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FOREWORD 

Welcome to the Physics Course I Laboratory 

As a science or engineering graduate, it will be assumed by your future employer that you have certain skills.  

These will include: 

 problem solving skills; 

 the ability to engage with apparatus that you may not have seen before; 

 the ability to plan and execute an experiment or some type of investigation; 

 the ability to collect, analyse and interpret data, and 

 the ability to communicate and present your findings either orally or in the form of a written 

report. 

Developing skills in scientific measurement 

Physics is about modelling and understanding the phenomena of nature, and physics experiments are 

concerned with the creation of new knowledge through measurement. These measurements are used to 

formulate new physics theories, or test existing theories. However, there are many factors that influence the 

result of an experiment, for example factors associated with the calibration of the apparatus you are using, 

how you used the apparatus, environmental effects, etc. Each of these factors work against you getting a 

“perfect” result in your experiment.  

During this course you will learn how to report a scientific measurement result. In the same way that there 

are mathematical tools of physics such as coordinate systems, vectors, force diagrams, etc. which are 

universally accepted ways of communicating physics models, there are clear guidelines regarding the way in 

which scientific measurement results should be reported. These have been agreed upon by all the 

international physics, chemistry and other science organizations, and are methods you will be taught in this 

course. The way that you learn to analyze your experiments in this course is the same way in which scientists 

all around the world do so. For example, you will learn the scientific methods of numerically estimating 

uncertainties in an experiment in a realistic way. “Uncertainty” in a science measurement is a parameter (a 

number) that comes from analyzing all the factors that you think have influenced your experiment. This 

parameter, together with the best approximation of the measured, form part of the measurement result. You 

will see in this course that the measurement result is a compact way of summarizing all the knowledge that 

you have about a measurand. A measurement result is a statement of probabilities. We can never know the 

true value of a measurand: we can only make statements about our knowledge about the interval in which 

the measurand exists. 

Furthermore, since the nature of the enterprise of physics is about the creation of new knowledge, the more 

“careful” you are in a physics experiment, the smaller your uncertainty should be. Therefore, scientists design 

and carry out experiments so as to have as small an uncertainty as is realistically possible. The smaller your 

uncertainty is, the better knowledge you have about a particular measurand. Of course, it is impossible to 

make a measurement which has zero uncertainty.  

Having an interval as the result of an experiment, and not a single point, also allows us to compare two 

measurement results with each other, or with a theoretical (calculated) value. For example, we can say that 

the two measurement results  3.4 ± 0.6  J  and 3.7 ± 0.4  J  agree with each other, while the measurement  

10.41 ± 0.07  m s-2 does not agree with the accepted value for Cape Town of 9.79 ± 0.01 m s-2.  

Safe laboratory practice 

The Physics Course I Laboratory is a safe teaching laboratory and we expect you to approach all activities in 

the laboratory with a “safety first” attitude – this means that the first thing you consider upon entering the 

laboratory is the safety of yourself, the other people in your class, the staff and equipment, and also safety is 

a priority and important to you.  
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You can take these safety skills to whichever scientific field you may venture. Here are three basic rules of the 

laboratory: 

 You must wear enclosed and sturdy shoes, and bare feet and/or open shoes (e.g. flip-flops) are not 

allowed in the laboratory. This rule minimises the risk of you injuring your feet, such as due to broken 

glass or equipment dropped from the benches. 

 No eating is allowed in the laboratory and drinking is only allowed from closed containers. It is safer 

to take a short break from the laboratory if you feel the need for refreshment. Occasionally hazardous 

substances such as radioactive sources are used in the laboratory, therefore this rule minimises the 

risk of you injuring yourself due to an exposure to a hazardous substance. It also minimises damage to 

equipment, such as the damage of electrical equipment due to water contact, and maintains the 

laboratory as a clean space to work in. 

 Behave professionally in the laboratory and be considerate and respectful of students in nearby 

groups. More workplace accidents happen when people fool around than when they carry out their 

normal work. 

A useful reference to read more about laboratory practice is Etiquette in the Laboratory (1976), American 

Journal of Physics, 7 (44). See http://scitation.aip.org/content/aapt/journal/ajp/44/7/10.1119/1.10320 

Laboratory staff 

During practical sessions, the laboratory space is managed by the following people: 

 The academic in charge; 

 The chief scientific officer and scientific officer; 

 The lab manager, and 

 The demonstrators. 

You can ask any of the people above for help during the course of a practical, for issues such as conducting an 

experiment, administration of the laboratory course, concerns about safety and faulty or damaged 

equipment. If you are absent from a practical or tutorial or want to query a tutorial or practical mark 

entered on WebApp or Vula, get in touch with the lab manager; Mr. Mark Christians. 

Pre-practical preparation 

Before you attend each practical session, read through the material on the practical that you are about to 

perform and take a look at the relevant instructional videos in the link given below. You will use the practical 

time the most efficiently if you come prepared and ready to ask questions. 

http://www.phy.uct.ac.za/phy/courses/PHYLAB1. 

Practical groups 

It is intended this course is undertaken in cooperative learning environment. We believe that working in 

groups of 3 is best for these activities. Compare your responses to those of your work partners. Help each 

other to figure out what is going on. Resolve any difficulties that you might have and call a demonstrator if 

you need to.  

You can choose your own group at the beginning of the semester. We use these groups to allocate and 

schedule the marking of laboratory reports, so please submit a registration form for your group to the lab 

manager in the first session of the semester. This will remain your group, and your laboratory day, for the 

rest of the semester. However, if you want to change your group at any time and for any reason, please talk 

to the lab manager who can assist you in arranging a different group and change in registration, as well as 

making sure your marked lab reports are returned to the correct session. 
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Some guidance on how to work in groups is given in the following pages: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Well, companies and institutions that employ science 

and engineering graduates rate the ability to work as 

part of a team as one of the most important skills 

they want their employees to have.  Knowledge and 

technical skills are of no use if you cannot apply them 

in cooperative interactions with other people.   

I am grateful that when I was in first year last year I 

was given the opportunity to work with other 

students in class.  I am very shy to ask questions 

during lectures, but when I am working in a group I 

am able to ask all the questions I need to.  

 

I am sure that you will agree with 

me when I say that I understand 

something better when I am 

actively involved in a learning 

activity.  When I just sit in class 

and listen to the lecturer I cannot 

remember much of what is said, 

no matter how interesting the 

lecture is.   

What I really want to know is 

why we have to work in 

groups of three during our 

physics practicals! 

I also thought so at first.  However, 

after a while I found that as a group 

we were able so solve far more 

difficult problems than I could do on 

my own.  We were also able to 

practice the problem solving 

strategies that we need to master so 

that when I was alone I found that I 

didn’t get stuck as often.   

 

But won’t my marks be 

poorer if I have to work with 

my class mates?   

 

Learning to work with others is 

fine, but what about my 

physics? I am determined to do 

well. 

 

Mmmm..... 

 I see what you mean. 

 

It’s like learning to play a new 

game!  No matter how many times 

you watch and listen to the coach, 

you only learn when you have a go 

with a friend.  It is just the same 

with your physics.  
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You know, sometimes   

I don’t want to explain 

something to someone else 

because I am afraid that I 

might confuse myself. 

 

Don’t worry.  Resolving that type of 

confusion is an important part of the 

learning process.   When you talk 

about the physics in a group you will 

come away with a better 

understanding of both the abstract 

concepts and the problem solving 

techniques. 

 

When you are stuck on a question, there are a number of questions that you 

should ask yourselves before you call a demonstrator: 

 Do we understand the question? 

 Have we consulted the Guide to Reporting and Measurement? 

 Would it be useful to draw a diagram? 

 What question are we going to ask the demonstrator?  
           ... this is very important ... it’s no use saying to the demonstrator,  

                “We’re stuck” ... or ... “We don’t know what to do.” 

 

What can I do  

so that our group works 

well together? 

 
There are a number of things that you can do in a 

group that will help you to work together better.  

The most important is that everyone has a turn to 

participate and explain their understanding and 

reasoning.  You therefore need to contribute and 

listen carefully to what your group members are 

saying.     

Check that everyone understands before moving 

on. Don’t exclude people by using a language that 

one person doesn’t understand.  

 

I have found that even when I think 

that I don’t get on with someone, 

after a while when we have 

focused on what we have to do, 

things actually turn out fine. I have 

rarely met anyone that I can 

absolutely not work with.   

But anyway, the groups don’t stay 

together permanently, so you 

won’t be with the same people 

forever! 

 

What if I am put in  

a group with people  

that I don’t get on  

with too well? 
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SECTION A – PERFORMING AN EXPERIMENT 

A1 Planning an experiment 

There are a number of stages to an experiment, each requiring you to think about different things.   

Stage 1.  Identify the problem that needs solving, or the question that needs answering. What is the 

aim of the experiment? Think about what results you need in order to make a valid 

conclusion. 

Stage 2.  Plan your experiment carefully (see notes below). 

Stage 3.  Do the experiment and complete the analysis of the data. 

Stage 4.  Formulate your conclusions to the experiment based your results. 

Stage 5. Communicate your experiment in the form of a report. 

Never rush into taking readings without careful planning. Of course, it is a good thing to familiarise yourself 

with the apparatus before starting, but before doing serious measurements sit down and plan carefully 

exactly what you are going to do. In most cases you will be working with one or two other students in the 

laboratory. It is important that you discuss things with them. Listen to each other’s opinions and talk to a 

demonstrator, if necessary.   

Some important considerations are: 

 What are the main steps that I need to carry out? A flow chart is often useful. 

 What apparatus do I need and how does it work?  

 Are there any precautions that I need to take? 

 How much time do I have for the experiment? 

 What variables are involved and what exactly must I measure?  

 How many measurements do I need to make? 

 What tables must I draw up? Detailed tables should be drawn up before taking readings as the tables 

will serve as a guide. 

 What are the main steps in the analysis? Again, a flow chart is often useful. 

 Which graphs (if any) will I need to plot? 

 What influences will affect the measurements? Make a list beforehand and add to it as you proceed.   

After the experiment, reflect on how well your plan worked, noting both successful aspects and failures of the 

plan. Keep in mind the structure of your report that you will have to write.  Remember that if, while writing 

the report, you suddenly remember that you did not record something important while doing the experiment, 

it will be too late! 
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A2 Writing a laboratory report 

The purpose of a laboratory report is to communicate the aim, process and outcome of an investigation to an 

outside audience. It is a record of your direct (“hands-on”) experience in the laboratory.   In most cases, a 

scientific investigation is considered to be incomplete without a report. By synthesising (putting together) the 

different aspects of your laboratory experience in a structured and coherent report, the essence of your 

investigation becomes clearer in your own mind. In the process, you develop your skills of reasoning and 

ability to communicate in writing. 

There are many acceptable ways of presenting a scientific laboratory report, but, almost all reports will 

include the components outlined here. 

Components of a laboratory report 

Title:  

This will include the author’s name (your name), your partner’s names, the course code, the date of the 

experiment and a suitable title of the report. 

