numerical value to each, then you should draw up a table of the sort shown below, which 
is called an uncertainty budget. Each source of uncertainty is listed together with its 
standard uncertainty. You should note that these standard uncertainties can result 
from either Type A or Type B evaluations.  
     
Table 9.1:  Uncertainty budget for the single voltmeter reading. 
Uncertainty component Standard uncertainty (volts) Type of evaluation 

( )batteryu V  0.012 Type B 

( )zerou V  0.012 Type B 

( )ratingu V  0.015 Type B 

Combined standard uncertainty: uc (V ) = 2 2 2(0.012)  + (0.012)  + (0.015)    =  0.023 volts 

 
The final result in this case may then be recorded as: “the best approximation of the 
voltage V  is 1.520 volts with a combined standard uncertainty of 0.023 volts.” 
 
 
9.4  A set of dispersed digital readings 
 
Now let us presume that we are trying to measure the acceleration due to gravity  g  by 
observing the period  T  of a pendulum of length  l .     
 
Say that we determine that l  =  0.2619  ±  0.0058 m    (where  ( ) u l results from a Type 
B evaluation of uncertainty). 
 
We then use a digital stopwatch to measure the period of the pendulum. You cause the 
pendulum to oscillate and then record the time for 20 complete swings. You repeat this 
procedure 10 times and observe the data below: 
 
Table 9.2:  Data recorded using a digital stopwatch.  

Time for 20 swings, T20   (s) Period, T  = T20 / 20   (s) 
19.56 
20.49 
20.76 
20.63 
21.56 

21.31 
20.82 
19.78 
20.39 
20.02 

0.978 
1.025 
1.038 
1.032 
1.078 

1.066 
1.041 
0.989 
1.020 
1.001 
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Since we observe a dispersion (scatter) in the readings, the best estimate of the period 
T  is given by the arithmetic mean  scatterT  , which is  1.027 s ,  and the standard 
uncertainty associated with the scatter is given by the experimental standard deviation 
of the mean, which is  0.010 s.  
 
Then   ( )scatteru T    =    0.010 s. 
 
This is not the whole story. There are other sources of uncertainty in T.  For example, 
what about your “reaction time”, which is related to your skill in starting and stopping 
the stopwatch at the right position of the pendulum.   
 
It is clear that your skill (or lack of skill !) in doing the experiment will contribute to 
the scatter in the data you see in Table 9.2.  However, it is very difficult to separate 
out the contributions to this scatter which arise from many possible sources, which 
include: 
(i) the skill of the experimenter (i.e. you), or  
(ii) effects of environmental conditions on the readings (e.g. a breeze through the 
laboratory window), or  
(iii) small variations in the conditions of each reading (e.g. the amplitude of each 
pendulum swing). 
 
As soon as you see a dispersion in the readings (no matter what the cause of this 
dispersion), you should try to repeat the readings as many times as it is practically 
possible.  
 
After completing a Type A evaluation of uncertainty which usually involves calculating 
the experimental standard deviation of the mean (which is related to the degree of 
scatter in the data), you should consider any other sources of uncertainty (Type B 
evaluations). 
 
These include standard uncertainties related to, for example: 
 (i) reading the scale or display of the instrument;  
 (ii) the zero of the instrument; and 
 (iii) the internal calibration of the instrument. 
 
Let us say that the manufacturers of the stopwatch report that it is accurate to 0.5%. 
Then the uncertainty associated with the internal calibration ( )

calibration
u T will be:  

   
 ( )

calibration
u T    =    (0.005)(1.027)   =   0.0051 s. 

 

To determine g ,  we use the formula:              π= 2 lT
g

.               
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Therefore    π
=

2

2
4  lg
T

 . 

 
This is our model equation for this measurement. 
 

The best approximation for g  is given by   π 2

2
4 (0.2619)

(1.027)
    =  9.8028 m s-2. 

  
 
The uncertainty budget for this measurement is shown below. 
 
Table 9.3:  Uncertainty budget for the time readings in Table 9.2. 
Uncertainty component Standard uncertainty Type of evaluation 

Random dispersion in T : ( )scatteru T  0.010 s Type A 

Internal calibration for T:  ( )
calibration

u T  0.0051 s Type B 

 
The combined standard uncertainty for T  is  uc (T ) = 2 2(0.010)  + (0.0051)  =  0.011 s 
 

Then the standard uncertainty for g  is given by:      = +   
   

2 2( ) ( ) ( )2u g u l u T
g l T

 

Therefore ( )u g  =    +   
   

2 20.0058 0.0119.8028 2
0.262 1.027

 = 0.302 m s-2. 

 
The final result may then be recorded as: “the best estimate of the acceleration due to 
gravity g  is 9.80 m s-2  with a standard uncertainty of 0.30 m s-2.” 
 
 
9.5  A single measurement using a digital stopwatch 
 
For the third example we consider a situation where we use a digital stopwatch to 
measure the time for an athlete to run around a 400 metre long track. The athlete 
starts to run from the start/finish line when a gun is fired (and you begin your 
stopwatch). The athlete then runs around the entire track and you stop the stopwatch 
when he passes the start/finish line again. 
 
What you see on the stopwatch is:    
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This is an example of an “once-off” experiment. Why is it impossible to repeat this 
experiment?  
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
 
 
 
                  
List every source of uncertainty that you can think of for this measurement. Discuss 
your answer with your friends. Remember that since you only have a single reading you 
can only consider Type B evaluations of uncertainty. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
If you were able to repeat this measurement, then you will likely see a scatter in the 
readings. Part of this scatter will be associated with your reaction time when you start 
and stop the timer as the athlete runs past. As you only have a single reading, you need 
to estimate how your reaction time effects your reading.  How could you do that? 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
Clearly the best approximation of the time is 54.75 seconds. 
 
Calculate a standard uncertainty ( )stopwatchu t associated with reading the digital display.  

  
 ( )stopwatchu t   =  

 

What is the uncertainty in this measurement?  
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Let is say that the manufacturers of the stopwatch report that it has a percentage 
standard uncertainty of 0.1%. Then standard uncertainty associated with the internal 
calibration ( )calibrationu t will be  
   
 ( )calibrationu t   =   
 
Say that you decide that the standard uncertainty associated with your reaction time 
is 0.1 seconds,  
   i.e.  −( )r startu t   =  −( )r stopu t   =   0.1 seconds.   
 
 
 
 
Now complete the uncertainty budget for this measurement: 
 
Table 9.4:  Uncertainty budget for a single time reading. 

Uncertainty component Standard uncertainty (s) Type of evaluation 

( )stopwatchu t   Type B 

( )calibrationu t   Type B 

−( )r startu t  0.1 Type B 

−( )r stopu t  0.1 Type B 

 
Then the combined standard uncertainty, uc (t )    =    __________________  s . 
 
Write down a full statement for the result of this measurement. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
What could you do if you wanted to reduce the uncertainty in such a measurement ?  
Of course, since you can never repeat the identical measurement (of this athlete 
running around a track), any improvements could only be implemented in future 
(different) measurements. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

Is this reasonable? 
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9.6  Experiment: the falling paper. 
 
You are supplied with a piece of A4 paper and a digital stopwatch.  
 
You are asked to measure the time it takes for the 
sheet of paper to fall from the top of your desk to the 
floor, starting with the paper horizontal and level with 
the top of the table. 
 
Release the paper a few times and watch what happens. 
 
Now record 20 time readings here: 
 
 
 

         

 
 

         

 
 
Complete the uncertainty budget table below. List all the significant sources of 
uncertainty for t and state whether you will calculate each by a Type A or a Type B 
evaluation of uncertainty (you might not list 4 below). 
 

Uncertainty component (describe carefully). Type of evaluation 

1.  

2.  

3.  

4.  

 
Which of the sources of uncertainty listed above do you think will be the largest? 
Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

floor 

table 
paper 
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Now calculate a standard uncertainty for each of the sources of uncertainty listed in 
the table above. 
 
