

The Color Glass Condensate QCD at modern collider facilities

Heribert Weigert

CPTEIC, Jan 30 - Feb 03 2012

Outline

1 Motivation: gluons form the CGC

- Background information on the standard model
- Current and planned collider experiments
- Enhanced gluon production at high energies
- CGC: why the name

2 JIMWLK evolution: properties of the CGC

- Gluons in observables
- The evolution equation
- The saturation scale
- 3 A sample experiment
 - Geometric scaling @ HERA

4 Getting quantitative

- NLO corrections
- HERA fits
- 5 Applications and outlook

Outline

1 Motivation: gluons form the CGC

- Background information on the standard model
- Current and planned collider experiments
- Enhanced gluon production at high energies
- CGC: why the name

2 JIMWLK evolution: properties of the CGC

- Gluons in observables
- The evolution equation
- The saturation scale
- 3 A sample experiment
 - Geometric scaling @ HERA
- 4 Getting quantitative
 - NLO corrections
 - HERA fits
- 5 Applications and outlook

From atoms to the standard model

+Higgs

QCD: the strong interaction

Focus on QCD:

+Higgs

High energy physics viewed from UCT

The Quark Gluon Plasma at RHIC and LHC

The Quark Gluon Plasma at RHIC and LHC

The Quark Gluon Plasma at RHIC and LHC

RHIC event (STAR), side view

LHC event (ALICE)

Particle production at modern colliders

Large amounts of energy available: 200-14000 m_{proton}

heavy ions @ RHIC & LHC: QGP

- new physics phenomena copious gluon
 - production

Color Glass Condensate CGC

Energy dependence: from photons to gluons

Energy dependence: from photons to gluons

Example: *ep* at HERA

Example: *ep* at HERA

• Q^2 determines the resolution

 $Q^2 := -q^2 \gg 0$ spacelike! transverse resolution $\Delta \boldsymbol{r} \sim \frac{1}{O}$

• $\ln E$ comes with many aliases:

- density nonlinear effects
- finite correlation length R_s

 $\ln Q^2$

- density nonlinear effects
- finite correlation length R_s

- density nonlinear effects
- finite correlation length R_s

Why the name?

Outline

Motivation: gluons form the CGC

- Background information on the standard model
- Current and planned collider experiments
- Enhanced gluon production at high energies
- CGC: why the name

2 JIMWLK evolution: properties of the CGC

- Gluons in observables
- The evolution equation
- The saturation scale
- 3 A sample experiment
 - Geometric scaling @ HERA
- 4 Getting quantitative
 - NLO corrections
 - HERA fits
- 5 Applications and outlook

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

$$\sigma_{\rm DIS}(\boldsymbol{Y},Q^2) = 2 \operatorname{Im}$$

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

 \bullet $\sigma_{\rm dipole}$ contains $U_{m{x}}$

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

- ullet σ_{dipole} contains $U_{oldsymbol{x}}$
- $\langle \ldots \rangle (Y)$ difficult: target wavefunction is non-perturbative

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

 σ_{dipole}

- ullet σ_{dipole} contains $U_{oldsymbol{x}}$
 - $\langle \ldots
 angle (Y)$ difficult: target wavefunction is non-perturbative

Total cross section (zeroeth order in $\alpha^m (\alpha_s \ln(1/x))^n$)

 σ_{dipole}

ullet σ_{dipole} contains $U_{oldsymbol{x}}$

 $\langle \ldots \rangle (Y)$ difficult: target wavefunction is non-perturbative

Bookkeeping device:
$$\langle \ldots \rangle (\mathbf{Y}) = \int \hat{D}[U] \ldots \hat{Z}_{\mathbf{Y}}[U]$$