The title must be short but factual and descriptive.  It must summarise the major aspects to be dealt with in 

the report. The key words will often come from the laboratory task that has been set and you need to identify 

these. These words help clarify the requirements of the task and also alert the reader as to what the report is 

about. 

Introduction and aim: 

The introduction puts the report into perspective by giving the reader relevant background information about 

the phenomenon being investigated. This is in order to prepare the reader for what he or she is about to read.   

This background may include some historical information or developments, earlier experimental work, the 

theory or law governing the phenomenon being investigated. These introductory remarks must be kept brief 

to avoid obscuring the main point of the investigation. Sometimes, you will be asked to carry out an 

investigation in order to dispute or challenge a claim that has been made against a generally accepted 

scientific phenomenon. If that is the case, state the currently held theory and the claim that has been made.  

Your introduction must state the aim of your investigation. The integration of the aim into the introduction 

allows for the smooth transition from general information to the specific goal of the investigation. 

Method: 

Present a clear, concise and step-by-step description of the apparatus, techniques and procedures used.   List 

and name the apparatus with brief descriptions of the main parts as well as the functions thereof.   A neatly 

sketched and labelled diagram of the experimental set-up is essential and can save you paragraphs of tedious 

written descriptions.  Briefly describe the procedures that you followed in the investigation.  Wherever 

appropriate, give a reason for each step you took in a procedure.  Sometimes more than one section is 

required for this material. For example, if two techniques were used, i.e. Technique No.1, Technique No.2, 

etc. then a brief explanation of each of these techniques must be given. Do not omit any significant steps. A 

description of method helps you to recall the problems that were associated with experimental procedures 

such as precision of instruments, strengths and weaknesses of certain techniques, recording of observations 

etc. This will help you when you have to summarise your conclusions and recommendations at the end of 

your report. 

Results and discussion 

The main part of this section are your tables of results and graphs. You must have a consistent way of 

recording your observations and calculations. Data are normally summarised and displayed in tables and 

graphs. Each table and graph is usually referenced by a number and should be numbered in sequence, e.g. 

Table 1, Table 2, Figure 1, Figure 2 etc. Each table is accompanied by a title and each graph by a caption which 

describes the purpose for which it has been presented. (e.g. “Table 1: Measurements of the width of the 

cylinder” and “Graph 3: To determine the viscosity of the sample of oil”).    
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Tables and figures must be referred to in the text, e.g. “The apparatus was arranged as shown in Figure 1”; 

“The data gathered were recorded as shown in Table 1 below” or “The data in Table 1 were used to plot the 

graphs in Figure 1, 2 and 3.” These brief statements help to link the different parts of the report.  

Then examine and extract important aspects of the data and use these to explain various relationships or 

determine your measurement results. For example, what is the shape of your graph and what does it suggest 

in terms of the relationship between the variables? If it is a straight line, what is the value of the slope?  

Remember to quote your results with the appropriate significant figures and the corresponding uncertainties. 

How does an expected value compare with your own and what reasons can you give for this? You may give 

tentative explanations for your data but be careful not to mix facts with opinions. 

Conclusion and recommendations:  

This is normally a section in which you say what the investigation has shown and to what extent the problem 

or claim stated in the introduction has been resolved.  Remember that any conclusions must be supported by 

evidence from your data. Always quote any final results, together with their uncertainties in your conclusion. 

Avoid making vague statements such as “This was a successful experiment.” You may also need to discuss 

sources of uncertainty and any improvements that could be made to the apparatus (and measurements). 

Again, avoid meaningless phrases such as “it was caused by human error.” 

Writing a report allows you to reflect critically on the whole experiment and check your understanding of the 

purpose of the investigation as well as produce an accurate record of it. Note that an physics practical is not a 

set of procedures designed to reproduce some “correct” answer. It is a problem that has been posed that 

requires an experimental solution which may include making measurements, implementing different 

procedures and techniques and then the  formulation of a suitable report. 

 

 

 

Scientific style 

Very often, in reports of this kind, writers prefer to use the passive construction or impersonal style to report 

procedures followed in conducting experiments, by writing, for example: 

“Five measurements were taken,” instead of “I / We took five measurements.”    

Both styles are acceptable. As you do most of your practicals in groups, you are likely to visualise what you did 

as a group and report it as a group activity in which case the personal pronoun “we” is appropriate. However, 

once you have chosen a style of writing, then you must use it throughout your report and not switch back and 

forth between the two.   

Marking the report 

When marking your reports, feedback will be given that is relevant to your individual report. All the feedback 

you get is intended to help you consider ways of improving your report. Marks for the report will be given for 

your data collection and processing (which includes your method, tables, graphs and calculations) as well as 

the overall coherence of the report as a piece of writing. The important thing is that you understand the mark 

that you receive and speak to someone about it if not. The value of this process cannot be underestimated. 

Make sure you follow up with the demonstrator who marked your report in the following practical so you 

know how to improve for next time. 

The laboratory report checklist 

When preparing your report, use the following checklist to see whether or not you have included everything 

correctly. 

Whether you graduate and leave with a B.Sc. to work in industry or whether you stay on at 

university to become a post-graduate student, you will find that report writing will remain as 

one of the most important activities in your career. 
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Introduction and aim: 

✓ Have I written my name, my partners’ names and my course on the front of my report book? 

✓ Does my report have a title and a date? 

✓ Does my aim clearly outline the purpose(s) of my experiment (in one or two sentences)? 

✓ Have I clearly outlined the theory involved in my investigation? 

Apparatus: 

✓ Have I drawn the experimental set-up (with a diagram)? 

✓ Is my diagram labelled and does it have a heading? 

Method: 

✓ Have I described how I went about my experiment (i.e. what I did)? 

✓ Have I clearly described the significant steps in the procedure (including the analysis on my data)? 

✓ Have I explained why certain aspects of the procedure were undertaken? 

Data / Results: 

✓ Have I recorded all relevant measurements? 

✓ Do all my tables have titles? 

✓ Do all the columns in my tables have headings with units? 

✓ Are all my data recorded correctly? 

Graphs: 

✓ Does my graph have a title which should state why I plotted my graph? 

✓ Have I used a decent scale so my graph fills the whole page? 

✓ Have I labelled the axes, including the correct units? 

✓ Have I used a   for the data points and not a  (blob) 

✓ Have I used pencil for my graph (and not pen)? 

✓ Have I drawn the best straight line through my data points?   (if necessary) 

✓ Have I shown how I got the slope from my line?    (if necessary) 

✓ Have I recorded the slope and intercept (with uncertainties) correctly? 

Analysis and discussion: 

✓ Have I described and explained important relationships revealed by the data (and graphs)? 

✓ Have I clearly set out my calculations? 

✓ Are my calculations in the correct section of the report? 

✓ Have I used SI units throughout? 

✓ Have I shown how I calculated the uncertainties in the results? 

✓ Is my final result presented correctly with the appropriate significant figures? 

✓ Have I described and explained the results of my calculations? 

Conclusion and recommendations: 

✓ Does my conclusion refer back to my aims for doing the experiment? 

✓ Have I fulfilled all my aims for doing the experiment? 

✓ Have I quoted all my results with their uncertainties? 

✓ Have I recommended how this experiment may be improved? 
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A3 Drawing tables and graphs 

Tables are a way of organising your data in a structured way while you are working in the laboratory as well as 

a way of presenting your data in a clear way when you write your report. A graph is an extremely useful way 

to both present readings of two variables that vary as a function of each other, as well as to analyse the data 

in order to extract further information. This section describes what we call the “general rules” for preparing 

tables and graphs. 

Deciding how many readings to take 

Say that you are recording readings of a quantity in an experiment that varies as a function of some other 

quantity. Since it is impossible to take an infinite number of readings, you will need to usually consider the 

following: 

i. Over what range do you want to record data? The range is the difference between the largest and 

smallest reading in the series. 

ii. How many readings between the smallest and largest reading do you want to record, and how will 

these readings be spaced apart? 

Answering these questions before you start to take readings allows to plan your experiment properly and 

therefore use your time most effectively.   

Guidelines for drawing up tables of data  

Here are a few guidelines when drawing up a table. 

i. Plan your table, especially how many columns and rows you will need.  Try to anticipate what 

readings you will take.  Remember to include columns for the results of any calculations.  For 

example, you may sometimes need to calculate the average of a number of repeated readings.  

ii. Each table must have a title which should reflect your reason for recording the data.  If you use more 

than one table in your report, then number them Table 1, Table 2, etc. 

iii. Each column must have a heading. Units should be included with the heading and not written 

alongside each reading in the table. 

iv. Record your data carefully. Remember, for example, that writing 36.0 cm and  

36 cm is not the same.  In the first case you are recording a reading to the nearest millimetre and in 

the second case you only measured to the nearest centimetre.  

An example of a table: 

Table 1: Data of the extension of a spring due to an applied force  

Applied force, 𝐹 (N) Extension of spring, 𝑥 (m) �̅� (m) 

0.135 0.039   0.038   0.039 0.030 

0.270 0.076   0.075   0.077 0.076 

0.406 0.114   0.112   0.113 0.113 

0.541 0.150   0.149   0.152 0.150 

0.676 0.185   0.186   0.186 0.186 

 

 

 

 

Title 

Headings with units 

Calculations Data 
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Guidelines for plotting a graph 

i. Use a pencil. 

ii. Your graph must have a caption (or title) which should describe why you plotted the graph. 

iii. Each axis should be labelled with the name of the variable and the units. 

iv. Choose appropriate scales on the axes so that the graph will not be too small on the page, but will 

cover a fair portion of the page in each direction. 

v. Use  a   or   for the data points and not a     (blob). 

vi. Decide whether or not each axis should start from zero (it is not always necessary to show the origin).    

When do you need to draw the axes from zero? 

vii. Axes should be marked in factors of 1, 2, 5, or these times a power of ten.  Other factors such as 3 or 4 

usually make your scales difficult to read between divisions. 

viii. The line or curve that you draw through your data should be a reasonable “best fit” so as to model 

the trend of the experimental points.  Your graph should not join the points. 

See below for an example of a straight line graph: 

  

 

Interpretation of graphs 

One of the aims in investigating physical phenomena is to establish the relationship between the variables 

that are being measured.   For example, if we are investigating an object that is experiencing uniform 

acceleration, 𝑎, then we will find the function describing the relationship between velocity, 𝑣, and time, 𝑡, to 

be a straight line of the form, 

𝑦 = 𝑚𝑥 + 𝑐; 

an example of which is shown in graph (a) of Figure 2.  In this case, 

𝑣 = 𝑢 + 𝑎𝑡 , 

where 𝑢 is the initial velocity.  

On the other hand, the relationship between the position, r, and the time, t, will be of the form, 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 

i.e. a parabola as shown in graph (b) of Figure 2.   In this example we will find, 

𝑟(𝑡) =  𝑟0 + 𝑢𝑡 +
1

2𝑎𝑡2, 

Force (N) 

Extension 

     (m) 

0.000           0.200      0.400              0.600             0.800           

0.300 

 

0.200 

0.100 

Figure 1: Graph of extension of the spring versus applied force in order to 

determine the spring constant of a spring. 