(You are told that the stopwatch has a percentage standard uncertainty of 0.1% 
associated with its internal calibration.) 
 
 
1. 
 
 
 
2. 
 
 
 
3. 
 
 
 
4. 
 
 
 
 
Then the combined standard uncertainty, uc (t )    =    __________________  s . 
 
Write down a full statement for the result of this measurement. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
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10  Uncertainties for slopes  
and intercepts for linear graphs 

 
 
 
10.1 Introduction 
 
Say that you have completed an 
experiment and made measurements 
of the two variables K  and h , which 
are related to one another.  
 
You decide to plot your values of K  
as a function of h : 
 
 
If you expect the variables K  and h  to be related by the equation K = m h + c  where m  
is the slope and c  is the y-intercept, you will need to fit the best straight line to the 
data in order to then determine m  and c. 
 
Which of the lines below (each drawn by hand) do you think best fits the data ? 
 
 
 
 
 
 
 
 
 
 
 
Obviously it is very difficult to make a decision concerning which line provides the “best 
fit” to the data.  
 
 
 
 
 
 
The answer is yes and concerns the principle of least squares. 

 
 

 

 

 
 

 

 h 

K 

Is there a way of determining the best estimates of 
the slope and y-intercept, together with their 
standard uncertainties? 

 
 

 

 

 
 

 

 
 

K 

 
 

 

 

 
 

 

 
 

K 

 
 

 

 

 
 

 

 
 

K 

h h h 
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10.2 The principle of least squares 
 
Since straight line graphs are particularly convenient and important in data analysis we 
need to know how to calculate uncertainties for the slope and the intercept, which we 
derive from these graphs.  The best procedure for fitting a straight line to a set of data 
points is to apply the method of least squares which automatically provides “best” values, 
together with the standard  uncertainties, for the slope and the intercept.  As the 
equations used are quite complicated (as you will see below) a computer or programmable 
calculator is usually necessary to undertake least squares fitting on a large scale.  When a 
computer is not available, it is easy to use your calculator and the equations if you take 
things step by step. 
 
The Principle of Least Squares states that the most probable value of any observed 
quantity is obtained from a set of measurements by choosing the value which minimises 
the sum of the squares of the deviations of these measurements,  
i.e. the quantity   S    =    ∑ 2

id    =    −∑ 2( )ix x  . 
 
Now if we want to fit   y  =  m x + c   to a series of data points ( i.e. measurements of  y  
and x ), the method of least squares considers the difference between   y   (called the 
“datum”) and   m x  +  c   (called the “fit”). 
 
The “deviation” of each point is    = − +( )i i id y mx c . 
 
Then the sum of the squares of the deviations is    S   =  ∑ 2

id    =   { }− +∑ 2( )i iy mx c  
 for   i   =   1  to  n  ,  where  n  is the number of measurements that you have. 
 
If you expand this expression you get  (try it sometime): 
     

= + − + + +∑ ∑ ∑ ∑ ∑2 2 2 22 2 2i i i i i iS y m x y c y m x mc x nc . 
 
The principle of least squares says that the best choice for  m  and  c  minimises  S : 

 

i.e.   ∂
∂

= 0S
m

     and     ∂
∂

= 0S
c

 . 

 

The solution to these two equations gives the equations for  
m, c , ( )u m  and ( )u c . 
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Equations of least squares: 
 

( )
−

=
−

∑ ∑ ∑
∑ ∑

22

  
    

  
i i i i

i i

n x y x y
m

n x x
   

 

( )
−

=
−

∑ ∑ ∑ ∑
∑ ∑

2

22

  
    

  
i i i ii

i i

x y x y x
c

n x x
 

 
and 

 

( )
 =  − −

∑
∑ ∑

2

22
( )      

2   
i

i i

d nu m
nn x x

          

 

( )( )
 =  − −

∑ ∑
∑ ∑

2 2

22

 
( )      

2    
i i

i i

d x nu c
nn n x x

 

 
where:         ( )= − +  i i id y mx c  
 

 
 
10.3 Exercise on using the equations of least squares 
 
 
 
 
 
 
 
Let us say,  for example,  that in an experiment you have measured the following data 
that are linearly related to each other in the form  K = m h + c.   
 
You have measured values of h  (your x-values) and K  (your y-values) and need to 
determine m, c , ( )u m  and ( )u c . 
 

h   (m) : 0.0 1.0 2.0 3.0 

K   (N) : 2.1 3.3 3.8 4.5 

 
You need to use the least squares equations and the easiest way is to make use of the 
tables shown over the page ... 
 

The equations for least squares may look tough, but they are 
easy to use if you take things bit by bit. 
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x y  x y x 2 

0.0 2.1   

1.0 3.3   

2.0 3.8   

3.0 4.5   

    

  
 

 
 m  =  
 
 
 c  =  
 
 

x m x  +  c  d d 2 

0.0    

1.0    

2.0    

3.0    

  
         Σ 
 
 

( )u m     =       
 
 
 

( )u c   =        
 
 
You will now move to the laboratory where you will do an experiment and further least 
squares analyses. 

Σ 
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10.4 Laboratory exercise on least squares fitting of straight lines 
 
Some background to the experiment: 
 
If an object of mass po  at the end of a spring is displaced a small distance  s  from its 
equilibrium position and then released, it has a restoring force  F  of magnitude  k s  
applied to it by the spring, where  k  is the spring constant of the spring.  The mass 
then undergoes simple harmonic motion about its equilibrium position provided the 
amplitude is small.  The period of oscillation,  T , is given by  

 

π=  2 opT
k

 .    (1) 

 
The force constant  k  can be thus determined by measuring  T  and  po . 
In practice the mass of the spring sp  may not be ignored and the fact that it also is 
oscillating affects the period of oscillation.  However, we can correct for this effect by 
replacing  po  by the effective mass  pe , given by    = + 1

3    e o sp p p . 
 

The period is then given by:   π=  2 epT
k

     (2) 

 
Equation 2 may be linearised by squaring both sides and re-arranging to form 
 

     π=2 24 epT
k

 .     (3) 

 

Thus plotting your data of 2T  versus pe  will allow you to fit a straight line with a slope π 24
k

. 

 
Apparatus: 
 
You are supplied with:  (i) a spring suspended from a retort stand, 
    (ii) four cylinders of different masses, and  
    (iii) a stopwatch. 
 
What to do: 
 
Use a triple beam balance to determine the masses of the four cylinders, and the mass 
of the spring.  By observing the time taken for 20 oscillations, calculate the period of 
oscillation for each cylinder in turn.  By plotting a suitable graph (equation 3), the spring 
constant k  may be determined.
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Data: 
 
Mass of the spring sp  : ______________ kg 
 

Mass of 
cylinder po  

(kg) 

Corrected mass 
pe  (kg) 

( = + 1
3    e o sp p p ) 

Time for 20 
oscillations  

(s) 

Period T   (s) 
(time for one 
oscillation) 

T 2   
(s2) 

 
 

    

 
 

    

 
 

    

 
 

    

 
Analysis: 
 
Use your data to plot a graph of 2T  versus pe. 
 
Use the equations of least squares to calculate the slope of your graph m  and its 
standard uncertainty ( )u m .   Use the tables below:   
 
 

x   ( pe ) y   ( T 2 )  x y x 2 

    

    

    

    

    

  
 

 
 slope m  =   ______________________ 
 
 
 y-intercept c  =  ______________________ 
 

Σ 
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x m x  +  c  d d 2 

    

    

    

    

  
         Σ 

( )u m     =    ________________________      
 
 

( )u c   =   _______________________ 
 
Now use a least squares program2 to calculate m, c , ( )u m  and ( )u c  for your data.  
 
From the least squares program: 
 
m =  _________________________ ( )u m  = _________________________ 
 
c =  _________________________ ( )u c  = _________________________ 
 
These values for m, c , ( )u m  and ( )u c  should be identical to your values for m, c , ( )u m  
and ( )u c  obtained using the least squares equations by hand. 
 