ò

Heribert Weigert Nucl. Phys. A703, 2002, 823

Heribert Weigert - CGC: QCD @ modern colliders

$$\frac{d}{dY}Z_{Y}[U] = -H_{\mathsf{JIMWLK}}[U] \quad Z_{Y}[U]$$

• resums all $\sim [\alpha_s \ln(1/x)]^n$ (at LO)

$$\frac{d}{dY}Z_{Y}[U] = -H_{\mathsf{JIMWLK}}[U] \quad Z_{Y}[U]$$

• resums all $\sim [\alpha_s \ln(1/x)]^n$ (at LO)

• energy dependence of $\langle \ldots \rangle (Y)$

Saturation scale and cross section

•
$$\langle \ldots \rangle (Y)$$
 \longrightarrow $\langle \frac{\operatorname{tr}(1 - U_{\boldsymbol{x}} U_{\boldsymbol{y}}^{\dagger})}{N_c} \rangle (Y) =: N_{\boldsymbol{Y}}(r)$

Heribert Weigert - CGC: QCD @ modern colliders

Saturation scale and cross section

•
$$\langle \ldots \rangle (Y)$$
 \longrightarrow $\langle \frac{\operatorname{tr}(1 - U_{\boldsymbol{x}} U_{\boldsymbol{y}}^{\dagger})}{N_c} \rangle (Y) =: N_Y(r)$

qualitative expectation:

$$R_s(\mathbf{Y}) \sim \frac{1}{Q_s(\mathbf{Y})}$$

 $R_s(\mathbf{Y}) \equiv \text{correlation length}$
 $Q_s(\mathbf{Y}) \equiv \text{saturation scale}$

Saturation scale and cross section

•
$$\langle \ldots \rangle (Y)$$
 \longrightarrow $\langle \frac{\operatorname{tr}(1 - U_{\boldsymbol{x}} U_{\boldsymbol{y}}^{\dagger})}{N_c} \rangle (Y) =: N_Y(r)$

qualitative expectation:

correlation length shrinks:

$$R_s(Y) \sim \frac{1}{Q_s(Y)}$$

 $R_s(Y) \equiv \text{correlation length}$
 $Q_s(Y) \equiv \text{saturation scale}$

JIMWLK: IR safety and scaling

• Activity (new gluon production) near $Q_s(\mathbf{Y})$

JIMWLK: IR safety and scaling

• Activity (new gluon production) near $Q_s(\mathbf{Y})$

- activity follows $Q_s(Y)$
- IR safety perturbative ✓
JIMWLK: IR safety and scaling

• Activity (new gluon production) near $Q_s(\mathbf{Y})$

- activity follows $Q_s(Y)$
- IR safety perturbative

Detailed analysis:

scaling with $Q_s(Y)$ [persists approximately @ NLO]

JIMWLK: IR safety and scaling

• Activity (new gluon production) near $Q_s(\mathbf{Y})$

- activity follows $Q_s(Y)$
- IR safety perturbative

Detailed analysis:

scaling with $Q_s(Y)$ [persists approximately @ NLO]

Outline

Motivation: gluons form the CGC

- Background information on the standard model
- Current and planned collider experiments
- Enhanced gluon production at high energies
- CGC: why the name

2 JIMWLK evolution: properties of the CGC

- Gluons in observables
- The evolution equation
- The saturation scale
- 3 A sample experiment
 - Geometric scaling @ HERA

4 Getting quantitative

- NLO corrections
- HERA fits
- 5 Applications and outlook

to Hera

Golec-Biernat, Wüsthoff; PRD 60 (1999) 114023 [hep-ph/9903358]

Golec-Biernat, Wüsthoff; PRD 60 (1999) 114023 [hep-ph/9903358]

scaling fit to HERA: $\sigma(\boldsymbol{Y},\boldsymbol{Q}^2) \sim F_2(\boldsymbol{Y},\boldsymbol{Q}^2) \cdot \boldsymbol{Q}^2$

Golec-Biernat, Wüsthoff; PRD 60 (1999) 114023 [hep-ph/9903358]

scaling fit to HERA:

$$\sigma(Y,Q^2) = \sigma(Y_0,\tau = Q^2 \frac{Q_s^2(Y_0)}{Q_s^2(Y)})$$

Golec-Biernat, Wüsthoff; PRD 60 (1999) 114023 [hep-ph/9903358]

