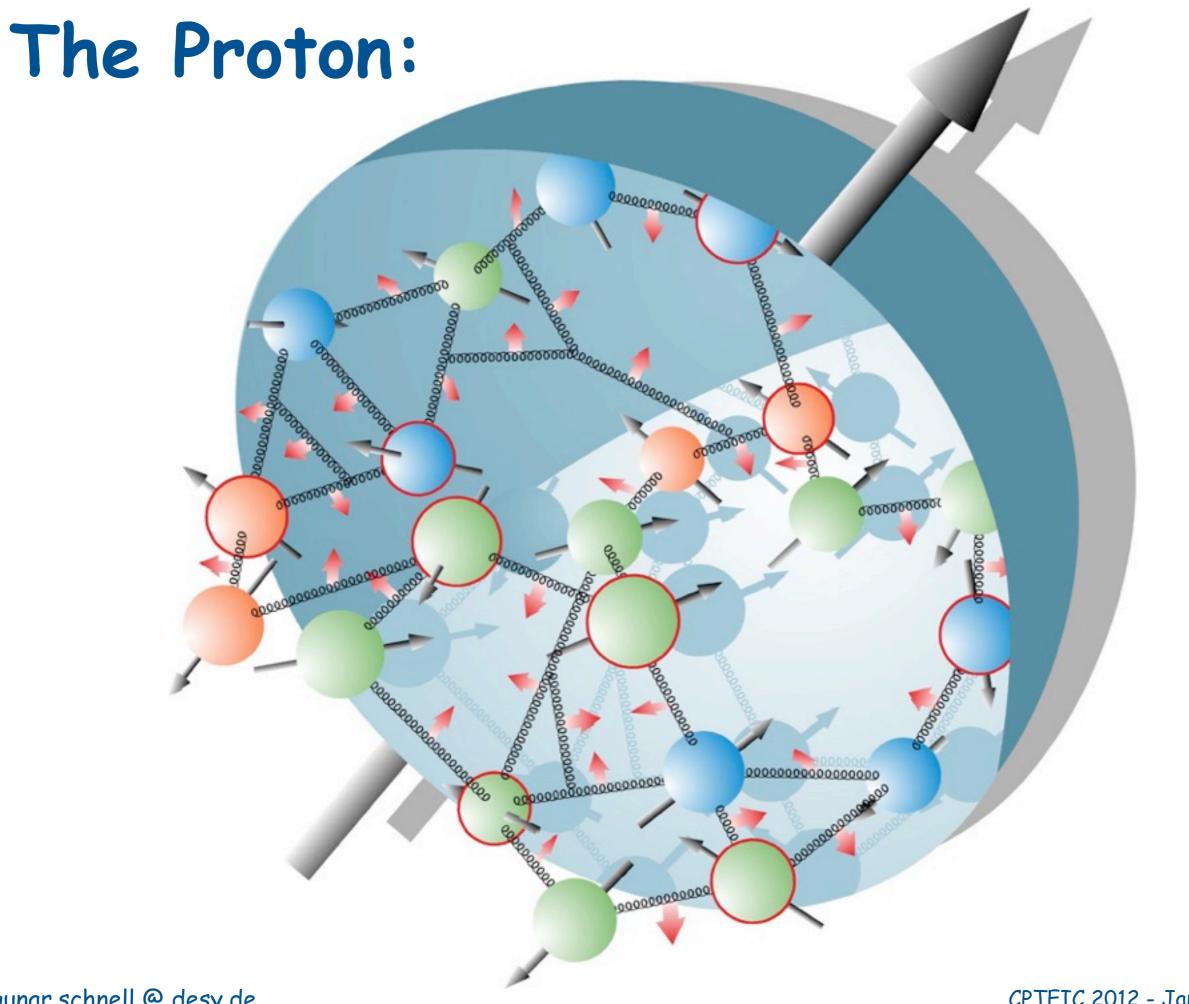
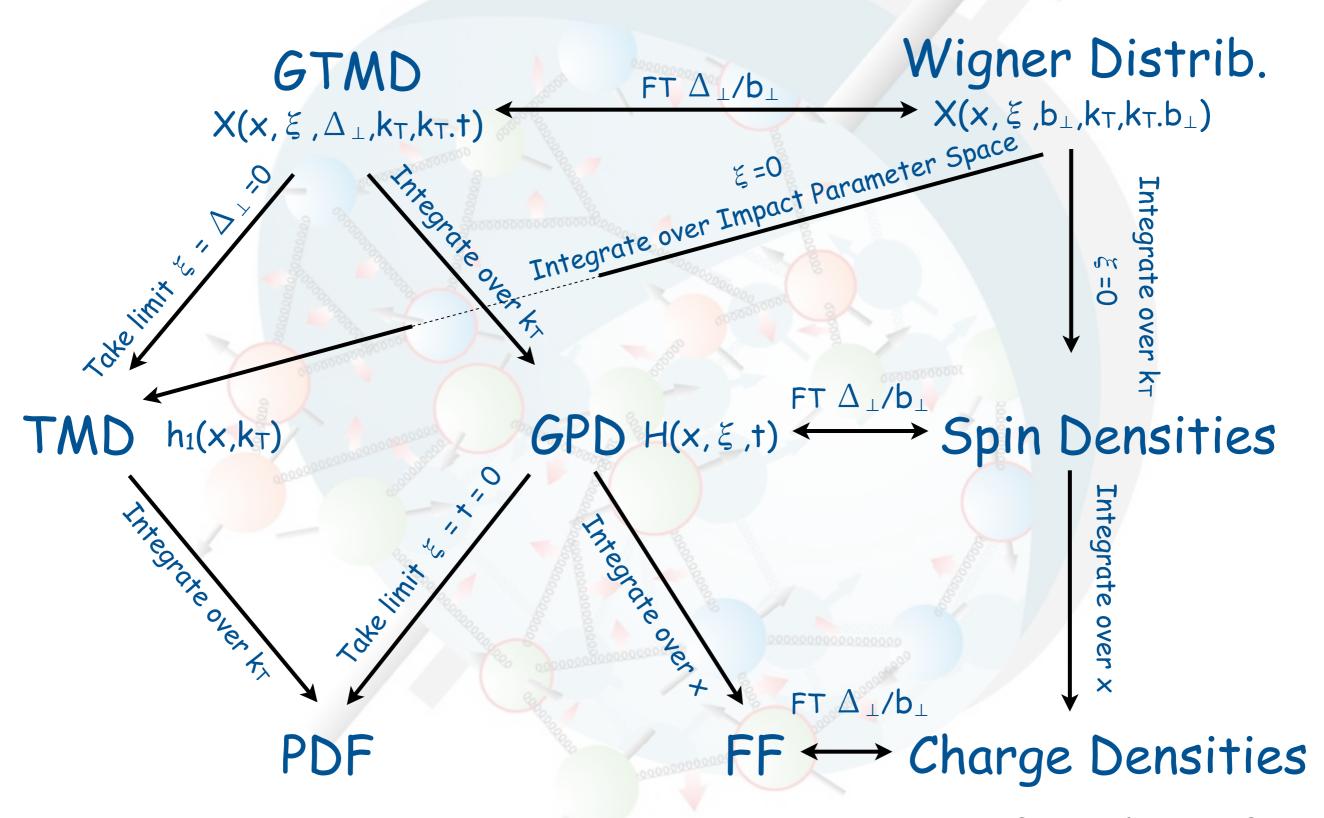
Exploring QCD frontiers: from RHIC and