0.000 

 

 

 

 

 
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where 𝑟0 is the initial position. Some other functions that you will encounter are the hyperbola, which is 

shown in graph (c) of Figure 2 and of the form, 

𝑥𝑦 =  𝑐, 

and the exponential function which is shown in graph (d) of Figure 2 and of the form,  

𝑦 = 𝑎𝑒𝑏𝑥. 

Note that we say that “𝑦 is proportional to 𝑥” if a graph of 𝑦 versus 𝑥 yields a straight line through the origin.  

i.e. 𝑦 = 𝑚𝑥 + 𝑐 with 𝑐 =  0. Sometimes “directly proportional to” is used which means the same thing.   

However, if 𝑐  0, then we cannot say that “𝑦 is proportional to 𝑥”, but can only say that “𝑦 is linearly related 

to 𝑥”. 

 

Figure 2: Different types of graphs that you may encounter. 
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A4 Significant figures 

What are significant figures? 

The number of figures that convey meaningful information in recorded data are known as the “number of 

significant figures”. 

Significant figures in a number are: 

 All non-zero digits (e.g., 54 has two significant digits while 456.78 has five significant digits). 

 All zeros appearing anywhere between two non-zero digits (e.g., 302.05 has five significant digits). 

 All trailing zeros, where the number has a decimal point (e.g., 36.65000 has seven significant digits). 

 Leading zeros are not significant (e.g., 0.0003 has only one significant figure). 

Do not confuse significant figures with decimal places. The number of decimal places refers to the number of 

figures after the decimal point, e.g., 46.320 mm has five significant figures, but three decimal places; while 

0.0040 mm has two significant figures, but four decimal places.  

Recording significant figures in readings and calculations  

When taking readings, the number of significant figures recorded is determined by the precision of the 

instrument. For example, if the scale on a particular instrument makes it possible to read a mass to 1/10th of a 

gram, then it is incorrect to record the reading of some mass to 1/100th of a gram, i.e., in such a case the 

recording of a mass of say 12.4 g would be correct, but recording that same mass as 12.40 g using the same 

instrument would be incorrect. 

Similarly, when using a typical wooden laboratory metre rule to measure distance, you can only take readings 

to the nearest millimetre. For example, you may record the reading of a distance as say 127 mm, but to 

record a reading of 127.0 mm will be unreasonable because that degree of precision (to 0.1 mm) cannot be 

achieved when using a typical laboratory meter rule. (Consider the problem of parallax.) 
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SECTION B – MEASUREMENT UNCERTAINTY 

B1 Overview 

The purpose of undertaking a measurement in science is to provide knowledge about some physical quantity. 

The physical quantity that we may wish to investigate is called the measurand, e.g., the measurement may be 

the air pressure in a soccer ball, the temperature of the air in a room, or the voltage across a resistor. 

It is important to realise that the value of a measurand can never be determined with absolute certainty. The 

best that can be achieved through a process of measurement is to improve our knowledge about some 

specified measurand. We cannot think of a measurand as having some “true” or “exact” value that can 

actually be found; we have to think of the knowledge that we have of any measurand always as being limited 

and incomplete. 

The following framework for measurement uncertainty is based on a probabilistic approach and the relevant 

standards are expressed in ISO/IEC 17025. These standards are clarified in the associated Guide to the 

Expression of Uncertainty in Measurement (GUM) as well as in the ISO International Vocabulary of Basic and 

General Terms in Metrology (VIM). They are also documented in the NIST Technical Note 1297 of 1994. 

Note that the term “error” is often used quite loosely in conversation in laboratory work but it is important to 

realise that the word “error” is not synonymous with “uncertainty”. The term “uncertainty” is clearly defined, 

while use of “error” may be misleading, so the use of the word “error” in the context of laboratory work is 

discouraged. 

Decide on the best approximation of the measurand 

Having taken the readings, 𝑥1 or (𝑥1, 𝑥2, 𝑥3, …. 𝑥𝑛 for n readings) as the case may be, the next step is to 

decide on the best approximation of the value of the measurand. 

In the case where only one reading has been taken, then that reading is the best approximation of the value 

of the measurand, e.g., 𝑥. However, where more than one reading has been taken, then the best 

approximation of the value of the measurand is the mean (average) of those readings, e.g., �̅�. 

List all the possible sources of uncertainty 

There may be many sources of uncertainty to be taken into account in any one measurement. These sources 

include, for example: a) the manufacturer’s rating of the instrument used, b) the reading of the scale of the 

instrument, c) corrections that might need to be included as a result of ambient conditions, and so on… 

Which of these sources of uncertainty are to be taken into account in any particular measurement is based 

mainly on experience and skill in measurement, but the important first step is to identify and list them.  

Evaluate the uncertainties that have been identified. 

Having identified the relevant sources of uncertainty in the measurement of 𝑥, we can evaluate the value of 

each uncertainty. The key value of the uncertainty in the measurement is known as the standard uncertainty 

and the symbol is 𝑢(𝑥). Subscripts are used to indicate difference sources; for example, 𝑢(𝑥rating) and 

𝑢(𝑥reading). 

The way in which we evaluate the uncertainty in our knowledge of a measurand has its roots in a method of 

statistical inference based on the Bayesian theorem; and the functions used to describe how the uncertainty 

in our knowledge of a particular measurand is formulated are known as probability density functions (pdfs). 

However, in this course we will not delve into the statistical underpinnings of uncertainty evaluation, nor will 

we be using pdfs in a rigorous way, but we will refer to the relevant pdf as appropriate and will simply use the 

method as required. 
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There are two ways to evaluate the standard uncertainty, a TYPE A evaluation and a TYPE B evaluation; and 

the method you will use depends on the nature of the measurement.  

 If a number of readings are available, in which there is scatter, then a statistical, TYPE A, evaluation of 

the uncertainty should be used. 

 All other evaluations of uncertainty are TYPE B evaluations. TYPE B evaluations may be applied to 

many sources of uncertainty, e.g., the rating of the instrument, the reading of a scale, the correction 

factors that may need to be applied to the measurement, etc.  

The TYPE A and TYPE B evaluation methods are discussed in detail in the sections that follow. 

Combine the standard uncertainties to find the combined standard uncertainty. 

Depending on the nature of the measurement it may be necessary to combine the standard uncertainties, 

(𝑥rating), 𝑢(𝑥reading), etc., to give a combined standard uncertainty. 

Quote the result of the measurement 

The final step is to quote the result of the measurement: e.g., 𝑥 ±  𝑘. 𝑢𝑐(𝑥), stating the relevant coverage 

probability (also referred to as the ‘level of confidence’). 

See D1 Quoting a result for more information on reporting the result of the measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

B2 TYPE A evaluation of uncertainty 

In a TYPE A evaluation of the uncertainty, a statistical method is used to infer the value of the uncertainty 

associated with a measurement by quantifying the “scatter”, or the “spread” in the values of a set of data. 

There are two commonly used cases: 

1) The data are a set of readings of the form: 𝑥1, 𝑥2 … . 𝑥𝑛 

A histogram of the readings shows a distribution around some mean value �̅� that can be represented by a 

symmetrical bell-shaped curve (referred to as a “Gaussian”) where: 

 

Figure 3: Normal or ‘Gaussian’ distribution function. 

When the relevant set of readings, 𝑥1, 𝑥2 … . 𝑥𝑛, for n readings are plotted as a histogram, and the histogram 

allows one to fit a curve similar in shape to a normal distribution, then the best approximation of 𝑥 is x , and 

the standard uncertainty 𝑢(𝑥) is given by the experimental standard deviation of the mean, 
𝜎

√𝑛
. 

2) The data are a set of readings of the form: (𝑥1, 𝑦1), (𝑥2, 𝑦2) … . (𝑥𝑛, 𝑦𝑛)   

 

In this case the function that is used to analyse the data is 

‘linearised’ (details to be covered in E2 Linearising 

equations) and the data pairs, (𝑥𝑖 , 𝑦𝑖)  i = 1, 2, …n are 

plotted as a straight line in the form 𝑦 = 𝑚𝑥 + 𝑐. 

A technique known as a ‘least squares fit’ is used to fit a 

line to the data and then the best approximation and the 

standard uncertainty may be derived from the gradient 

𝑚 ±  𝑢(𝑚) and the intercept 𝑐 ±  𝑢(𝑐)of the fitted line. 

 

Formulae for a TYPE A evaluation of uncertainty 

Consider an experiment in which a set of readings has been taken, where 𝑥1, 𝑥2 … . 𝑥𝑛, and n is the number of 

readings and 𝑥𝑖  is the i th reading. If there is a scatter in the values of these readings, then it can be reasonably 

assumed that the distribution of the readings ‘fits’ a Gaussian probability density function. 

Using this assumption*, there are three values required to calculate the uncertainty in the measurement: 

 the mean �̅� (sometimes the symbol µ is also used for the mean) 

 the standard deviation σ, and 

 the experimental standard deviation of the mean which, when the distribution of the values of the 

mean of the readings is normal, is the standard uncertainty 𝒖(𝒙). 

𝑦 =
1

𝜎√2𝜋
𝑒

−[
(𝑥−�̅�)2

2𝜎2 ]
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The following equations are used to calculate the parameters used to determine the uncertainty associated 

with the measurement: 

Mean of the data: �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 … (B2-1) 

Standard deviation: 𝜎 = √
1

(𝑛 − 1)
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 … (B2-2) 

Standard uncertainty: 𝑢(𝑥) =
𝜎

√𝑛
 … (B2-3) 

Note: 

1) *The assumption that the distribution of the values of the readings is normal validates the statement 

that “the experimental standard deviation of the mean is the standard uncertainty 𝑢(𝑥)” for the 

majority of cases. However, it is important to realise that a different approach may be required where 

the distribution of values is not ‘normal’. 

2) Because a Gaussian distribution was assumed, the probability that the measurand lies within one 

standard uncertainty of the best approximation, is 68%.    

Example: TYPE A evaluation of uncertainty associated with a set of data 

Consider an example in which the measurand is the period T of an oscillating pendulum. A stopwatch has 

been used to take ten readings (n = 10) of the time taken for twenty oscillations of the pendulum. It is 

assumed that the distribution of the values in this set of data can be modelled by a Gaussian distribution. 

Table B2.1: Data recorded using digital stopwatch. 

Time for 20 oscillations, T20 (s) Period, T = T20/20 (s) 

19.43 21.65 0.972 1.083 
20.49 20.82 1.025 1.041 
20.76 19.77 1.038 0.989 
20.63 20.39 1.032 1.020 
20.56 19.02 1.028 0.951 

Using Eq. (1), the mean, �̅� = 1.0176 s. This is the best approximation of the measurand. 