• ...& with nuclei: $\sigma(Y,Q^2) = \sigma(Y_0, \tau = Q^2 \frac{(Q_s^A(Y_0))^2}{(Q_s^A(Y))^2})$

Outline

1 Motivation: gluons form the CGC

- Background information on the standard model
- Current and planned collider experiments
- Enhanced gluon production at high energies
- CGC: why the name

2 JIMWLK evolution: properties of the CGC

- Gluons in observables
- The evolution equation
- The saturation scale
- 3 A sample experiment
 - Geometric scaling @ HERA

4 Getting quantitative

- NLO corrections
- HERA fits

5 Applications and outlook

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:

Corrections to wave functions/impact factors

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:
 - running coupling

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov Balitsky

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corrections to wave functions/impact factors

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:
 - running coupling

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov Balitsky

new channels: quark/gluon-pair production ("conformal")

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov

Corrections to wave functions/impact factors

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:
 - running coupling

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov Balitsky

new channels: quark/gluon-pair production ("conformal")

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov

Corrections to wave functions/impact factors

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:
 - running coupling

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov Balitsky

new channels: quark/gluon-pair production ("conformal")

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov

Corrections to wave functions/impact factors

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:
 - running coupling

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov Balitsky

new channels: quark/gluon-pair production ("conformal")

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov

Corrections to wave functions/impact factors

- LO: $[\alpha_s \ln(1/x)]^n$; NLO: $[\alpha_s]^n [\ln(1/x)]^{n-1}$
 - Corrections to evolution:
 - running coupling

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov Balitsky

new channels: quark/gluon-pair production ("conformal")

Gardi, Kuokkanen, Rummukainen, Weigert Weigert, Kovchegov

Corrections to wave functions/impact factors

Motivation: gluons form the CGC JIMWLK evolution: properties of the CGC A sample experiment Getting quantitative Applications and outlook

Effects of NLO-corrections

NLO evolution: speed reduced

 $\lambda(Y) := \frac{d}{dY} \ln Q_s^2(Y)$

too fast

Effects of NLO-corrections

NLO evolution: speed reduced

 $\lambda(Y) := \frac{d}{dY} \ln Q_s^2(Y)$

Effects of NLO-corrections

NLO evolution: speed reduced

 $\lambda(Y) := \frac{d}{dY} \ln Q_s^2(Y)$

Effects of NLO-corrections

NLO evolution: speed reduced

 $\lambda(Y) := \frac{d}{dY} \ln Q_s^2(Y)$

Motivation: gluons form the CGC JIMWLK evolution: properties of the CGC A sample experiment Getting quantitative Applications and outlook

Fit to HERA data

Total cross section:

Rapidity gap events (diffractive events):

Fit to HERA data

10

Rapidity gap events (diffractive events):

Fit to HERA data

Rapidity gap events (diffractive events):

Fit to HERA data

Outline

Motivation: gluons form the CGC

- Background information on the standard model
- Current and planned collider experiments
- Enhanced gluon production at high energies
- CGC: why the name

2 JIMWLK evolution: properties of the CGC

- Gluons in observables
- The evolution equation
- The saturation scale
- 3 A sample experiment
 - Geometric scaling @ HERA
- 4 Getting quantitative
 - NLO corrections
 - HERA fits
- 5 Applications and outlook

Motivation: gluons form the CGC JIMWLK evolution: properties of the CGC A sample experiment Getting quantitative Applications and outlook

Applications

Geometric scaling in $\gamma^* p \& \gamma^* A$

Motivation: gluons form the CGC JIMWLK evolution: properties of the CGC A sample experiment Getting quantitative Applications and outlook

The Color Glass Condensate, a birds eye view

CGC in experiments @:

- RHIC, HERA
- Tevatron (new!)
- LHC
- EIC & LHeC (dedicated!)