LHC to EIC January 30^{th} - February 3^{rd} , 2012

--highlights from the hermes collaboration--

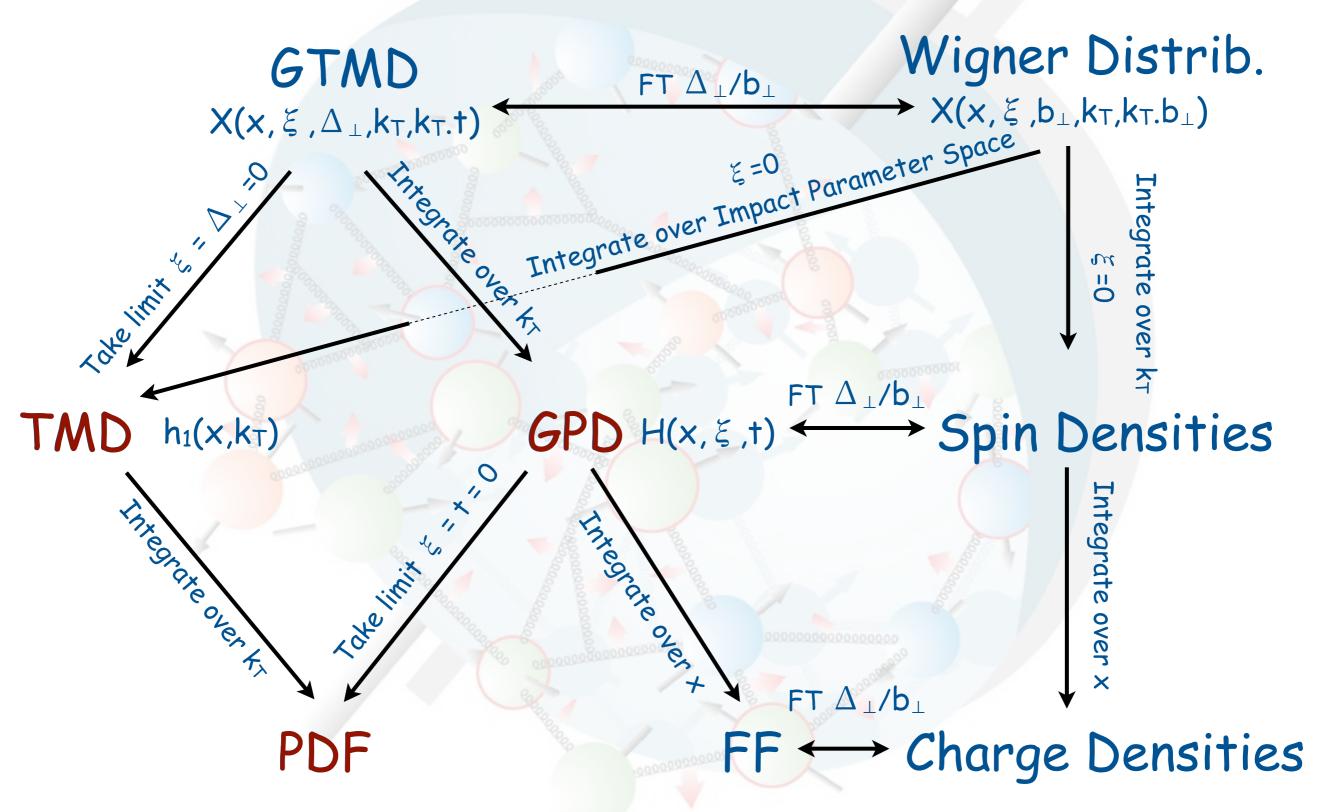