Using Eq. (2), the standard deviation σ is 0.0379 s. However, this value is not the standard uncertainty. For 

that we still need to calculate the experimental standard deviation of the mean, which is the standard 

uncertainty in this case. 

Using Eq. (3), the standard uncertainty 𝑢(𝑇) = 0.0119 s. 

The result of this measurement, the period T of the pendulum, may be quoted as: 

T =  (1.018 ± 0.012) s, and since this is to one standard uncertainty - and a Gaussian pdf was used - the 

coverage probability is 68%. 

Note: The result may be quoted to a higher coverage probability (a greater level of confidence) by using an 

expanded uncertainty, see D1 Quoting a result. 
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B3 TYPE B evaluation of uncertainty 

A TYPE B evaluation of uncertainty is any evaluation of an uncertainty that is not a TYPE A evaluation. So, for 

example, if the uncertainty as a result of the rating of the instrument has to be evaluated, or if only one 

reading is available, then a non-statistical TYPE B evaluation of uncertainty is performed.  

The methods of TYPE B evaluation of uncertainty will be presented by way of examples. 

Example 1: Uncertainty associated with the rating of an instrument 

Manufacturers of measuring instruments will state the information required to evaluate the uncertainty 

associated with the rating of the instrument, e.g. 𝑢(𝑥rating), by specifying the rating as: 

a) a percentage of the maximum value that can be displayed, or 

b) a percentage of the full scale deflection (FSD), or 

c) simply by stating that the rating is a percentage of whatever is being displayed on the instrument. 

In the first example we consider that the measurand is a pressure p and the instrument being used to take the 

readings of the pressure in this case is a typical bourdon tube gauge.  

 
Figure 4: Reading on a bourdon tube pressure gauge. 

Just by looking at the position of the needle on the gauge we can see that the best approximation of the 

measurand is: p  =  34 kPa.   (There is only one reading.) 

Now we want to evaluate the uncertainty associated with the manufacturer’s rating of the instrument, 

𝑢(𝑝𝑟𝑎𝑡𝑖𝑛𝑔). The reason for selecting this source is because the bourdon gauge is a simple instrument and so 

the uncertainty due to the rating of the instrument far outweighs the contribution of all the other applicable 

sources of uncertainty. Typically, for a bourdon tube gauge, the uncertainty in the rating of an instrument of 

the type shown here is ±2.5% of the full scale deflection (FSD) of the instrument; and in this case, FSD is 160 

kPa. The standard uncertainty (due to the rating) associated with this instrument will be: 

𝑢(𝑝𝑟𝑎𝑡𝑖𝑛𝑔) = 160 kPa ×
2.5

100
= 4.0 kPa … (B3-1) 

And so the result of the measurement of the pressure shown on this instrument will be quoted as: 

𝑝 ±  𝑢(𝑝) =  (34.0 ±  4.0) kPa. 

In every measurement, the instrument manufacturer’s specification needs to be checked to determine the 

instrument rating. Caution: check whether the manufacturer’s rating has been given to one or more standard 

deviations; as this has to be taken into account when you combine the uncertainties, see D1 Quoting a result.  
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Example 2: Uncertainty associated with reading a digital display 

In this example, the measurand is a temperature T and the instrument chosen to take readings of the 

temperature is an electronic thermometer that has a 3-digit digital display. The reading you see on the 

thermometer is shown in Figure 5. 

 

Figure 5: Reading on a digital thermometer. 

By inspection we can see that the best approximation of the measurand is: 𝑇1 = 25.3 °C. (There is only one 

reading.) 

Now we want to evaluate the uncertainty associated with the reading of the display, 𝑢(𝑇read). This 

uncertainty arises because even though the display shows 25.3 °C, any actual temperature between 25.25 °C 

and 25.35 °C would result in the same display on the instrument when rounded to 3 digits. 

The evaluation of 𝑢(𝑇read) proceeds as follows: 

1) The only information we have about the temperature is that it is between a lower bound, 𝑇𝑙𝑜𝑤𝑒𝑟= 

25.25 °C and an upper bound, 𝑇upper= 25.35 °C. 

2) We make the assumption that it is equally probable for the temperature T to be any value between 

𝑇lower and 𝑇upper. 

3) Having assumed that it is equally probable that the value of T lies anywhere in a symmetric interval 

around 25.30 °C, this uncertainty evaluation can be modelled on a uniform or rectangular probability 

density function, see Figure 6, and so the standard uncertainty 𝑢(𝑇read) can be evaluated as: 

𝑢(𝑇𝑟𝑒𝑎𝑑) =
(𝑇upper − 𝑇lower)

2√3
=

(25.35 − 25.25) °C

2√3
= 0.029 °C … (B3-2) 

The reason for dividing by √2 in equation B3-2 is because this is the factor applicable to the assumptions 

regarding a rectangular pdf. 

 

Figure 6: Rectangular probability density function. 

Note that the total area under the pdf is equal to 1, meaning that there is a 100% probability of the measurand 

being in the ± a interval.  Moreover, the grey shaded area under the rectangular pdf has an area of 0.58, so 

there is a 58% probability that the measurand is in the ± u interval. Therefore, because a rectangular distribution 

was assumed, the coverage probability that the measurand lies within one standard uncertainty, i.e., within ± 

𝑢(𝑇)  of the best approximation T, is 58%. 
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Example 3: Uncertainty associated with reading an analogue display 

In this example, the measurand is a temperature T but now the instrument chosen to take readings of the 

temperature has an analogue display. The reading you see on the thermometer is shown in Figure 7. 

The best approximation of the measurand is 𝑇1 = 75 °C (there is only one reading). 

In this example the only source of uncertainty that we will take into account is the uncertainty associated with 

the reading of the dial of the instrument, 𝑢(𝑇read). This uncertainty arises because the instrument really tells 

us is that the temperature is between 70 °C and 80 °C, and is most probably 75 °C. 

 
Figure 7: Reading on an analogue thermometer. 

The evaluation of 𝑢(𝑇read) proceeds as follows: 

1) As was the case in Example 2, we judge that the temperature is between a lower bound 𝑇lower = 70 °C 

and an upper bound 𝑇upper = 80 °C. 

2) However, in this case it is not equally probable that temperature T will be any value between 𝑇lower 

and 𝑇upper. The temperature T is most likely to be a value ‘close to’ 75 °C, which we can say as the 

needle is approximately half way between 70 and 80 °C. The choice of the upper and lower limits is 

arbitrary, and tends to be a pair positioned symmetrically around the most likely value, and aligned 

with tick marks of the instrument. 

3) Having assumed that it is most probable that the value of T lies at the centre of a symmetric interval 

around 75 °C, this uncertainty evaluation can be modelled on a triangular probability density function, 

see Figure 8, and so the standard uncertainty 𝑢(𝑇read) can be evaluated as: 

𝑢(𝑇read) =
(𝑇upper − 𝑇lower)

2√6
=

(80 − 70) °C

2√6
= 2.1 °C … (B3-3) 

The reason for dividing by √6 in equation B3-3 is because this is the factor applicable to the assumptions 

made regarding a triangular pdf. 

Note that the total area under the pdf is equal to 1, meaning that there is a 100% probability of the 

measurand being in the ± a interval. Moreover, the grey shaded area under the triangular pdf has an area of 

0.65, so there is a 65% probability that the measurand is in the ± u interval. Therefore, because a triangular 

distribution was assumed, the coverage probability that the measurand lies within one standard uncertainty, 

i.e., within ± 𝑢(𝑇) of the best approximation T, is 65%. 

 

Figure 8: Triangular probability density function. 
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B4 Combination of uncertainty in one measurement 

In the previous three examples the uncertainty associated with only one possible source of uncertainty was 

evaluated in each example. However, there are many possible sources of uncertainty that may have to be 

taken into account in any one measurement and once these have been identified and evaluated the 

combined standard uncertainty in the measurement has to be calculated. 

General formula for combining uncertainties 

Assume that the measurand is some quantity k and that some number of sources of uncertainty have been 

identified and designated as: 𝑢(𝑘1), 𝑢(𝑘2), 𝑢(𝑘3), 𝑢(𝑘4) … 

Once the uncertainties associated with each of these sources has been evaluated, the values of the standard 

uncertainties may be combined, in quadrature, to find the combined standard uncertainty 𝑢(𝑘), as follows: 

𝑢(𝑘) = √[𝑢(𝑘1)]2 + [𝑢(𝑘2)]2 + [𝑢(𝑘3)]2 + [𝑢(𝑘4)]2 + ⋯ … (B4-1) 

It does not matter whether the uncertainty associated with the individual sources has been determined by 

means of a TYPE A or a TYPE B evaluation, they can all be combined using equation B4-1. Before you combine 

uncertainties, make sure that they have all been adjusted to relate to the one (or the same) standard 

uncertainty. 

Example 1: uncertainty associated with using an analogue voltmeter 

In this example, the measurand is the voltage V across a torch battery. An analogue voltmeter is chosen to 

determine the voltage and when the leads of the voltmeter are connected to the battery, the reading shown 

in Figure 9 appears on the display of the voltmeter: 

 
Figure 9: Reading on an analogue voltmeter display. 

The displayed reading is the best approximation of the measurand, in this case 1.55 V. 

Consider that in this measurement there are two sources of uncertainty to be evaluated: 

1) the uncertainty associated with the rating of the instrument, 𝑢(𝑉rating) and 

2) the uncertainty associated with reading the display, 𝑢(𝑉read). 

The typical rating for a moving coil instrument of this kind is 2% of the full scale deflection (FSD). 

So in this case the standard uncertainty, 𝑢(𝑉rating) = 3.0 V ×
2

100
= 0.060 V. 

To evaluate the uncertainty in the reading, consider that the lower and upper bounds of the value of the 

measurand are 1.5 V and 1.6 V and that the evaluation of this uncertainty may be modelled on a triangular 

pdf, so 

𝑢(𝑉read) =
(𝑉upper − 𝑉lower)

2√6
=

(1.6 − 1.5) V

2√6
= 0.021 V. 
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The standard uncertainties are combined: 

𝑢(𝑉) = √[𝑢(𝑉rating)]
2

+ [𝑢(𝑉read)]2 = √(0.060 V)2 + (0.021 V)2 = 0.064 V 

Finally, the battery voltage can be quoted as V = (1.550 ± 0.064) V, to one standard uncertainty. Given that the 

standard uncertainty was obtained by using a triangular probability density function, the coverage probability 

(level of confidence) in this result is 65%. 

The oscilloscopes in PHYLAB1 have the following ratings, to one standard uncertainty: 

 ±5% on the x axis (for time-base between 0.1 μs and 50 ms per division), 

 ±3% on the y axis (for voltage between 5 mV and 5 V per division). 

Example 2: measurement of VOLTAGE using an oscilloscope 

Consider an example in which the measurand is the peak-to-peak voltage V of a sine wave produced by a 

signal generator. You connect the signal generator to an oscilloscope and you see the wave shown in Figure 

10: 

 
Figure 10: Reading a voltage on an oscilloscope. 