You can now determine a value for k  from your value of the slope m. 
 

k  =   π 24
m

  =   _____________________ N m-1 

 
What about the standard uncertainty ( )u k ?  Using the equation  ( )u k =  
 
gives the value of  ( )u k  = ____________________ N m-1 
 
You can write your final result for k  =  _________ ±  ________ N m-1

. 

 

                                                 
2 For example, a least squares fitting program “CurFit” is available in the Course I Laboratory in 
the Physics Department, University of Cape Town. 
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11 A final word 
 
 
Physics is about modelling and understanding the phenomena of nature, and physics 
experiments are concerned with the creation of new knowledge through measurement. 
These measurements are used to formulate new physics theories, or test existing 
theories. However, there are many factors that influence the result of an experiment, 
for example factors associated with the calibration of the apparatus you are using, how 
you used the apparatus, environmental effects, etc. Each of these factors work against 
you getting a “perfect” result in your experiment.  
 
During this course you have learnt how to report a scientific measurement result. In 
the same way that there are mathematical tools of physics such as coordinate systems, 
vectors, force diagrams, etc. which are universally accepted ways of communicating 
physics models, there are clear guidelines regarding the way in which scientific 
measurement results should be reported. These have been agreed upon by all the 
international physics, chemistry and other science organizations, and are methods you 
have been taught in this course. The way that you have learnt to analyze your 
experiments in this course is the same way in which scientists all around the world do 
so. For example, you have learnt the scientific methods of numerically estimating 
uncertainties in an experiment in a realistic way. “Uncertainty” in a science 
measurement is a number that comes from analyzing all the factors that you think have 
influenced your experiment. This parameter, together with the best approximation of 
the measured, form part of the measurement result. You have seen in this course that 
the measurement result is a compact way of summarizing all the knowledge that you 
have about a measurand. 
 
Therefore when you communicate the result of your measurement as “the voltage 
across the terminal is 5.37 ± 0.24 V with a coverage probability of 65%”, for example, 
any scientist who reads this can interpret your result in a meaningful way. It is clear 
from the statement that the best approximation (most likely value) of the voltage is 
5.37 V, and the standard uncertainty is 0.24 V, which together define an interval within 
which the measurand exists with a probability of 65%. In other words we can infer that 
we are 65% sure that the voltage exists between 5.13 V and 5.61 V.  (Of course there is 
a 35% probability that the value of the voltage exits outside this interval.) A 
measurement result is a statement of probabilities. We can never know the true value 
of a measurand: we can only make statements about our knowledge about the intervals 
in which the measurand exists.  
 
Furthermore, since the nature of the enterprise of physics is about the creation of new 
knowledge, the more “careful” you are in a physics experiment, the smaller your 
uncertainty should be. Therefore scientists design and carry out experiments so as to 
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have as small an uncertainty as is realistically possible. The smaller your uncertainty is 
(think about a narrow pdf compared with a broader one), the better knowledge you have 
about a particular measurand. Of course, it is impossible to make a measurement which 
has zero uncertainty.  
 
Having an interval as the result of an experiment, and not a single point, also allows us 
to compare two measurement results with each other, or with a theoretical (calculated) 
value. For example,  we can say that the two measurement results  3.4 ± 0.6  J  and  
3.7 ± 0.4  J  agree with each other, while the measurement  10.4 ± 0.7  m s-2 does not 
agree with the theoretical value of 9.79 m s-2.  
 
Finally, the following diagram might be useful for you to summarize the process of a 
measurement:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

new 
data 

New information 
(readings) from our 

experiment. 

inferences about 
the measurand 

 final probability 
density function 

Usually, the best 
approximation and the 
standard uncertainty. 

 

prior 
information 

Any previous 
information that we 

have about the 
measurand. 

Contains all our knowledge 
about the measurand. 
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A  The International System (SI) of units  
 
The SI base units: 
Quantity Name of unit Symbol 
length metre m 
mass kilogram kg 
time second s 
electric current ampere A 
temperature kelvin K 
amount of substance mole mol 
luminous intensity candela cd 
 
The SI supplementary units: 
plane angle radian rad 
solid angle steradian sr 
 
Some SI derived units: 
area square metre m2 
volume cubic metre m3 
frequency hertz Hz                  s-1 
mass density kilogram per cubic metre kg m-3 
speed and velocity metre per second m s-1 
acceleration metre per second per second m s-2 
angular velocity radian per second rad s-1 
angular acceleration radian per second per second rad s-2 
force newton N                  kg m s-2 
pressure pascal Pa                 N m-2 
work and energy joule J                  N m 
power watt W                J s-1 
quantity of electric charge coulomb C                 A s 
potential difference volt V                 W A-1 
electric field strength volt per metre V m              N C-1 
electric resistance ohm Ω                 V A-1 
capacitance farad F                 A s V-1 
magnetic flux weber Wb              V s 
inductance henry H                 V s A-1 
magnetic field strength ampere per metre A m-1 
magnetic flux density tesla T                Wb m-2 
entropy joule per kelvin J K-1 
specific heat joule per kilogram kelvin J kg-1 K-1 
thermal conductivity watt per metre kelvin W m-1 K-1 

Appendices 
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B  Converting units 
 
 
B.1 Some conversion factors 
 
1 m  =  100 cm  =  1000 mm    1 nm  =  10-9 m  =  10 Å 
1 inch  =  2.54 cm     1 mile  =  1.61 km 
1 m3  =  1000 litres  =  106 cm3 
 
1 kg  =  1000 g     1 kg  =  2.205 lb 
 
1 atm  =  1.01 x 105 Pa  =  76 cm Hg 
 
1 m s-1  =  2.24 miles per hour   1 day  =  86 400 s 
 
360 degrees  =  2π radians    1 sphere  =  4π steradians 
 
1 eV   =  1.60 x 10-19 J    1 kW h  =  3.6 x 106 J 
 
 
B.1 Exercise: Converting units 
 
Convert the following: 
 
1(a).  20 cm  to  m     ______________     

1(b).  20 cm2  to  m2     ______________ 

1(c).   20 cm3  to  m3     ______________     

1(d).   20 cm  to  nm     ______________ 

1(e).   20 nm  to  m     ______________ 

 

2.     25 g  to  kg     ______________ 

3.     98 ns  to  s     ______________ 

4.     98 s  to  hr     ______________ 

5.     20 km hr-1  to  m s-1     ______________ 

6.     9 m3  to  litre     ______________ 

7.     19345 mm2  to  m2     ______________ 
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8.     4 m3  to  cm3     ______________ 

9.     0.5 kPa  to  Pa     ______________ 

10.    10 litre  to  m3     ______________ 

11.     340 atoms per mm3  to  atoms per m3     ______________ 

12.     102 people per km2  to  people per m2     ______________ 

 
13. What is the volume of a box that has the following dimensions: 
 2.5 cm  ×  20 mm  ×  0.03 m  ?      ______________ 
 
14. A container can hold  1.0 litre  of liquid, and the floor of the container has a 

surface area of  0.013 m2  
How high is the container?        ______________ 
 
If the floor of the container is circular what is its radius?        ______________ 
 
If the floor of the container is a square what is the length of a side? __________ 

 
15. A box has a volume of  240 mm3. The length of one side is  0.5 cm  and the length 

of a second side is  45 µm. 
The length of the third side is ______________. 

 
 
 
 

C  Some geometrical formulae 
 
 
Circle of radius r :    Circumference = 2πr  Area = π 2r  
 

Sphere of radius r :    Surface area = π 24 r   Volume = π 34
3

r  

 
Cylinder of radius r and height h :  Surface area = π π+2 2r rh  Volume = π 2r h  
 

Triangle of base a and altitude h :   Area = 1
2

ah  
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D  Tables and graphs 
 
 
Tables are a way of organising your data in a structured way while you are working in 
the laboratory as well as a way of presenting your data in a clear way when you write 
your report. A graph is an extremely useful way to both present readings of two 
variables that vary as a function of each other, as well as to analyse the data in order 
to extract further information. 
 