... it's representation:

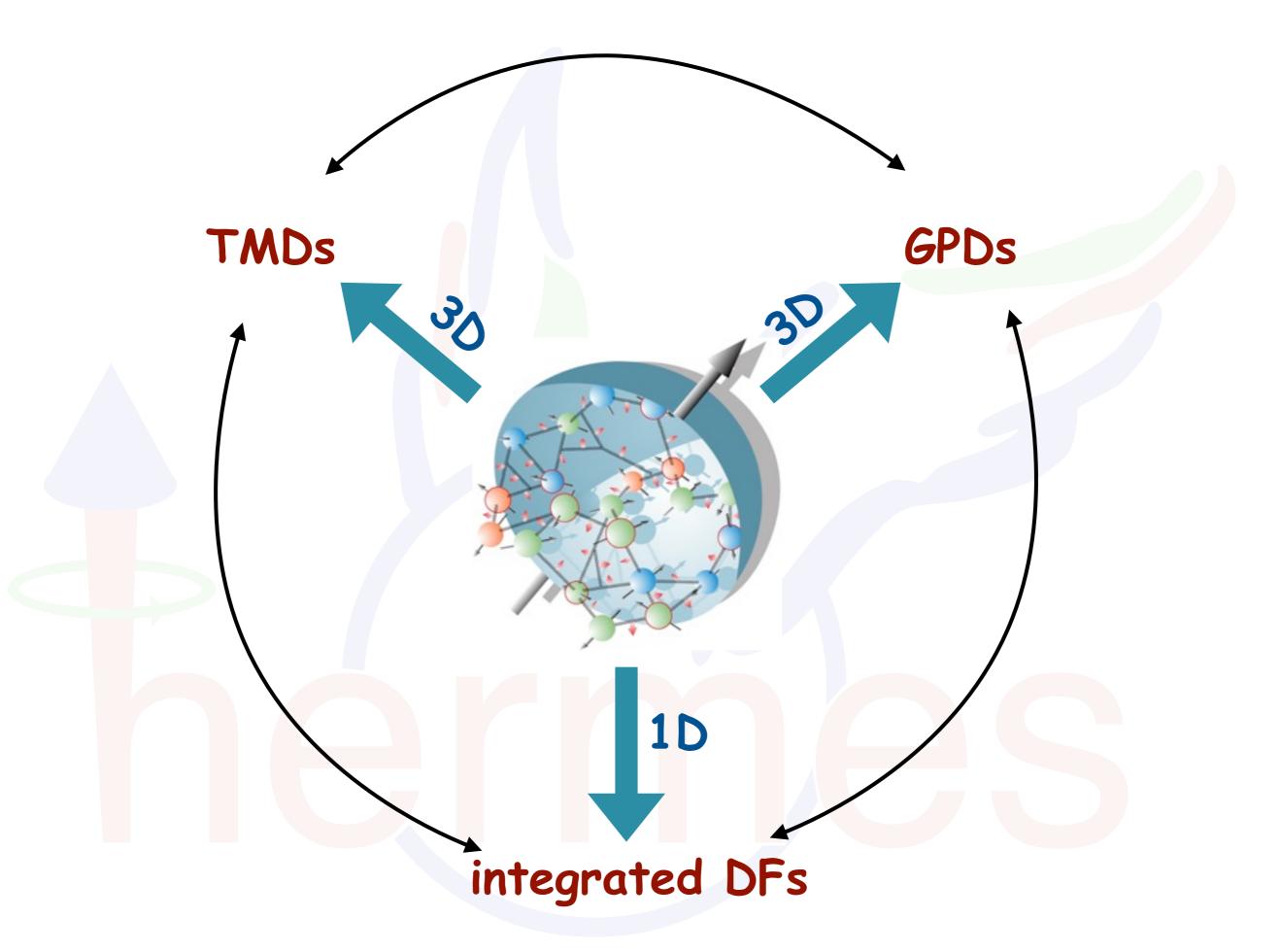


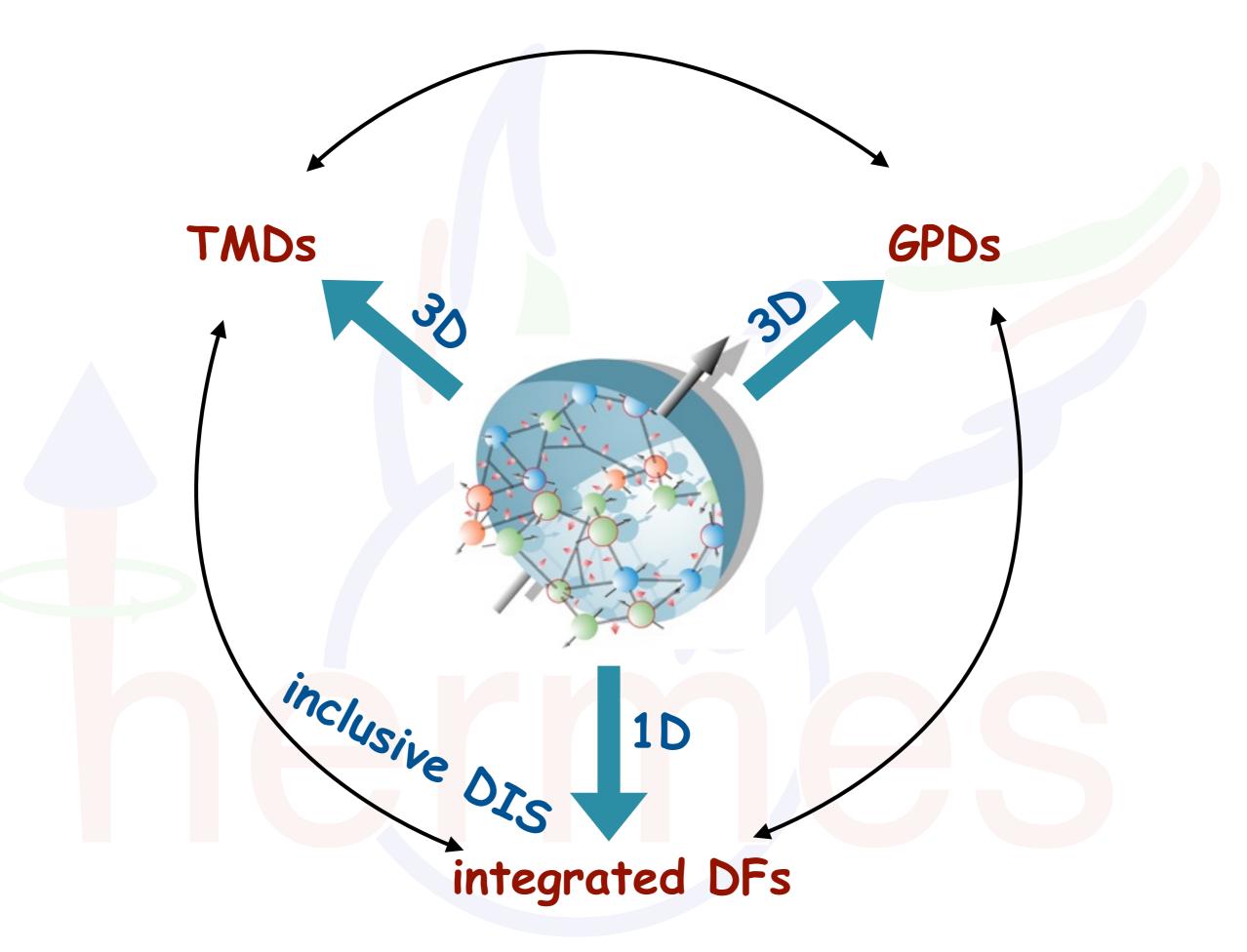