After careful consideration, you decide that the peak-to-peak voltage spans 5.8 divisions and so the best 

estimate of V  is 5.8 V (5.8 Divisions × 1.0 Volt/Division). 

Now there are three sources of uncertainty to be evaluated: 

1) the uncertainty associated with the instrument rating, 

2) the uncertainty associated with the reading at the top peak on the display, and 

3) the uncertainty associated with the reading at the bottom peak on the display. 

The oscilloscopes in PHYLAB1 have a rating of ±3% on the y axis to one standard uncertainty (for voltage 

between 5 mV and 5 V per division). Therefore the standard uncertainty associated with the rating is, 

𝑢(𝑉rating) = 5.8 V ×
3

100
= 0.17 V. 

To evaluate the uncertainty associated with the reading of the display, consider that the lower and upper 

bounds of every reading will be 0.1 of a division on either side of the best approximation anywhere on the 

display and that the evaluation of this uncertainty may be modelled on a triangular pdf. We need to multiply 

the uncertainty in divisions by the sensitivity scale of the oscilloscope settings to achieve an uncertainty in 

volts: 
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𝑢(𝑉read) =
(𝑉upper − 𝑉lower)

2√6
=

(0.1 − (−0.1)) DIV

2√6
× 1.0

V

DIV
= 0.041 V. 

Finally, these three standard uncertainties are combined to give the combined standard uncertainty 

associated with the measurement of V. Note the uncertainty in reading the top and bottom peaks on the 

display are equivalent:  

𝑢(𝑉) = √[𝑢(𝑉rating)]
2

+ [𝑢(𝑉read,top)]
2

+ [𝑢(𝑉read,bottom)]
2

= √(0.17 V)2 + 2(0.041 V)2 = 0.18 V.
 

The result of this measurement can be quoted as: 

Voltage, V  = (5.80 ± 0.18) V, to one standard uncertainty. 

Given that the standard uncertainty was obtained by using a triangular probability density function, the 

coverage probability (level of confidence) in this result is 65%. 

Example 3: measurement of PERIOD using an oscilloscope 

Next consider an example in which the measurand is the period T of a sine wave produced by a signal 

generator. You connect the signal generator to an oscilloscope and you see on the screen the wave shown in 

Figure 11: 

 
Figure 11: Reading a period on an oscilloscope. 

After careful consideration, you decide that the period spans 7.6 divisions, and so the best approximation of T 

is 3.8 ms (i.e. 7.6 Divisions × 0.5 ms/Division). 

Again there are three sources of uncertainty to be evaluated: 

1) the uncertainty associated with the instrument rating, 

2) the uncertainty associated with the reading on the left of the display, and 

3) the uncertainty associated with the reading at the right of the display. 

The oscilloscopes in PHYLAB1 have a rating of ±5% on the x axis to one standard uncertainty (for time-base 

between 0.1 μs and 50 ms per division). Therefore, the standard uncertainty associated with the rating is, 

𝑢(𝑇rating) = 3.8 ms ×
5

100
= 0.19 ms. 

To evaluate the uncertainty associated with the reading of the display, consider that the lower and upper 

bounds of every reading will be 0.1 of a division on either side of the best approximation anywhere on the 

display and that the evaluation of this uncertainty may be modelled on a triangular pdf. We need to multiply 

the uncertainty in divisions by the sensitivity scale of the oscilloscope settings to achieve an uncertainty in 

volts: 
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𝑢(𝑇𝑟𝑒𝑎𝑑) =
(𝑇upper − 𝑇lower)

2√6
=

(0.1 − (−0.1)) DIV

2√6
× 0.5

ms

DIV
= 0.021 ms. 

As with the measurement of the voltage, these standard uncertainties are combined to give the combined 

standard uncertainty associated with the measurement of T: 

𝑢(𝑇) = √[𝑢(𝑇rating)]
2

+ [𝑢(𝑇read,left)]
2

+ [𝑢(𝑇read,right)]
2

= √(0.19 ms)2 + 2(0.021 ms)2 = 0.19 ms. 

Note that as 𝑢(𝑇rating) is considerably larger than 𝑢(𝑇read) by an order of magnitude larger, it dominates the 

combined uncertainty, 𝑢(𝑇). 

The result of this measurement can be quoted as: 

Period T  = (3.80 ± 0.19) ms, to one standard uncertainty. 

And given that the standard uncertainty was obtained by using a triangular probability density function, the 

coverage probability (level of confidence) in this result is 65%. 
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SECTION C – CALCULATIONS WITH UNCERTAINTIES 

C1 Calculation of uncertainty across multiple measurements 

Often, having completed two or more measurements where the results of those measurements are say 𝑥 ±

 𝑢(𝑥) and 𝑦 ±  𝑢(𝑦), you need to use these results to calculate some other value, say 𝑧 and its associated 

uncertainty 𝑢(𝑧). Caution: you cannot perform the same operation on the uncertainties as you do on the 

variables (e.g. in the case of 𝑧 = 𝑥 + 𝑦, 𝑢(𝑧) ≠ 𝑢(𝑥) + 𝑢(𝑦)). 

The formulae required to calculate or propagate uncertainties are given in Table C1-1. We will not derive 

these equations, as this requires partial derivatives which you may not have met yet in your mathematics 

course. 

Table C1-1: Formulae used in the calculation of uncertainties. 

Form of equation from which  

result R is calculated 

Formula for calculating  

the standard uncertainty 𝑢(𝑅) 

Sum of variables 

𝑅 = 𝑎 𝐴 ± 𝑏 𝐵 ± 𝑐 

Coefficients a, b & c  are constants (numbers 
 with zero uncertainty) 

[𝑢(𝑅)]2 = [𝑎  𝑢(𝐴)]2 + [𝑏 𝑢(𝐵)]2 

or 

𝑢(𝑅) = √[𝑎  𝑢(𝐴)]2 + [𝑏 𝑢(𝐵)]2 

Product of variables 

𝑅 = 𝑐 𝐴𝑎 𝐵𝑏 

Coefficients a, b & c are constants (numbers 
 with zero uncertainty) 

[
𝑢(𝑅)

𝑅
]

2

= [𝑎
𝑢(𝐴)

𝐴
]

2

+ [𝑏
𝑢(𝐵)

𝐵
]

2

 

or 

𝑢(𝑅) = 𝑅√[𝑎
𝑢(𝐴)

𝐴
]

2

+ [𝑏
𝑢(𝐵)

𝐵
]

2

 

Correlated variables 

(consider co-variance if the instrument used more than 
once in the same experiment) 

𝑅 = 𝑎 𝐴 

Coefficient a is a constant (numbers 
 with zero uncertainty).  

𝑢(𝑅) = √𝑎  𝑢(𝐴) 

Note: these equations are three results from a general function for the propagation of uncertainties. To find out more, consult the full 

version of this guide at the UCT Physics website, “Measurement Manual”. 
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C2 Examples of uncertainty calculations 

Example 1: Uncertainty associated with reading a metre stick 

Consider a pendulum (see Figure 12), where the effective length is the difference between the position, 𝑥ring, 

of the centre of the ring relative to the metre stick at one end, and the position, 𝑥ball, of the centre of the 

mass of the ball relative to the metre stick at the other. So, there are two measurements of position to be 

made. 

 
Figure 12: Reading of pendulum length on a metre stick. 

In identifying sources of uncertainty, consider that the problem of parallax is a significant contributor to the 

uncertainty associated with both measurements, while there is also an uncertainty as to where the centre of 

mass of the ball might actually be. 

The best approximation for the position of 𝑥ring is 0.0 cm, because the metre stick was lined up that way (we 

did not have to start at zero but in this case we did and we read in centimetres as the unit of the instrument). 

Using a triangular pdf, the standard uncertainty, 𝑢(𝑥ring) can be evaluated as: 

𝑢(𝑥ring) =
(𝑥ring,upper − 𝑥ring,lower)

2√6
=

(0.1 − (−0.1)) cm

2√6
= 0.041 cm. 

The position of the centre of the ring relative to the metre stick may be quoted as 𝑥ring = (0.000 ± 0.041) cm, 

to one standard uncertainty. 

The best approximation of the position of the ball, 𝑥ball is 66.4 cm. Using a triangular pdf, the standard 

uncertainty, 𝑢(𝑥ball) can be evaluated as: 

𝑢(𝑥ring) =
(𝑥ball,upper − 𝑥ball,lower)

2√6
=

(66.6 − 66.2) cm

2√6
= 0.082 cm. 

The position of the centre of the ball relative to the metre stick may be quoted as 𝑥ball = (66.400 ± 0.082) cm, 

to one standard uncertainty. 

To find the effective length L of the pendulum we need to subtract the position of one from the position of 

the other. The best approximation of L is the difference between the two best approximations of the 

measurements so: 

𝐿 = (𝑥ball − 𝑥ring) = (66.4 cm − 0.00 cm) = 66.4 cm. 

Therefore the best approximation of L is 66.4 cm. 
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We combine the two standard uncertainties, 𝑢(𝑥ball)  and 𝑢(𝑥ring), using the first equation in Table C1-1. The 

appropriate formula for the calculation of the combined standard uncertainty is: 

𝑢(𝐿) = √[𝑢(𝑥ball)]2 + [𝑢(𝑥ring)]
2

= √(0.082 cm)2 + (0.041 cm)2 = 0.092 cm 

Finally, the effective length of the pendulum is L =  (66.400 ± 0.092) cm, to one standard uncertainty. Given 

that the standard uncertainty was obtained by using a triangular probability density function, the coverage 

probability (level of confidence) in this result is 65%. 

Example 2: Calculating the uncertainty where measurements are correlated. 

Consider the situation where a starter pistol is fired and the sound wave reflects off a nearby wall to be heard 

by an observer. The total distance, 𝑥, travelled by the sound to return to can be seen as either: 

𝑥 = 𝑑1 + 𝑑2, where 𝑑1 is the distance from the source to the wall, and  𝑑2 is the distance from the 

wall to the listener - and you treat the two distances as if these were two 

independent measurements - 

or 

𝑥 =  2𝑑, where the same measurement, d, is used twice. In this case the measurement ‘there’ 

correlates with the measurement ‘back’, and so a covariance factor of √2 has to be 

included in the calculation of 𝑢(𝑥); which means you get the same result as with the 

other equation.  

Using the first method, where 𝑥 = 𝑑1 + 𝑑2. By means of the tape measure you determine 𝑑1 = (56.00 ± 0.25) 

m, and 𝑑2 = (56.00 ± 0.25) m. Which means that the ‘best approximation’ of the total distance 𝑥 = 𝑑1 + 𝑑2 = 

56.00 + 56.00 = 112.00 m. 

Now, with reference to Table C1-1, (measurements are being added) you calculate 𝑢(𝑥): 

[𝑢(𝑥)]2 = [1 𝑢(𝑑1)]2 + [1 𝑢(𝑑2)]2 = [0.25 m]2 + [0.25 m]2, so 𝑢(𝑥) = 0.3535 m. 