 
D.1 Deciding how many readings to take 
 
Say that you are recording readings of a quantity in an experiment that varies as a 
function of some other quantity. Since it is impossible to take an infinite number of 
readings, you will need to usually consider the following: 
 
(i) Over what range do you want to record data ?  The range is the difference between 
the largest and smallest reading in the series. 
(ii) How many readings between the smallest and largest reading do you want to record, 
and how will these readings be spaced apart ? 
 
Answering these questions before you start to take readings allows to plan your 
experiment properly and therefore use your time most effectively.  
 
Now consider the following situation and answer the question that follows. Some students 
are working in the laboratory on an experiment which requires a ball to be released to roll 
down a slope. It is convenient to release the ball from the following heights: 
 

100 mm ,   200 mm ,   300 mm ,   400 mm ,   500 mm ,   600 mm ,   700 mm ,   800 mm ,   900 mm 
 
If they had enough time, one strategy would be to release the ball from each of these 
heights. As they only have enough time to take measurements at four different heights, 
they have to decide on which four heights to choose. 
 
 
 
 
 
 
 
 
 

We should release the ball 
at heights 100 mm, 200 mm, 
300 mm  and  400 mm. 

No, we should release the ball 
at heights  200 mm ,  400 mm , 
600 mm  and  800 mm. 

I think that we should 
release the ball at heights 
100 mm , 400 mm , 600 mm  
and  900 mm. 

     A       B        C 
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With whom do you most closely agree?  Explain your choice carefully. 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
 
D.2 Guidelines for drawing up tables of data  
 
Here are a few guidelines when drawing up a table. 
 
 
 (i)  Plan your table, especially how many columns and rows you will need.  Try to 

anticipate what readings you will take.  Remember to include columns for the 
results of any calculations.  For example, you may sometimes need to calculate 
the average of a number of repeated readings.  

(ii)  Each table must have a title which should reflect your reason for recording the 
data.  If you use more than one table in your report, then number them Table 1, 
Table 2, etc. 

(iii) Each column must have a heading. Units should be included with  the heading and 
not written alongside each reading in the table. 

(iv)  Record your data carefully. Remember, for example, that writing 36.0 cm and  
36 cm is not the same.  In the first case you are recording a reading to the 
nearest millimetre and in the second case you only measured to the nearest 
centimetre.  

 
An example of a table: 
 
  Table 1: Data to determine the spring constant of a spring 
 

Applied force , F 
(N) 

Extension of spring , x 
(m) 

x 
(m) 

Spring constant 
k = F / x     (N m-1) 

10.0 4.11   4.12   4.11 4.11 2.43 

20.1 8.23   8.26   8.24 8.24 2.44 

29.8 12.95   12.95   12.92 12.94 2.30 

40.0 16.03   16.00   16.08 16.04 2.50 

 

Title 

Headings  
with units 

Data Calculations 
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D.3 Guidelines for plotting a graph 
 
(i)  Use a pencil. 
(ii)  Your graph must have a caption (or title) which should describe why you plotted 

the graph. 
(iii)  Each axis should be labelled with the name of the variable and the units. 
(iv)  Choose appropriate scales on the axes so that the graph will not be too small on 

the page, but will cover a fair portion of the page in each direction. 
(iv) Use  a   or ×  for the data points and not a     (blob). 
(v)  Decide whether or not each axis should start from zero (it is not always 

necessary to show the origin).    When do you need to draw the axes from zero? 
(vi) Axes should be marked in factors of 1, 2, 5, or these times a power of ten.  

Other factors such as 3 or 4 usually make your scales difficult to read between 
divisions. 

(vii) The line or curve that you draw through your data should be a reasonable “best 
fit” so as to model the trend of the experimental points.  Your graph should not 
join the points. 

 
 
An example of a straight line graph: 
 
 
 

mass   (kg) 

Extension 
     (m) 

0.00          0.020      0.040             0.060            0.080             0.100 

0.300 
 

0.200 

0.100 

Graph of extension of the spring versus mass attached in 
order to determine the spring constant of a spring. 

0.000 

 

 

 

 

 
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D.4 Interpretation of graphs 
 
One of the aims in investigating physical phenomena is to establish the relationship 
between the variables that are being measured.   For example, if we are investigating an 
object that is experiencing uniform acceleration  a  then we will find the function 
describing the relationship between velocity  v  and time  t  to be a straight line of the 
form   y  =  m x + c  (graph (a) below).  In this case  v  =  u  +  a t , where  u  is the initial 
velocity.  
 
On the other hand the relationship between the position  r  and the time t  will be of 
the form  = + +2y ax bx c ,  i.e. a parabola. (graph (b)).   In this example we will find  

= + + 21
2( ) or t r ut at , where ro  is the initial position. 

Some other functions that you will encounter are the hyperbola, which is of the form  
x y = c  (graph (c)) and the exponential function, =   bxy a e (graph (d)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that we say that “y is proportional to x”  if a graph of  y  versus  x  yields a straight 
line through the origin.  i.e.   y = m x + c  with  c = 0 .    Sometimes “directly proportional 
to”  is used which means the same thing.   However, if  c ≠ 0, then we cannot say that  “y  
is proportional to  x ”, but can only say that  “y is linearly related to x ”. 

 
 

 

 

 

 

 

 x 

y (a) 

Straight line 
 
y  =  m x + c   

 

 

 

 

 
 

 

 x 

y 
(d) 

Exponential 
 

=   bxy a e  

 

 

 

 

 
 

 

 x 

y 
(c) 

Hyperbola 
 
x y  =  c   

 

 

 

 

 

 

 

 x 

y (b) 

Parabola 
 

= + +2       y a x b x c  
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D.5 Linearising equations 
 
It is clear that the straight line is the simplest function to analyse.   It is much more 
difficult to be sure that the shape of a particular graph is indeed a parabola, a 
hyperbola, a log, an exponential, etc. and then to find the constants that will allow us to 
write an equation relating the variables.   For this reason we try to plot the data in such 
a form that a straight line is obtained,  e.g. the square / cube / square root / log  of one 
variable versus the other.   We can then use this “linearised” plot to determine the 
dependence of the variables on each other. 
 
Say that you are doing an experiment where you are measuring a voltage V  as a function 
of a time t.  We can then call t  the independent variable and V  the dependent variable. 
Usually we would plot the data with t  along the x-axis and V  along the y-axis.  Listed in 
the table below are different ways in which  V  and t  might be related. The symbols p  
and q  correspond to other quantities that are constant in the experiment.  
 
Linearise each of these equations and complete the table. In other words, write each 
equation in the form y  =  m x + c  where  V  is “y ” , and identify the form of the  
x-variable (involving t  only), the slope m  and y-intercept c. 
 
 

Equation in 
original form 

Equation in the 
form  y  =  m x + c 

A plot of  
V  versus  ?  
will yield a 

straight line 

m 
( slope ) 

c 
( y -intercept ) 

=
Vp
t

 =V pt  V  versus t p 0 

+ =
qV p
t

 = −
qV p
t

 V  versus 1
t

 q −p  

= +22 6Vq t   V  versus   

= +
V p q
t

  V  versus   

=2tV p   V  versus   

= −3V t q   V  versus   

=V pt   V  versus   
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D.6 Straight line graphs: Example 1 
 
 
A group of students have completed three different experiments and plotted their data 
in each case.  They expect that a straight line should be used to model the trend of the 
data in all three experiments. On each graph, draw the straight line that you think best 
fits the trend of data. 
 
 
                  (a)                                                     (b)                                             (c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Explain in words carefully what criteria you have used to draw your lines above. 
 