[Courtesy of M. Murray, Glasgow]

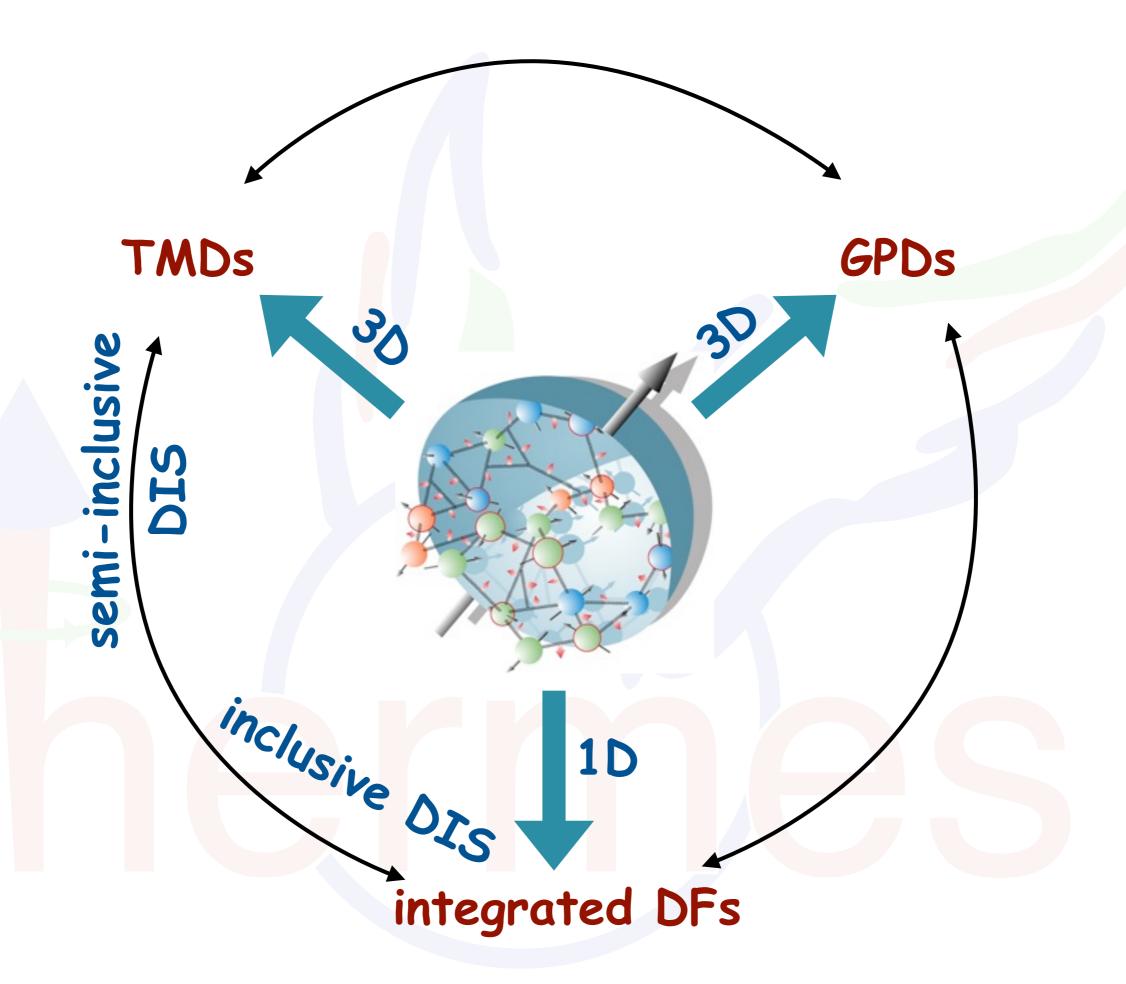
... it's representation:

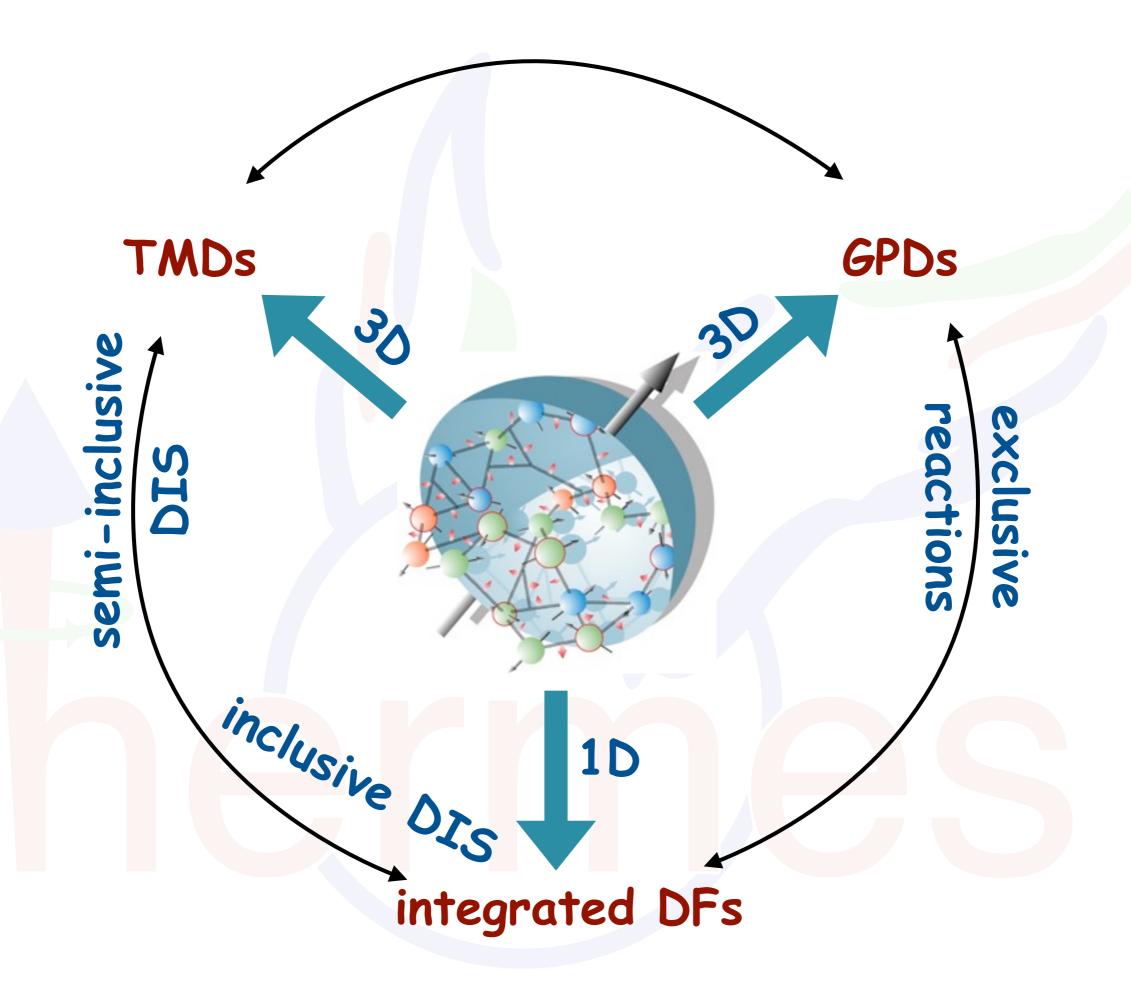


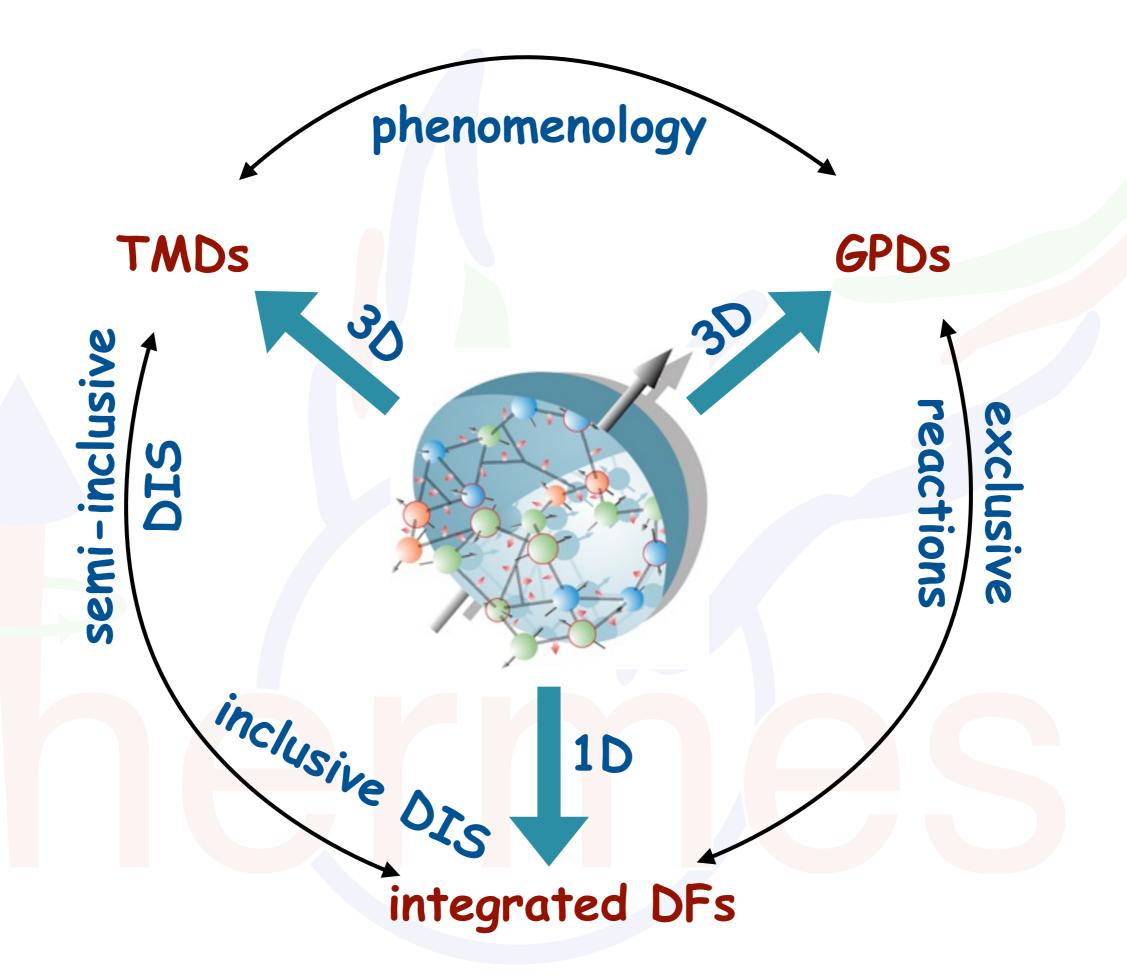
[Courtesy of M. Murray, Glasgow]