Using the second method, where 𝑥 = 2𝑑. By means of the tape measure you determine 𝑑 =
(56.00 ± 0.25 m). Which means that the ‘best approximation’ of the total distance 𝑥 = 2𝑑 = 2(56.00) =

112.00 m. 

Now, with reference to Table C1-1, (correlated variables) you calculate 𝑢(𝑥): 

𝑢(𝑥) = √2  𝑢(𝑑) = √2 (0.25 m), so 𝑢(𝑥) = 0.3535 m. 

The result of either calculation will be quoted as: 𝑥 ±  𝑢(𝑥) = 112.00 ± 0.35 m.  

Example 3: Calculating the uncertainty where measurements are multiplied together. 

Calculate the speed of sound in air having determined the time taken and the distance covered by a sound. 

The results are: 

distance,     𝑥 ±  𝑢(𝑥) = (112.00 ± 0.35) m, and 

time,            𝑡 ±  𝑢(𝑡) = (0.326 ± 0.018) s. 

The calculated ‘best approximation’ of the speed of sound is 

𝑣 =
𝑥

𝑡
=

112.0 m

0.326 s
= 343.3 m s−1. 
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Now, with reference to Table C1-1, (measurements are being multiplied) you calculate 𝑢(𝑥): 

[
𝑢(𝑣)

𝑣
]

2

= [1
𝑢(𝑥)

𝑥
]

2

+ [−1
𝑢(𝑡)

𝑡
]

2

 

[
𝑢(𝑣)

343.3 m s−1
]

2

= [1
0.36 m

112.0 m
]

2

+ [−1
0.018 s

0.326 s
]

2

 

     so 𝑢(𝑣) = 18.99 m s-1. 

The result of the calculation will be quoted as:  𝑣 ±  𝑢(𝑣)= (343 ± 19) m s-1. 

Example 4: Calculating frequency of an oscillation having measured the period. 

Assume the measured period of an oscillation to be 𝑇 ±  𝑢(𝑇) = (2.600 ± 0.055) ms. 

Then the calculated ‘best approximation’ of the frequency is 

𝑓 =
1

𝑇
= 𝑇−1 = (2.600 × 10−3)−1 = 384.615 Hz. 

The uncertainty in this calculated result is 

[
𝑢(𝑓)

𝑓
]

2

= [−
𝑢(𝑇)

𝑇
]

2

= [−1]2 [
𝑢(𝑇)

𝑇
]

2

→ 𝑢(𝑓) =
𝑢(𝑇)

𝑇
𝑓 From Table C1.1 

So 𝑢(𝑓) =
0.055×10−3 s

2.600 ×10−3 s
(384.615 Hz) = 8.136 Hz.  

The result of the calculation will be quoted as:  𝑓 ±  𝑢(𝑓) = (384.6 ± 8.2) Hz. 

Note in all these examples, the uncertainty is quoted to two (2) significant figures, and the best approximation 

has the same number of decimal places as the uncertainty. See the next section, D1, for more information on 

quoting. 

The “reductionist approach” to simplify the propagation of uncertainties 

Consider Example 3 again in terms of the fractional uncertainty, where the uncertainty is expressed as a 

fraction of the best approximation of the measurand (see Section D1): 

[
𝑢(𝑣)

𝑣
]

2

= [1
𝑢(𝑥)

𝑥
]

2

+ [−1
𝑢(𝑡)

𝑡
]

2

 

𝑢(𝑣)

𝑣
= √[0.0021]2 + [0.055]2 = 0.055 

Note how the fractional uncertainty in 𝑡 is an order of magnitude larger than the fractional uncertainty in 𝑥. 

As we are combining the fractional uncertainties in quadrature (sum of squares), the fractional uncertainty in 

𝑣 is dominated by the larger term; the fractional uncertainty in 𝑡. Effectively you only need to consider the 

larger component so can approximate the fractional uncertainty in 𝑣,  

[
𝑢(𝑣)

𝑣
]

2

≈ [−1
𝑢(𝑡)

𝑡
]

2

 

So you can find, 𝑢(𝑣) = 0.036 𝑣 = 0.055(343.3 ms−1) = 18.99 m/s, as before. 

Often you can substitute or combine equations to use the reductionist approach to great advantage. You will 

have an opportunity to try this out in Practical 5 in Part I, Vibrating String.  

Note the reductionist approach is only an appropriate approximation when you have at least one order of 

magnitude in difference between different fractional uncertainty components.  
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SECTION D – REPORTING RESULTS 

D1 Quoting a result 

The outcome of a measurement and/or an experiment is the best approximation of the measurand as well as 

the standard uncertainty, for example, the result of a measurement of gravitational acceleration 𝑔 may be: 

𝑔 =  (9.790 ±  0.052) ms−2. 

                (best approximation)  ±  (standard uncertainty) (68% coverage probability)   

Note that: 

 The result of a measurement is not a single value (not a point), it is an interval of values. 

 The greater the uncertainty, the ‘wider’ the interval that quantifies the result of the uncertainty in the 

measurement.   

 Because there is always some uncertainty in measurement, the width of the interval is never zero! 

Quoting the number of significant figures in the uncertainty 

 As a general rule, where a rigorous method to determine the uncertainty has been used, the standard 

uncertainty 𝑢(𝑧) should be quoted to two significant figures, 

 for example:   ± 0.032,     ± 5.4,     ± 72 x 103 

 However, where a more casual approach (guessing) has been used, it is necessary to make a ‘common 

sense’ decision and to quote the standard uncertainty 𝑢(𝑧) to one significant figure: 

 for example:   ± 0.04,        ± 6,       ± 8 x 104 

Quoting the number of decimal places in the best approximation 

Having quoted the uncertainty to two significant figures, count the number of decimal places to which this 

corresponds, then write the best approximation to the same number of decimal places as the uncertainty. 

For example: 

𝑔 =  (9.790 ±  0.052) ms−2. 

       (has three decimal places here) and (two sig. figures and three decimal places here). 

Quoting the result using fractional (%) uncertainty 

It may be convenient on occasion to express a standard uncertainty 𝑢(𝑥) as a fraction of the best approximation 

of the measurand 𝑥. Thus, we may sometimes refer to 

the fractional uncertainty given by 
𝑢(𝑥)

𝑥
, or 

the percentage uncertainty given by 
𝑢(𝑥)

𝑥
× 100 %. 

For example, if the quoted result of a measurement is (3.60  0.32) units, then the fractional uncertainty is 0.32 

/ 3.60  =  0.09 and the percentage uncertainty is 9%. 

This form of quoting the uncertainty is commonly used by manufacturers of electronic components where the 

uncertainty in the quoted value is called the “tolerance” and it is quoted as a percentage of the nominal value 

of the component. 

For example, if the value of a resistor is given as 220 Ω with a tolerance of 5%, it means that the resistance of 

the resistor is (220 ± 11) Ω. 
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Quoting experimental results as in many textbooks 

There are other ways of quoting the results of experiments and a common method used in textbooks is, for 

example, the quoting of the Universal Gas Constant R to be: 

R = 8.31451(72) J K−1 mol−1. 

The seven and two in brackets indicate that the last two digits ‘51’ have an uncertainty of ‘72’ associated with 

them; in other words, the book value is: 

R = (8.31451  0.00072) J K−1 mol−1. 

Quoting the result with an expanded uncertainty 

It sometimes happens that uncertainties are quoted to a greater coverage probability (i.e., with a greater 

level of confidence) and this is done simply by multiplying the standard uncertainty by what is known as a 

coverage factor, 𝑘.  

When this is done the uncertainty is referred to as the expanded uncertainty, 𝑈, where 𝑈 =  𝑘𝑢. 

The coverage factor, 𝑘, will depend on the coverage probability (level of confidence) with which the result is 

to be quoted, as well as the way in which the standard uncertainty, 𝑢, was determined. The coverage factors 

for the different combination are given below: 

If a Gaussian pdf was used: 

𝑘 = 1,   and 𝑦 ±  𝑘𝑢 defines a 68% coverage probability; 
𝑘 = 2,   and 𝑦 ±  𝑘𝑢 defines a 95% coverage probability; 
𝑘 = 3,   and 𝑦 ±  𝑘𝑢 defines a 99% coverage probability. 

If a rectangular pdf was used: 

𝑘 = 1,   and 𝑦 ±  𝑘𝑢 defines a 58% coverage probability; 

𝑘 = 1.65,  and 𝑦 ±  𝑘𝑢 defines a 95% coverage probability; 

𝑘 = 1.73,  and 𝑦 ±  𝑘𝑢 defines a 100% coverage probability. 

If a triangular pdf was used: 

𝑘 = 1,   and 𝑦 ±  𝑘𝑢 defines a 65% coverage probability; 

𝑘 = 1.81,  and 𝑦 ±  𝑘𝑢 defines a 95% coverage probability; 

𝑘 = 2.45,  and 𝑦 ±  𝑘𝑢 defines a 100% coverage probability. 

It is important to note that using a coverage factor does not change the result of the measurement; the 

standard uncertainty remains unchanged. All that happens is that the result is presented in a different way. 

The implication of this is that it is essential to report on the coverage probability (level of confidence) when 

the result is quoted. So for example the value of 𝑔 on the previous page may be quoted as: 

g = (9.79  0.16) m s−2 (99% coverage probability), where 𝑘 = 3. 

Coverage probability should be kept consistent when comparing results modelled with different probability 

distributions, i.e. say you directly compare results of measurements with Type A and Type B evaluations of 

uncertainty. This could be achieved by increasing the coverage factor to 𝑘 = 2, which would calculate the 

standard uncertainty for both evaluations with for a coverage probability of 95%. 

Say that a measurement was made in order to determine the mass m of an object. The pdf of the result is 

shown below in Figure 13(a) in which it may be seen that the best approximation of the mass 𝑚 is 83.50 g, 

with a standard uncertainty of 0.12 g. This defines an interval 83.50   0.12 g within which we are 58% 

confident that that the mass of the object will lie.  
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Figure 13: Probability density functions (pdfs) of a measurement corresponding to coverage factors  

of 1 (a) and 2 (b). 

The result in Figure 13(a) may be described as “𝑚 = (83.50  0.12) g, where the number following the symbol 

 is the numerical value of the standard uncertainty 𝑢  = 0.12 g and defines an interval estimated to have a 

coverage probability of 58 percent”. 

The result in in Figure 13(b) may be described as “𝑚 = (83.50  0.19) g, where the number following the 

symbol  is the numerical value of an expanded uncertainty 𝑈 =  𝑘 𝑢   with 𝑈 determined from a standard 

uncertainty 𝑢  = 0.12 g and a coverage factor 𝑘 = 1.65, and defines an interval estimated to have a coverage 

probability of 95 percent”. 

We are 58 % confident that the value of the mass lies between 83.38 g and 83.62 g. 

We are 95 % confident that the value of the mass lies between 83.31 g and 83.69 g. 