 
 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 
 
_________________________________________________________________ 

 
 

 

 

 
 

 

 h 

d 

 

 

 

 

 

 

 

 h 

d 

 
 

 

 

 
 

 

 q 

w 
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D.7 Straight line graphs: Example 2 
 
An experiment was completed and the data were processed and then plotted as shown 
below.  Complete the analysis by using this graph to establish the relationship between 
the variables  k  and  s , i.e. write down an equation that relates  k  and  s . The units of  
k  are  N m-1 and  s  is in metres. 
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D.8 Straight line graphs: Example 3 
 
In an experiment the volume of a gas is measured as a function of the temperature of 
the gas.   The data below are obtained. 
 

Volume V    (m3) : 3.68 × 10-3 4.47 × 10-3 5.97 × 10-3 8.85 × 10-3 12.20 × 10-3 
Temperature T   ( °C ) : - 43 0 100 280 490 
 
 (a) Using the graph paper provided overleaf, plot the data, fit a straight line to the 

data and determine the slope of this line.    
What is the relationship between volume and temperature?  (i.e. establish a 
mathematical formula that describes the relationship between  V  and  T ) 

 
___________________________________________________________________ 
 
___________________________________________________________________ 
 
___________________________________________________________________ 
 
(b) From your graph determine:   
 
(i)    the volume at a temperature of  50 °C :   __________________________________ 
 
(ii)   the temperature at which the volume will be zero : ___________________________ 
 
(c) Use your mathematical formula determined in (a) to calculate: 
 
(i)    the volume at a temperature of  50 °C :   __________________________________ 
 
(ii)   the temperature at which the volume will be zero : ___________________________ 
 
Compare the answers that you get from the graph and from your formula. 
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E  Planning your experiment 
 
 
There are a number of stages to an experiment, each requiring you to think about 
different things.   
 
Stage 1.  Identify the problem that needs solving, or the question that needs 

answering. What is the aim of the experiment? Think about what results 
you need in order to make a valid conclusion. 

Stage 2.  Plan your experiment carefully (see notes below). 
Stage 3.  Do the experiment and complete the analysis of the data. 
Stage 4.  Formulate your conclusions to the experiment based your results. 
Stage 5. Communicate your experiment in the form of a report. 
 
One should never rush into taking readings without careful planning. Of course, it is a 
good thing to familiarise yourself with the apparatus before starting, but before doing 
serious measurements sit down and plan carefully exactly what you are going to do. In 
most cases you will be working with one or two other students in the laboratory. It is 
important that you discuss things with them. Listen to each other’s opinions and talk to 
a tutor, if necessary.   
 
Some important considerations are: 
 

• What are the main steps that I need to carry out? A flow chart is often useful. 
• What apparatus do I need and how does it work?  
• Are there any precautions that I need to take? 
• How much time do I have for the experiment? 
 
• What variables are involved and what exactly must I measure?  
• How many measurements do I need to make? 
• What tables must I draw up? Detailed tables should be drawn up before taking 

readings as the tables will serve as a guide. 
 
• What are the main steps in the analysis? Again, a flow chart is often useful. 
• Which graphs (if any) will I need to plot? 
• What influences will affect the measurements? Make a list beforehand and add 

to it as you proceed.   
 
After the experiment, reflect on how well your plan worked, noting both successful 
aspects and failures of the plan. Keep in mind the structure of your report that you will 
have to write.  Remember that if, while writing the report, you suddenly remember that 
you did not record something important while doing the experiment, it will be too late ! 
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F   The laboratory report 
 
 
The purpose of a laboratory report is to communicate the aim, process and outcome of 
an investigation to an outside audience.   It is a record of your direct (“hands-on”) 
experience in the laboratory.   In most cases, a scientific investigation is considered to 
be incomplete without a report.   By synthesising (putting together) the different 
aspects of your laboratory experience in a structured and coherent report, the essence 
of your investigation becomes clearer in your own mind.   In the process, you develop 
your skills of reasoning and ability to communicate in writing. 
 
There are many acceptable ways of presenting a scientific laboratory report, but, 
almost all reports will include the components outlined below. 
 
 
F.1  Components of a laboratory report 
 
Title:  
  
This will include the author’s name (your name), your partner’s names, the course code, 
the date of the experiment and a suitable title of the report. 
 
The title must be short but factual and descriptive.  It must summarise the major 
aspects to be dealt with in the report.   The key words will often come from the 
laboratory task that has been set and you need to identify these. These words help 
clarify the requirements of the task and also alert the reader as to what the report is 
about. 
 
Introduction and aim: 
 
The introduction puts the report into perspective by giving the reader relevant 
background information about the phenomenon being investigated.   This is in order to 
prepare the reader for what he or she is about to read.   This background may include 
some historical information or developments, earlier experimental work, the theory or 
law governing the phenomenon being investigated.   These introductory remarks must be 
kept brief to avoid obscuring the main point of the investigation.   Sometimes, you will 
be asked to carry out an investigation in order to dispute or challenge a claim that has 
been made against a generally accepted scientific phenomenon.   If that is the case, 
state the currently held theory and the claim that has been made.  Your introduction 
must state the aim of your investigation. The integration of the aim into the 
introduction allows for the smooth transition from general information to the specific 
goal of the investigation. 
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Apparatus and method: 
 
Present a clear, concise and step-by-step description of the apparatus, techniques and 
procedures used.   List and name the apparatus with brief descriptions of the main 
parts as well as the functions thereof.   A neatly sketched and labelled diagram of the 
apparatus is essential and can save you paragraphs of tedious written descriptions.  
Briefly describe the procedures that you followed in the investigation.  Wherever 
appropriate, give a reason for each step you took in a procedure.  Sometimes more than 
one section is required for this material. For example, if two techniques were used,  i.e. 
Technique No.1, Technique No.2, etc.  then a brief explanation of each of these 
techniques must be given.   Do not omit any significant steps.   A description of method 
helps you to recall the problems that were associated with experimental procedures 
such as precision of instruments, strengths and weaknesses of certain techniques, 
recording of observations etc.  This will help you when you have to summarise your 
conclusions and recommendations at the end of your report. 
 
Data and results: 
 
The main part of this section are your tables of results and graphs.   You must have a 
consistent way of recording your observations and calculations.   Data are normally 
summarised and displayed in tables and graphs.  Each table and graph is usually 
referenced by a number and should be numbered in sequence, e.g. Table 1, Table 2, 
Figure 1, Figure 2 etc.   Each table is accompanied by a title and each graph by a caption 
which describes the purpose for which it has been presented. (e.g. “Table 1: 
Measurements of the width of the cylinder” and “Graph 3: To determine the viscosity 
of the sample of oil”).    
 
Tables and figures must be referred to in the text, e.g. “The apparatus was arranged as 
shown in Figure 1”; “The data gathered were recorded as shown in Table 1 below” or 
“The data in Table 1 were used to plot the graphs in Figure 1, 2 and 3.”   These brief 
statements help to link the different parts of the report.  This section does not contain 
your judgement of the data.   It is a straightforward presentation of your readings or 
measurements. 
 
Analysis, interpretation and discussion: 
 
In this section examine and extract important aspects of the data and use these to 
explain various relationships or determine your measurement results.  For example, 
what is the shape of your graph and what does it suggest in terms of the relationship 
between the variables?   If it is a straight line, what is the value of the slope?  
Remember to quote your results with the appropriate significant figures and the 
corresponding uncertainties.  How does an expected value compare with your own and 
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what reasons can you give for this?  You may give tentative explanations for your data 
but be careful not to mix facts with opinions. 
 
Conclusion and recommendations:  
 
This is normally a section in which you say what the investigation has shown and to what 
extent the problem or claim stated in the introduction has been resolved.   Remember 
that any conclusions must be supported by evidence from your data.   Always quote any 
final results, together with their uncertainties in your conclusion. Avoid making vague 
statements such as “This was a successful experiment.”  You may also need to discuss 
sources of uncertainty and any improvements that could be made to the apparatus (and 
measurements). Again, avoid meaningless phrases such as “it was caused by human 
error.” 
 