Main characteristic:

• correlation length $R_s(Y) \sim rac{1}{Q_s(Y)}$

 Q_s -scaling: Y dependence via $Q_s(Y)$

Outline

6 The JIMWLK Hamiltonian

7 Running coupling

8 Experiments

- From CGC to QGP
- Cronin effect BRAHMS
- Multiplicities
- Monojets RHIC
- Forward particle production RHIC

The JIMWLK Hamiltonian

The JIMWLK Hamiltonian

$$H_{\text{JIMWLK}} = -\frac{1}{2} \frac{\alpha_s}{\pi^2} \, \mathcal{K}_{xzy} \left[i \nabla_x^a i \nabla_y^a + i \bar{\nabla}_x^a i \bar{\nabla}_y^a + \tilde{U}_z^{ab} (i \bar{\nabla}_x^a i \nabla_y^b + i \nabla_x^a i \bar{\nabla}_y^b) \right]$$

$$\mathcal{K}_{\boldsymbol{x}\boldsymbol{z}\boldsymbol{y}} = \frac{(\boldsymbol{x}-\boldsymbol{z})\cdot(\boldsymbol{z}-\boldsymbol{y})}{(\boldsymbol{x}-\boldsymbol{z})^2(\boldsymbol{z}-\boldsymbol{y})^2}$$
 [integration convention for x, z, y]

$$i
abla^a_{m{x}}$$
 and $iar
abla^a_{m{x}}$ are functional derivatives:

$$i
abla^a_{oldsymbol{x}}:=-[U_{oldsymbol{x}}t^a]_{ji}rac{\delta}{\delta U_{oldsymbol{x},ij}}$$
 is

$$ar{
abla}^{a}_{m{x}} := [t^{a}U_{m{x}}]_{ji}rac{\delta}{\delta U_{m{x},i}}$$

generate I. & r. inv vector fields, r & I rotations:

$$e^{-i\omega^a(i\nabla^a)}U = Ue^{i\omega^a t^a}$$
 $e^{-i\omega^a(i\overline{\nabla}^a)}U = e^{-i\omega^a t^a}U$

reps of the algebras: $[i\nabla^a, i\nabla^b] = if^{abc}i\nabla^c$ $[i\bar{\nabla}^a, i\bar{\nabla}^b] = if^{abc}i\bar{\nabla}^c$ $[i\bar{\nabla}^a, i\nabla^b] = 0$

The JIMWLK Hamiltonian

$$H_{\text{JIMWLK}} = -\frac{1}{2} \frac{\alpha_s}{\pi^2} \, \mathcal{K}_{xzy} \left[i \nabla^a_x i \nabla^a_y + i \bar{\nabla}^a_x i \bar{\nabla}^a_y + \tilde{U}^{ab}_z (i \bar{\nabla}^a_x i \nabla^b_y + i \nabla^a_x i \bar{\nabla}^b_y) \right]$$

Outline

6 The JIMWLK Hamiltonian

7 Running coupling

8 Experiments

- From CGC to QGP
- Cronin effect BRAHMS
- Multiplicities
- Monojets RHIC
- Forward particle production RHIC

Outline

6 The JIMWLK Hamiltonian

7 Running coupling

8 Experiments

- From CGC to QGP
- Cronin effect BRAHMS
- Multiplicities
- Monojets RHIC
- Forward particle production RHIC
From Colored Glass to Quark Gluon Plasma

Erasing the Cronin effect on the parton level [BRAHMS]

Multiplicities at RHIC and LHC(?)

J. L. Albacete, Phys. Rev. Lett. 99 (2007) 262301 [arXiv:0707.2545 [hep-ph]]

◆□ → ◆□ → ◆三 → ◆三 → ●目目 → ○ ○ ○

Monojets at RHIC

light nuclei: back to back jets

not quantitative: energy too low centrally, see Cronin

heavy nuclei: Monojets; back to back correlation is broken

partial NLO: running coupling only!

ò

Forward particle production RHIC

partial NLO: running coupling only!