We are 100 % confident that the value of the mass lies between 83.30 g and 83.70 g. 

Note that by introducing an expanded uncertainty and coverage factor 𝑘  > 1, we are not affecting the result 

of the measurement. We are only changing the way that we present the result.  

Note in PHYLAB1 courses, it is rarely required to quote uncertainties to a greater coverage probability than 

𝑘 = 1. We include this section here so you are aware of it for future study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

D2 Comparing results 

To say that two results are “close” or “nearly the same” is meaningless in the context of laboratory work. 

The results of any two experiments can only be meaningfully compared if the intervals associated with each of 

the results are known. 

More specifically: 

 If the intervals that represent the results of two measurements overlap, then we say these two results 

“agree within experimental uncertainty.” 

 If the intervals that represent the results of two measurements do not overlap, then we say these 

results “do not agree within experimental uncertainty.”  

For example, say three students measure the period 𝑇 of a pendulum and they each quote the result as 

follows: 

𝑇1   =   (5.73  ±   0.41)  s 

𝑇2    =   (5.62  ±   0.10)  s 

𝑇3   =   (6.28  ±   0.25)  s 

The three measurements may be presented in the form of intervals on a number line: 

 

 

 

 

 

 

 

 

Figure 14: Comparison of results 

 Note that the intervals associated with 𝑇1 and 𝑇2 overlap, and therefore “these two results agree 

within experimental uncertainty”. 

 The intervals associated with 𝑇1 and 𝑇3 also overlap so “these two results agree within experimental 

uncertainty”. 

 However, the interval associated with 𝑇3 does not overlap with the interval associated with 𝑇2 and 

therefore “these two results do not agree within experimental uncertainty.”  

                  5.2      5.3      5.4       5.5      5.6      5.7       5.8       5.9       6.0       6.1       6.2       6.3      6.4       6.5     T (s) 

                   |         |         |         |         |         |         |         |          |         |          |         |         |         | 

 

𝑇1                                                       X                                   

𝑇2                                     X               

𝑇3                                                                                              X 
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D3 The uncertainty budget 

An uncertainty budget is an evaluation (usually presented in the form of a table) of all the contributions of 

uncertainty in a particular measurement (together with numerical estimates). These uncertainty components 

are then used to calculate the combined standard uncertainty for the measurement result. An uncertainty 

budget is a useful way to present how you dealt with all the uncertainties in a measurement. 

Example 1: A measurement using an analogue voltmeter 

Consider the situation where you are using an analogue voltmeter 

to measure the voltage across the terminals of a battery.  After 

connecting the voltmeter across the terminals of the battery, what 

you see on the voltmeter is shown alongside. 

Say that you decide that the reading 𝑉 is 1.54 volts, and using a 

triangular pdf, you determine the standard uncertainty 𝑢(𝑉read) on this scale reading to be: 

𝑢(𝑉read) =
(1.57 − 1.51) V

2√6
= 0.012 V. 

It is usually not the case that you be  100 %  confident that the instrument (in this case an analogue voltmeter) 

gives a perfect reflection of the input (i.e. the voltage across the terminals of the battery). All analogue and 

digital instruments have some internal calibration setting, referred to as the “rating” of the instrument. The 

uncertainty associated with this rating is usually indicated by the manufacturers of the instrument and is often 

quoted as a percentage. 

Say that we are told that the meter we are using here has a percentage calibration uncertainty of 1%. Then 

the uncertainty associated with the rating of the instrument is: 

𝑢(𝑉rating) = 0.01(1.54 V) = 0.015 V. 

There may be other sources of uncertainty associated with the instrument, such as the influence of the 

temperature of the surroundings, or the contact resistance in the probes.  Let us say that these are negligible 

in this case.  

After you have determined all the possible sources of uncertainty and assigned a numerical value to each, 

then you should draw up a table of the sort shown below, which is called an uncertainty budget. Each source 

of uncertainty is listed together with its standard uncertainty. You should note that these standard 

uncertainties can result from either Type A or Type B evaluations.    

Table D3-1:  Uncertainty budget for the single voltmeter reading, V. 

Uncertainty component Standard uncertainty (V) Type of evaluation 

Reading of the analogue 

voltmeter display, 𝑢(𝑉read) 

0.012 Type B 

Rating of the analogue 

voltmeter, 𝑢(𝑉rating)  

0.015 Type B 

Combined standard uncertainty: 𝑢(𝑉) = √(0.012 V)2 + (0.015 V)2 = 0.023 V.  
 

The final result in this case may then be recorded as: “the best approximation of the voltage 𝑉 is 1.520 volts 

with a combined standard uncertainty of 0.023 volts.” 
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Example 2: A set of dispersed digital readings 

Now let us presume that we are trying to measure the acceleration due to gravity 𝑔 by observing the period 

𝑇 of a pendulum of length 𝑙. We determine that 𝑙  =  0.2619    0.0058 m (where 𝑢(𝑙) results from a Type B 

evaluation of uncertainty with an analogue metre stick). 

We then use a digital stopwatch to measure the period of the pendulum. You cause the pendulum to oscillate 

and then record the time for 20 complete swings. You repeat this procedure 10 times and observe the data: 

Table D3-2:  Data recorded using a digital stopwatch. 

Time for 20 swings, 𝑇20 (s) Period, 𝑇 = 𝑇20/20 (s) 

19.56 
20.49 
20.76 
20.63 
21.56 

21.31 
20.82 
19.78 
20.39 
20.02 

0.978 
1.025 
1.038 
1.032 
1.078 

1.066 
1.041 
0.989 
1.020 
1.001 

 

Since we observe a dispersion (scatter) in the readings, the best estimate of the period 𝑇 is given by the 

arithmetic mean �̅�, which is  1.027 s, and the standard uncertainty associated with the scatter is given by the 

experimental standard deviation of the mean, which is 0.010 s. Then 𝑢(�̅�) = 0.010 s. This is a Type A 

evaluation of uncertainty. Another source of scatter you might consider is the uncertainty in the gradient of a 

linear graph (“the scatter in the (𝑥, 𝑦) data, 𝑢(𝑚)”). 

Let us say that the manufacturers of the stopwatch report that it is accurate to 0.5%. Then the uncertainty 

associated with the internal calibration or rating, 𝑢(𝑇rating), will be:  

𝑢(𝑇rating) = (0.005)(1.027 s) = 0.0051 s. 

To determine 𝑔,  we use the formula: 

𝑇 = 2𝜋√
𝑙

𝑔
      →        𝑔 =

4𝜋2𝑙

𝑇2
. 

This is our model equation for this measurement. The best approximation for 𝑔 is given by, 

𝑔 =
4𝜋2(0.2619 m)

(1.027 s)2
= 9.8028 ms−2. 

The uncertainty budget for this measurement is shown below. 

Table D3-3:  Uncertainty budget for the measurement of gravitational acceleration, 𝒈. 

Uncertainty component Standard uncertainty Type of evaluation 

Scatter in the 𝑇 data, 𝑢(�̅�) 0.010 s Type A 

Rating of the stopwatch, 𝑢(𝑇rating) 0.0051 s Type B 

Reading of 𝑙 from the analogue metre 
stick, 𝑢(𝑙) 

0.0058 m Type B 

The combined uncertainty for 𝑇 is 𝑢(𝑇) = √(0.010 s)2 + (0.0051 s)2 = 0.011 s. 

The standard uncertainty for 𝑔 is given by 𝑢(𝑔) = 𝑔√(
𝑢(𝑙)

𝑙
)

2
+ (

𝑢(𝑇)

𝑇
)

2
 

𝑢(𝑔) = (9.8028 ms−2)√(
0.0058 m

0.262 m
)

2

+ (2
0.011 s

1.027 s
)

2

= 0.302 ms−2. 

 

The final result may then be recorded as: “the best estimate of the acceleration due to gravity 𝑔 is 9.80 m s-2  

with a standard uncertainty of 0.30 m s-2.” 
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SECTION E – FITTING A LINEAR FUNCTION TO THE DATA 

E1 The process of fitting a function to a set of data 

Sometimes you cannot directly measure the information you are seeking, so instead you measure other 

values and determine the required information indirectly. This process often involves the method of ‘fitting’ 

some known mathematical function to a set of data. 

The ‘fitting’ process is shown in Figure 15.  

Measurement 

Tabulate the data (readings). 

 

Re-organise the data in accordance with the linearised function you 

plan to use. See E2 Linearising equations. 

                                 

Plot the graph to confirm that the expected relationship is indeed 

linear. 

 

Use a least squares fit to fit a straight line to the data, the equation of 

which is 𝑦 = 𝑚𝑥 + 𝑐. See E3 Method of least squares. 

 

Extract the information you are after from the coefficients m and c of 

the fitted function. 

 

Determine the uncertainties 𝑢(𝑚) and 𝑢(𝑐) by determining how well 

the scattered data fits the mathematical function. 

This is a TYPE A evaluation. 

 

Quote the results of the measurement; 𝑚 ± 𝑢(𝑚) with units and 𝑐 ±

𝑢(𝑐) with units. 

 

Calculation 

Calculate the value of the measurand you are after and do the 

necessary uncertainty calculations to determine the uncertainty in the 

final result. See C1 Calculation of uncertaint. 

  

Figure 15: Process for extracting information by fitting mathematical functions. 
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E2 Linearising equations 

When presented with a relationship between experimental variables that is not linear, the method of 

‘linearising’ can be used extract information from recorded data. 

Effectively, you rearrange the non-linear equation to take the form of a linear equation; 𝑦 = 𝑚𝑥 + 𝑐. After 

plotting values on a graph for 𝑦 against 𝑥, you can use the gradient, 𝑚, and 𝑦-intercept, 𝑐 to calculate useful 

values. 

Example: 

Consider an experiment to investigate the relationship between the position 𝑠 of an object over time 𝑡 while 

that object is subject to a uniform (constant) acceleration 𝑎. This experiment is underpinned by the following 

kinematic equation: 

𝑠 =  
1

2
𝑎𝑡2 + 𝑢𝑡 + 𝑠0, … E2-1 

where 𝑢 is the initial velocity and 𝑠0 is the initial position of the object. 

If a set of data, (𝑡𝑖 , 𝑠𝑖), i = 1, 2, 3, …, n, were collected, then it would be difficult to determine the coefficients 

𝑎, 𝑢 and 𝑠0 by plotting a graph of the equation E2-1 because the relationship between the position 𝑠 and the 

time 𝑡 is a parabola of the form 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.  

Equation E2-1 can be ‘linearised’ by considering the position relative to the initial position 𝑠0 and by dividing 

throughout by 𝑡 ( given that 𝑡 ≠  0 ): 

𝑠 − 𝑠0

𝑡
=  

1

2
𝑎𝑡 + 𝑢. 