Writing a report allows you to reflect critically on the whole experiment and check your 
understanding of the purpose of the investigation as well as produce an accurate record 
of it.   Note that an physics practical is not a set of procedures designed to reproduce 
some “correct” answer.  It is a problem that has been posed that requires an 
experimental solution which may include making measurements, implementing different 
procedures and techniques and then the  formulation of a suitable report. 
 
 
 
 
 
 
 
 
 
 
F.2  Scientific style 
 
Very often, in reports of this kind, writers prefer to use the passive construction or 
impersonal style to report procedures followed in conducting experiments, by writing, 
for example: 
 
“Five measurements were taken,”    instead of         “I / We took five measurements.”    
 
Both styles are acceptable. As you do most of your practicals in groups, you are likely to 
visualise what you did as a group and report it as a group activity in which case the 
personal pronoun “we” is appropriate. However, once you have chosen a style of writing, 
then you must use it throughout your report and not switch back and forth between the 
two.   
 

Whether you graduate and leave with a B.Sc. to work in 
industry or whether you stay on at university to become a post-
graduate student, you will find that report writing will remain as 
one of the most important activities in your career. 
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F.3 Marking the report 
 
When marking your reports a lot of feedback will be given that is relevant to your 
individual report.   More feedback of a general nature is given at a formal session to the 
whole class.   All the feedback you get is intended to help you consider ways of 
improving your report.   Marks for the report will be given for your data collection and 
processing (which includes your method, tables, graphs and calculations) as well as the 
overall coherence of the report as a piece of writing.  The important thing is that you 
understand the mark that you receive and speak to someone about it.  The value of this 
process cannot be underestimated. 
 
 
F.4 The laboratory report checklist 

 
When preparing your report, use the following checklist to see whether or not you have 
included everything correctly. 
 
Introduction and aim: 
 Have I written my name, my partners’ names and my course at the top of my report? 
 Does my report have a title and a date? 
 Does my aim clearly outline the purpose(s) of my experiment? 
 Have I clearly outlined the theory involved in my investigation? 
 
Apparatus: 
 Have I listed all the apparatus (with a diagram)? 
 Is my diagram labelled and does it have a heading ? 
 
Method: 
 Have I described how I went about my experiment (i.e. what I did)? 
 Have I clearly described the significant steps in the procedure  (including the 

analysis on my data)? 
 Have I explained why certain aspects of the procedure were undertaken? 
 
Data / Results: 
 Have I recorded all relevant measurements? 
 Do all my tables have titles? 
 Do all the columns in my tables have headings with units? 
 Are all my data recorded correctly? 
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Graphs: 
 Does my graph have a caption which should state why I plotted my graph? 
 Have I used a decent scale so my graph fills the whole page? 
 Have I labelled the axes , including the correct units? 
 Have I used  a    for the data points and not a     (blob) 
 Have I used pencil for my graph (and not pen)? 
 Have I drawn the best straight line through my data points?   (if necessary) 
 Have I shown how I got the slope from my line?    (if necessary) 
 Have I recorded the slope and intercept (with uncertainties) correctly? 
 
Analysis and discussion: 
 Have I described and explained important relationships revealed by the data (and 

graphs)? 
 Have I clearly set out my calculations? 
 Are my calculations in the correct section of the report? 
 Have I used SI units throughout? 
 Have I shown how I calculated the uncertainties in the results? 
 Is my final result presented correctly with the appropriate significant figures? 
 Have I described and explained the results of my calculations? 
 
Conclusion and recommendations: 
 Does my conclusion refer back to my aims for doing the experiment? 
 Have I fulfilled all my aims for doing the experiment? 
 Have I quoted all my results with their uncertainties? 
 Have I recommended how this experiment may be improved? 
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G  Probability density functions 
 
 
As part of the measurement process, we describe our knowledge about a measurand 
using probability density functions. At the beginning of the measurement process, new 
data are combined with previous information about the measurand to form an updated 
state of knowledge from which inferences about the measurand are made. The formal 
mathematics used to allow these inferences are probability density functions (pdfs) 
with the (true) value of the measurand as the independent variable. Before we start the 
measurement we use a pdf to describe everything we know about the measurand. This 
pdf is sometimes referred to as the “prior” pdf. The data themselves are drawn or 
“sampled” from a pdf called the “likelihood”. The combination of the “prior” with the 
“likelihood” results in a final or “posterior” pdf. This combining of probabilistic 
knowledge is governed by Bayes Theorem. The final pdf describes all our knowledge 
about the measurand at the end of the measurement process.  
 
All this might sound confusing to you and in all the cases that you will have to deal with 
in the laboratory, you can assume that your prior knowledge is flat and over a much 
larger range than the “likelihood”. Therefore the only pdf that you need to focus on is 
the “final” pdf (i.e. the pdf that describes your state of knowledge after the 
measurement. In most cases we will just refer to “the pdf”, with the understanding that 
there is in fact more to it. In future courses you might need to have a deeper 
understanding about all this, therefore it is useful to see the big picture. 
 
A probability density function therefore is a function (a distribution) which describes 
the probability that the measurand lies between two values. Since the value of a 
measurand may take on any value, a pdf is a continuous function, and hence we need to 
refer to “probability density.” On the other hand “probability” is usually ascribed to a 
discrete event (such as the chance of rolling a six with a dice).  
 
There are three types of pdf that will be useful in most situations: a uniform or 
rectangular pdf, a triangular pdf and a Gaussian pdf. There are many others, such as a 
trapezoidal pdf and the “student-t” distribution.   
 
Have a look at the diagram below showing a triangular pdf. Clearly the position of the 
centre of the triangular pdf is the obvious choice for the best approximation of the 
value of the measurand. The area under the entire triangle must be 1 since the value 
of the measurand must be inside the interval spanned by the base of the triangle.  This 
of course does not tell us how “fat” or “thin” the triangle is.  Therefore  we need a 
second number to tell us how spread out the triangular pdf is.   Mathematically a 
function such as this can be summarised in terms of quantities called “moments”, each 
of which tells us something about the shape of the distribution.  For example, the 
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second moment gives a measure of the width while the third moment tells us how 
skewed the distribution is.  How do we calculate moments?   
 
In the diagram below, each horizontal line with arrowheads shows the difference 
between the central value of the pdf (our “best approximation”) and the actual value of 
the pdf.  If we calculate the difference for each possible point on the pdf and then add 
all the differences (both left and right) we will have calculated the first moment of the 
pdf.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It’s that simple!  The only problem of course is that there are an infinite number of 
points to consider so that means homework for the rest of your life.  Fortunately there 
is a mathematical technique (called integration) that allows us to do this quite easily 
once we know a few rules which you will learn about later on in your physics or 
mathematics course.  
 
Although the first moment also seems to tell us about the width of the pdf there is a 
complication. Without doing any detailed calculations what do you think the value of the 
first moment will be?  Think! 
 
 
 
 
 
 
For this reason, and others, we usually use the second moment to provide us with a 
measure of how “wide” the pdf is as measured from the centre.  If we first square each 
individual difference and then add up the squares of the differences we will have 
calculated the second moment.  (To obtain the third moment we first raise each 
difference to the power of 3  and then add up all the cubed differences.) 

Each difference = 
value of best approx. –  
actual value of the pdf  

 

    0.0          1.0            2.0           3.0           4.0             5.0              

 

0.0 

probability 
density, p(m) 
 
      (kg-1) 
 
 

0.4 

0.2 

mass, m  
(kg) 

 
Best approximation 

Can you see that the result of this calculation will be zero? 
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The second moment is also called the variance. Since we have squared all the 
differences we need to take the square root to get a quantity that has the same units 
as the measurand.  Thus, the square root of the second moment characterises the 
width of the pdf for us.   
 