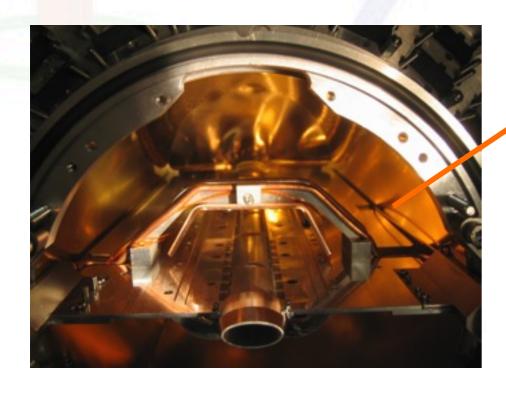


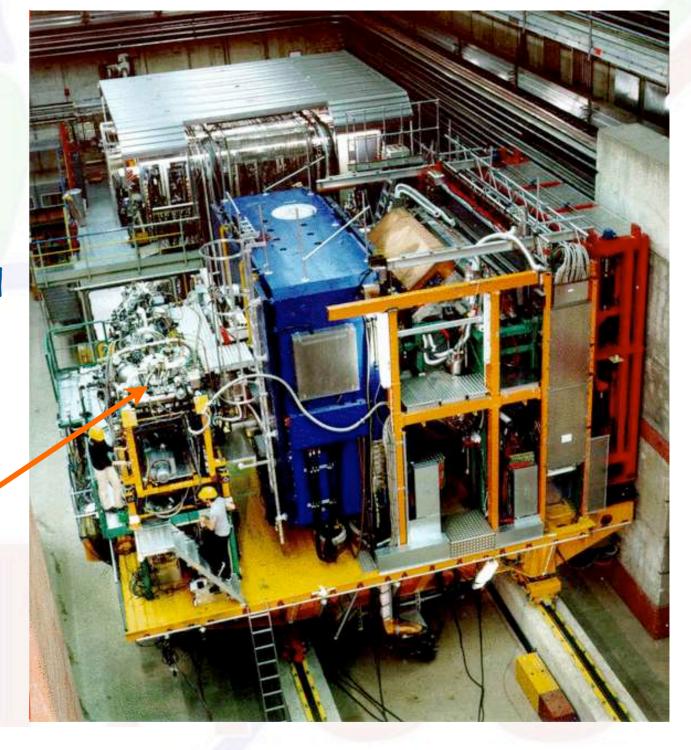




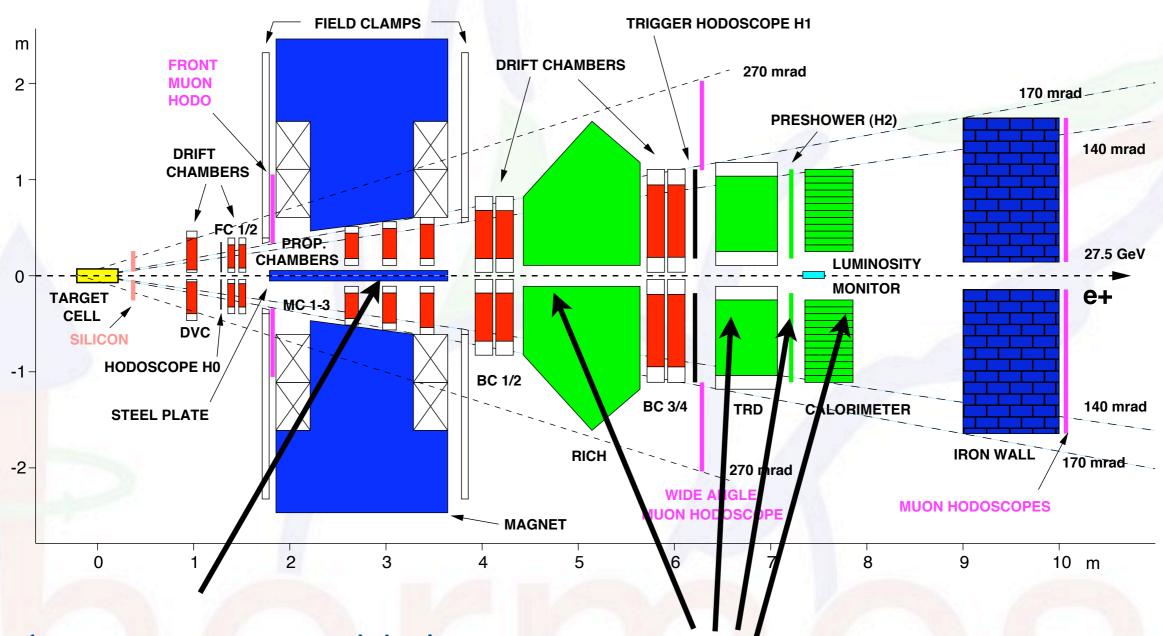