… E2-2 

 

In the rearranged equation, there is a linear relationship between 
𝑠−𝑠0

𝑡
 and 𝑡, of the form, 𝑦 = 𝑚𝑥 + 𝑐: 

𝑠 − 𝑠0

𝑡
=  

1

2
𝑎    𝑡 + 𝑢 

 

     𝑦  =      𝑚    𝑥 + 𝑐  

Therefore plotting a graph with calculated values of (𝑡𝑖 ,
𝑠𝑖−𝑠0

𝑡𝑖
) as the values (𝑥𝑖 , 𝑦𝑖) should yield a linear 

relationship. 

You can now determine the acceleration, 𝑎, in equation E2-1 from the gradient of the graph and the initial 

velocity, 𝑢, from the 𝑦-intercept. 
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E3 Method of least squares 

An accurate method to find the slope 𝑚 and the intercept 𝑐 of the best fit line is to use the method of least 

squares. This method also allows you to determine the uncertainty in the slope, 𝑢(𝑚), and the uncertainty in 

the intercept 𝑢(𝑐). 

Given a set of data pairs (𝑥𝑖 , 𝑦𝑖), i = 1, 2, 3, …, n, and that the data pairs represent a linear relationship, then 

the slope 𝑚 and the intercept 𝑐 of the best fit line can be determined by the following equations: 

𝑚 =
𝑛 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2

 … E3-1 

𝑐 =
∑ 𝑥𝑖

2 ∑ 𝑦𝑖 − ∑ 𝑥𝑖𝑦𝑖 ∑ 𝑥𝑖

𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2

 … E3-2 

Let 𝑑𝑖 = 𝑦𝑖 − (𝑚𝑥𝑖 + 𝑐), the distance between each data point and the line of best fit. The uncertainties 

associated with m and c can be determined using: 

𝑢(𝑚) = √
∑ 𝑑𝑖

2

𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2

(
𝑛

𝑛 − 2
), … E3-3 

𝑢(𝑐) = √
∑ 𝑑𝑖

2 ∑ 𝑥𝑖
2

𝑛(𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2)

(
𝑛

𝑛 − 2
). … E3-4 

A computer is generally available to you in PHYLAB1 and the method of least squares can be employed using 

the following programs: 

 Microsoft Excel (by typing in the equations) or 

 LinearFit (by entering the data). 

If a computer is not available, use your calculator to draw up tables of data as suggested below and solve the 

equations above. Some calculators will allow you to analyse data pairs. 

𝑖 𝑥𝑖  𝑦𝑖  𝑥𝑖
2 𝑥𝑖𝑦𝑖  𝑑𝑖

2 

… … … … … … 

… … … … … … 

… … … … … … 

 ∑ 𝑥𝑖  ∑ 𝑦𝑖  ∑ 𝑥𝑖
2 ∑ 𝑥𝑖𝑦𝑖 ∑ 𝑑𝑖

2 
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E4 Using EXCEL (2010 version) 

Tables with Excel 

Initiate Excel by clicking on the Excel shortcut on the computer’s desktop. Note the Excel worksheet is divided 

into a series of columns (A-Z) and rows (1:99999). Each cell has an index corresponding to its column and row, 

e.g. A2. If you want to get Excel to do a calculation, click on the cell where you want the answer to go, and 

TYPE = followed by the required mathematical expression. For example, if the value in the particular cell is 

obtained by multiplying the value in cell C3 by that in D3, TYPE  = C3*D3  and press enter (or you can just TYPE 

=, then click on cell C3, TYPE *, click on D3 and hit the enter key). In Excel, the * symbol is used to indicate 

multiply, the / symbol divide, and the ^ symbol “raise to the power”. Use fractional powers for roots, e.g. to 

the power of ½ is equivalent to taking the square root of a number. 

To apply the same formula to a list of cells in a column; select the cell where you have typed the formula, 

move the cursor over the bottom right hand corner until the + symbol appears, and then drag it down the 

column. Excel copies the formula to all the cells and also adjusts the cell indices in each formula by 

incrementing their row numbers in line with where you dragged the cursor. You can also copy horizontally, 

which will increment the column letters in the cell indices. Try this out and click one of the copied cells to see 

how the cell index has changed in the equation. If you want to fix the cell index to use the same value in all 

formulae across different rows or columns, use a $ sign to fix a column and/or a row index (e.g. $E$5 included 

in a formula is left unchanged when copied to a new cell).      

Take care to display the correct number of significant figures in your data. Since Excel calculates the answer to 

as many places as can physically fit in the cell, you often need to adjust the number of decimal places in 

columns to reflect the correct number of significant figures. Increasing and decreasing the number of decimal 

places can be achieved using the buttons marked .  To outline the cells or add borders to your table 

use the button marked   . To add headings (and units) to columns, click on the cell and TYPE as you 

would normally do. To produce superscripts and subscripts in the titles, select the text you want to raise or 

lower, and use the right click to access the “Format Cells” menu. Then select “Superscript” or “Subscript”.  

Further options can be accessed in the Excel menus or using the right-click menu. 

Plotting with Excel 

When you are ready for Excel to plot your data, you need to highlight the two columns of data you wish to 

plot and use INSERT, SCATTER to call up the chart (plotting) procedure; ideally in the order 𝒙 then 𝒚. Select 

the chart sub-type option  which allows you to plot the points without lines. Under the CHART TOOLS set 

of menus, you can change the Design (colour and style of data points), Layout (add titles, axes-titles, gridlines) 

and the Format (chart size). Move your plot into the desired position by clicking just inside the borders and 

dragging it to where you want it positioned. Other options can be accessed by selecting the chart with a right-

click of the mouse. You can change the origin and scale of the plot so that your graph covers most of the page. 

To change the scale on the 𝑥-axis, click on the axis to select it. Next right-click to access the FORMAT AXIS 

option and in the Axis Options sub-menu, adjust the minimum and maximum values as required. You can also 

change the number of decimal places or to scientific exponent form under the Number sub-menu.  

Best fit with Excel 

To draw the line of best fit through your points, click somewhere inside your graph to select it, then click on 

CHART TOOLS, LAYOUT, ADD TRENDLINE and select the LINEAR option (or alternatively select the data points 

and access by the right-click mouse menu). If you need to know the slope and intercept of this straight line, 

click on OPTIONS and check the DISPLAY EQUATION ON CHART box.  
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E5 Using LINEARFIT 

LinearFit can be used to calculate the slope 𝑚 ± 𝑢(𝑚) and the intercept 𝑐 ± 𝑢(𝑐) of the linear line of best fit. 

To start the program, click on the LinearFit shortcut on the desktop. The program will open and present the 

page as shown in Figure 16. Type the 𝑥 and 𝑦 values into the appropriate columns, or alternatively import 

your data in a .csv file (e.g. saved from Excel) in the format 𝑥, 𝑦, 𝑢(𝑥), 𝑢(𝑦) and LinearFit will automatically 

calculate 𝑚 ± 𝑢(𝑚) and 𝑐 ± 𝑢(𝑐). When printing, don’t forget to add your student number to help you 

identify your work at the printers. 

 
Figure 16: Data input and fitting screen of LinearFit. 

LinearFit with weightings 

Tick the “Enable 𝑢(𝑥) weights” and the “Enable 𝑢(𝑦) weights” boxes. This will open two additional columns 

for you to type in the weightings, i.e., the 𝑢(𝑥𝑖) and 𝑢(𝑦𝑖) values for the respective 𝑥𝑖  and 𝑦𝑖  readings, i = 1, 2, 

3, …, n. When these weightings are included, the individual uncertainties are presented as intervals around 

each data point; see Figure 17. 

 

Figure 17: LinearFit with weightings enabled. 
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SECTION F – EXAMPLE OF FITTING A GAUSSIAN 

Consider an example in which the measurand is the time taken for you to travel from wherever you live to the 

university campus. So, for the next 40 trips to the university you use the stopwatch on your cell phone to 

determine your travel time in minutes, i.e. you take a set of readings. 

The data are tabulated as follows: 

Table F-1: Time taken to get from home to campus (in minutes). 

17.1 16.9 17.4 16.4 16.8 17.9 16.0 18.2 

18.1 19.3 16.9 17.4 17.8 17.1 17.6 17.8 

16.4 17.4 15.9 15.8 17.7 17.3 17.4 16.8 

16.6 16.8 17.6 17.4 18.9 18.4 17.9 17.8 

18.3 17.2 18.1 18.7 16.3 17.4 18.4 16.5 

 

A simple calculation shows that the average time taken is 17.39 minutes. 

We wish to present this data in a histogram, so the next step is to draw up a frequency table (or distribution 

table). Note that in this example a bin width of 0.5 minutes was chosen. The choice of bin width is arbitrary 

and is normally chosen to suit the data. 

Table F-2: Frequency table for data in Table F-1. 

Bin (minutes) Number of readings per bin 

15.5 to 15.9 2 

16.0 to 16.4 4 

16.5 to 16.9 7 

17.0 to 17.4 10 

17.5 to 17.9 8 

18.0 to 18.4 6 

18.5 to 18.9 2 

19.0 to 19.4 1 

 Total : 40 
 Next we plot a histogram showing how the data are distributed over the values of the readings taken by 

plotting the number of readings per bin vs. the time interval of bins (see Figure 18). Finally, to show that the 

general shape of the histogram suggests that the distribution of the data is Gaussian in shape, we 

superimpose a trend line, shown as the light grey line in Figure 18. 

It should be noted that as more and more readings are added to the set of data, and the bin width is 

narrowed, the distribution of most data of this sort will tend towards the formation of a symmetrical Gaussian 

distribution. 

The Gaussian probability density function (pdf) 

Having decided that the Gaussian probability density function (pdf) is a suitable probability density function 

by which to model our knowledge of the measurand, we need to consider the implications. The probability 

density function of a continuous random variable is a function that can be used to obtain the probability 

that the random variable may take a specific value within some given interval. 

When the probability density function (pdf) is normalised and portrayed graphically, the probability that 

the random variable may take a specific value within a given interval is indicated by the area under the 

graph subtended by that interval. So, if the given interval is all possible values, then the total area under 

the pdf is “1” (unity), meaning that the probability that the specified value exists is also 1. As the interval is 

made “narrower”, so the probability that the specific number is within that interval becomes less. 
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Figure 18: Histogram of travel times. 

The important features of the Gaussian pdf are illustrated graphically in Figure 19. 

 

Figure 19: Gaussian pdf showing standard deviation. 

The equations used to calculate the standard deviation are given in B2 TYPE A evaluation of uncertainty, and 

the standard deviation can also be found graphically by drawing a horizontal line at 0.61 of the maximum 

height of the Gaussian, as shown in Figure 19.  

In laboratory work, the use of the standard deviation gives a measure of the consistency of the measurement 

process that was used in an experiment, and makes it possible to specify the level of confidence with which 

the result of the measurement is quoted. In this case, the coverage probability (level of confidence) is 68%, as 

explained in Figure 19. 

However, exercise caution as the standard deviation and mean are only appropriate metrics for data that can 

be modelled with a Gaussian distribution. You may encounter data that is better modelled with a different 

distribution (e.g. radioactive decay is modelled with a Poisson distribution). 

 

 

 