 
G.1 The triangular pdf 
 
Consider a triangular pdf p(x) for measurand x as shown below which lies on an interval 
a in width.  Note the maximum height of the pdf must be 2/a.  Why is this? 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
If we carry out the calculation for the second moment we will find that it has the value 
a2/24.  To find the standard uncertainty we take the square root which results in the value  

24a   or equivalently 2 6a .  The standard uncertainty for a triangular pdf is then 
 

(half of the width of the interval)
6

, 

 
which is approximately 0.204 of the width of the interval a.  In the example above the 
interval between the heavy dotted lines is twice the standard uncertainty u.   
 

0 

a 

x  

 

 

 p(x) 
 
 

2/a 

2u= 6a  

b 

1 2 
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We now ask ourselves how probable it is that the measurand does indeed lie on the 
interval between the heavy dotted lines, i.e. how much probability does the shaded area 
represent? One way of calculating this area is by calculating the area of each of the 
two unshaded triangles at the sides (marked 1 and 2) and then subtracting this area 
from 1, the total area under the full pdf.   
 
Since the two triangles have the same area we only need to calculate one in detail.  
Using simple ratios we can see that the height of each small triangle is 1.184,  
i.e. b = 1.184 a  
 
 
 
 
 
 
 
Then the area of triangle 1  (= area of triangle 2)  =  1

2 (0.296 )(1.184 )a a  = 0.1752 
 
Hence, the area of the shaded part under the pdf = 1 - 2 (0.175)  =  0.65 
 
 
 
 
 
 
 
 
We interpret the area that we have calculated (0.65) as how confident we are that 
the value of the measurand lies within one standard uncertainty of the best 
approximation. We call this value, expressed as a percentage, the coverage probability. 
For the triangular distribution the probability that the measurand lies within one 
standard uncertainty of the best approximation is 65%.   
 
 

Can you see how to get this value?  
 
 

What does this mean? 
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G.2 The rectangular pdf  
 
Consider a rectangular pdf p(x) for measurand x as shown below which lies on an 
interval a in width. Note the maximum height of the pdf is now 1/a.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we carry out the calculation for the second moment we will find that it has the value 
a2/12.  To find the standard uncertainty we take the square root which results in the 
value  12a   or equivalently 2 3a .   
 
The standard uncertainty u for a reactangular pdf is given by 
 

(half of the width of the interval)
3

, 

 
which is approximately 0.289 of the width of the interval a.  In the figure below, the 
interval between the heavy dotted lines is twice the standard uncertainty u.  Again we 
need to know how much probability the shaded area represents.  
 
The area of the shaded rectangle = 2(0.289 )(1 )a a  = 0.58. Hence, for the rectangular 
distribution the probability that the measurand lies within one standard uncertainty of 
the best approximation is 58%.   
 
 

0 

a 

x  

 

 

 p(x) 
 
 

1/a 

2u = 3a  
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G.3 The Gaussian pdf 
 

The general equation for a Gaussian pdf is µ
σσ π

 −
= − 

 

2

2
1 ( )( ) exp

22
xp x .  You can see 

that the Gaussian pdf is described by two parameters, the so-called expectation value  
µ  (“µ “ = greek symbol “mu”, not to be confused with u , the symbol for the standard 
uncertainty), and the standard deviation  σ  (“σ “ = greek symbol “sigma”).  The 
expectation value µ  is the value for which the Gaussian pdf is a maximum. The standard 
deviation σ  describes the width of the Gaussian pdf (and is again given by the second 
moment of the distribution). It turns out that σ  may also be determined by considering 
where the height of the pdf drops to  1 e  = 0.61  =  61 % of its maximum value.  Half 
of this width is equal to the standard deviation σ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you are using a Gaussian pdf to describe your knowledge about a measurand x  based 
on data that are dispersed randomly about µ , then the best approximation of µ  is given 

by the mean x , where  
=

= ∑
1

1 N

i
i

x x
N

,   and the standard uncertainty of x  (the best 

approximation of σ ), is given by the experimental standard deviation of the mean 

( )s x , where 
=

= −
− ∑ 2

1

1( ) ( )
( 1)

N

i
i

s x x x
N N

  and  N  is the number of readings there are 

in the set. 
 
For the Gaussian distribution the probability that the measurand lies within one 
standard uncertainty of the best approximation is 68%.  

µ µ + σ µ − σ 

b
e

= 0.61 b 

2σ 

The shaded area 
between µ − σ  and   
µ + σ  = 0.68. 

0 
x  

 

 p(x) 
 
 b 
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H  Expanded uncertainty 
 

 
 
Say that a measurement was made in order to determine the mass m of an object.  
The pdf of the result is shown below from which it may be seen that the best 
approximation of the mass m  is 83.50 g, with a standard uncertainty of 0.12 g. This 
defines an interval 83.50 ±  0.12 g  within which we are 58% confident that that the 
mass of the object will lie.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the standard uncertainty is a universal parameter which is useful for 
characterising the quality of a measurement or of the measurement value, there are 
many situations where it is useful to increase your level of confidence in the 
measurement result.  
 
If you increase the width of the uncertainty interval to encompass a larger fraction of 
the area under the pdf, then you will be more confident that the value of the 
measurand falls within the interval. Remember that you can infer from the rectangular 
pdf shown above that you are 100 % confident that the value of the mass lies between 
83.30 g and 83.70 g. 
 
The coverage probability in a result is increased by multiplying the standard uncertainty 
u  by a constant, called the  coverage factor k  which results in a so-called expanded 
uncertainty U .  In other words  U  =  k u . 
 
The coverage probability associated with the interval defined by y ± U  therefore 
depends on the value of k.  Some examples are given below: 
 

  83.30    83.40     83.50      83.60    83.70        
m (g) 

5.0 
P(m) 
(g-1) 

2.5 

0 

Area = 0.58 

m = 83.50 ± 0.12 g
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If a Gaussian pdf was used, then: 
(a) For k = 1, y ± k u  defines a 68 % coverage probability 
(b) For k = 2, y ± k u  defines a 95 % coverage probability 
(c) For k = 3, y ± k u  defines a 99 % coverage probability 
 
If a rectangular pdf was used to model the measurement, then: 
(a) For k = 1, y ± k u  defines a 58 % coverage probability 
(b) For k = 1.65, y ± k u  defines a 95 % coverage probability 
(c) For k = 1.73 ( 3 ), y ± k u  defines a 100 % coverage probability 
 
If a triangular pdf was used to model the measurement, then:   
(a) For k = 1, y ± k u  defines a 65 % coverage probability 
(b) For k = 1.81, y ± k u  defines a 95 % coverage probability 
(c) For k = 2.45 ( 6  ), y ± k u  defines a 100 % coverage probability 
 
For example, consider the measurement introduced above. 
 
 
 
 
 
 
 
 
 
 
 
 
The result on the left hand side may be described as “m = (83.50 ± 0.12) g, where the 
number following the symbol ± is the numerical value of the standard uncertainty  
u  = 0.12 g and defines an interval estimated to have a coverage probability of 58 percent.” 
 
The result on the right hand side may be described as “m = ( 83.50 ± 0.19) g, where the 
number following the symbol ± is the numerical value of an expanded uncertainty U = k u   

with U  determined from a standard uncertainty u  = 0.12 g and a coverage factor  
k = 1.65, and defines an interval estimated to have a coverage probability of 95 percent.”  
 
We are 58 % confident that the value of the mass lies between 83.38 g and 83.62 g. 
We are 95 % confident that the value of the mass lies between 83.31 g and 83.69 g. 
We are 100 % confident that the value of the mass lies between 83.30 g and 83.70 g. 
 
Note that by introducing an expanded uncertainty and coverage factor k  > 1, we are not 
affecting the result of the measurement. We are only changing the way that we present 
the result.  

  83.30    83.40     83.50      83.60    83.70        
m (g) 
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m (g) 
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I  Using the statistics functions on your calculator 
 
 
These instructions were written for a SHARP calculator. If you have a Casio (or another 
brand), then things will be similar. 
 
First put your calculator into “stat” mode.  
 
Let us say that we want to calculate the mean and experimental standard deviation of 
the mean for the following 10 readings: 
 

124.0 145.0 136.0 120.0 155.0 143.0 133.0 137.0 128.0 150.0    cm 
 
You need to enter each reading followed by the  DATA  button: 
 
124    DATA     (the display will show n = 1) 
145    DATA     (the display will show n = 2) 
136    DATA     (the display will show n = 3) 
. 
. 
150    DATA     (the display will show n = 10) 
 

After you have entered all the readings, the mean  
=

= ∑
1

1 N

i
i

x x
N

 is given by the x  button  

 

and the experimental standard deviation  
=

= −
− ∑ 2

1

1( ) ( )
1

N

i
i

s x x x
N

 is given by the s  

(or sx ) button.  Note that there is no button to get the experimental standard deviation 
of the mean ( )s x directly.   You need to physically divide your value for ( )s x   by   N . 
 
For the data given above:  x   =  137.1 cm 

( )s x   =   11.3 cm 

( )s x  = ( )s x
N

   =   11.3 / 10   =  3.4 cm 

 
The final result for the experiment can then be written:  The best estimate of x is 
137.1 cm with  a standard uncertainty of 3.4 cm (68% coverage probability). 
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J  Using the vernier callipers and  
micrometer screw gauge 

 
 
See also     http://www.phy.uct.ac.za/courses/c1lab/ 

The precision of length measurements may be increased by using a device that uses a 
sliding vernier scale. Two such instruments that are based on a vernier scale which you 
will use in the laboratory to measure lengths of objects are the vernier callipers and the 
micrometer screw gauge. These instruments have a main scale (in millimetres) and a 
sliding or rotating vernier scale. In the figure below, the vernier scale (below) is divided 
into 10 equal divisions and thus the least count of the instrument is 0.1 mm. Both the main 
scale and the vernier scale readings are taken into account while making a measurement. 
The main scale reading is the first reading on the main scale immediately to the left of 
the zero of the vernier scale (3 mm), while the vernier scale reading is the mark on the 
vernier scale which exactly coincides with a mark on the main scale (0.7 mm). The reading 
is therefore 3.7 mm. 

 
 
 

 

 
 

J.1 The vernier callipers  

The vernier callipers found in the UCT Physics laboratory incorporates a main scale and 
a sliding vernier scale which allows readings to the nearest 0.02 mm. This instrument 
may be used to measure outer dimensions of objects (using the main jaws), inside 
dimensions (using the smaller jaws at the top), and depths (using the stem).  

To measure outer dimensions of an object, the object is placed between the jaws, which 
are then moved together until they secure the object. The screw clamp may then be 
tightened to ensure that the reading does not change while the scale is being read. The 
first significant figures are read immediately to the left of the zero of the vernier 
scale and the remaining digits are taken as the vernier scale division that lines up with 
any main scale division. 
 
 



©  Department of Physics, University of Cape Town        137 
    
 

 

 

 

 

 

 

 

 

 

Some examples:  
  

 

 

 

In the figure above, the first significant figures are taken as the main scale reading to 
the left of the vernier zero, i.e. 21 mm. The remaining two digits are taken from the 
vernier scale reading that lines up with any main scale reading, i.e. 75 on the vernier 
scale. Thus the reading is 21.75 mm.  
   

 

 

 

 

In the figure above, the first significant figures are taken as the main scale reading to 
the left of the vernier zero, i.e. 63 mm. The remaining two digits are taken from the 
vernier scale reading that lines up with any main scale reading, i.e. 20 on the vernier 
scale. Note that the zero must be included because the scale can differentiate between 
twentieths of a millimetre. Therefore the reading is 63.20 mm. 

jaws for measuring inner dimensions 

jaws for measuring outer dimensions 

main scale 

vernier scale 

screw clamp 

0     1      2     3      4     5      6     7      8     9     10 

2                         3                         4                         5    cm 
                                                                                        

0     1      2     3      4     5      6     7      8     9    10 

5                         6                         7                         8    cm 
                                                                                        



138                                                                              ©  Department of Physics, University of Cape Town
                       
 

J.2  The micrometer screw gauge  

The micrometer screw gauge is used to measure even smaller dimensions than the vernier 
callipers. The micrometer screw gauge also uses an auxiliary scale (measuring hundredths 
of a millimetre) which is marked on a rotary thimble. Basically it is a screw with an 
accurately constant pitch (the amount by which the thimble moves forward or backward 
for one complete revolution).  The micrometers in our laboratory have a pitch of 0.50 mm 
(two full turns are required to close the jaws by 1.00 mm).  The rotating thimble is 
subdivided into 50 equal divisions.  The thimble passes through a frame that carries a 
millimetre scale graduated to 0.5 mm.  The jaws can be adjusted by rotating the thimble 
using the small ratchet knob.  This includes a friction “clutch” which prevents too much 
tension being applied.  The thimble must be rotated through two revolutions to open the 
jaws by 1 mm.  
   

 

 

 

 

 

 

 

In order to measure an object, the object is placed between the jaws and the thimble is 
rotated using the ratchet until the object is secured. Note that the ratchet knob must 
be used to secure the object firmly between the jaws, otherwise the instrument could 
be damaged or give an inconsistent reading. The manufacturer recommends 3 clicks of 
the ratchet before taking the reading. The lock may be used to ensure that the thimble 
does not rotate while you take the reading. The first significant figure is taken from 
the last graduation showing on the sleeve directly to the left of the revolving thimble. 
Note that an additional half scale division (0.5 mm) must be included if the mark below 
the main scale is visible between the thimble and the main scale division on the sleeve. 
The remaining two significant figures (hundredths of a millimetre) are taken directly 
from the thimble opposite the main scale.  

anvil spindle 
sleeve (with main scale) 

ratchet  
knob 

frame 

thimble (with rotating vernier scale) 
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Some examples:  

 

 

 
   

In the figure above, the last graduation visible to the left of the thimble is 5 mm and 
the thimble lines up with the main scale at 24 hundredths of a millimetre (0.24 mm); 
therefore the reading is 5.24 mm. 

 

 

  

 

In the figure above, the last graduation visible to the left of the thimble is 5.5 mm; 
therefore the reading is 5.5 mm plus the thimble reading of 0.24 mm,  giving 5.74 mm. 

 

 

 

 

Here the readings are 2.47 mm (left) and 3.53 mm (right). 

 

J.3 Taking a zero reading  

Whenever you use a vernier callipers or a micrometer screw gauge you must always take 
a “zero reading”  i.e. a reading with the instrument closed.  This is because when you 
close your callipers, you will see that very often (not always) it does not read zero. Only 
then open the jaws and place the object to be measured firmly between the jaws and 
take the “open” reading. Your actual measurement will then be the difference between 
your “open” reading and your “zero” reading.   



140                                                                              ©  Department of Physics, University of Cape Town
                       
 

J.4  Recording the result of your vernier measurement 

 

 

 

 

 

With reference to the figure above, say that you decide that the best estimate of the 
open reading  l1  is 21.75 mm. 

What about the standard uncertainty u(l1) in this reading? 

Using a triangular probability density function, you might decide that you are 100% sure 
that the reading is not 21.80 mm and 100% sure that the reading is not 21.70 mm.    

Then      −
=

1
2

1
(21.80 21.70)( )

6
u l     mm  = 0.0204 mm. 

When you remove the object and read the vernier callipers with the jaws closed, you 
might decide that the best estimate of the “closed” reading   l0 = 0.05 mm with 
standard uncertainty u(l 0) = 0.0204 mm. 

What should you then record as the best approximation of the length of the object you 
are measuring? 

The best approximation of the length  l  =   l 1 - l0   =  21.75 - 0.05  =   21.70 mm. 

with a standard uncertainty  = +2 2
1 0( ) ( ) ( )u l u l u l    = +2 2(0.0204) (0.0204)     

=  0.0288 mm 

Therefore  l  =  21.700 ± 0.029 mm (65% coverage probability).  

  

0     1     2      3     4      5     6      7     8      9    10 

2                         3                         4                         5    cm 
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