The HERMES Detector (°1995, †2007)

- pure gas targets
- internal to lepton ring
- unpolarized (¹H ... Xe)
- longitudinally polarized: ¹H, ²H
- transversely polarized: ¹H





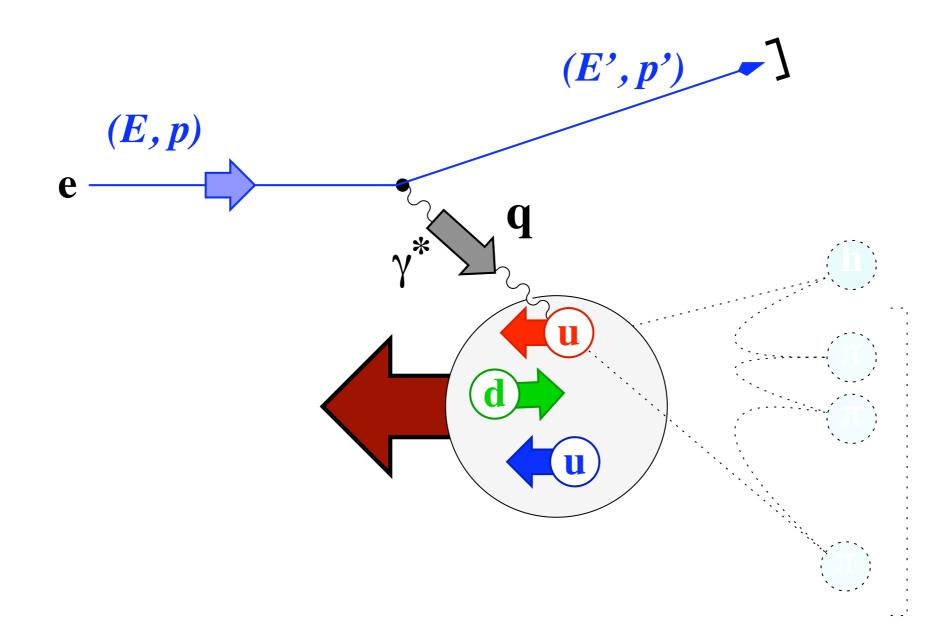
HERMES schematically



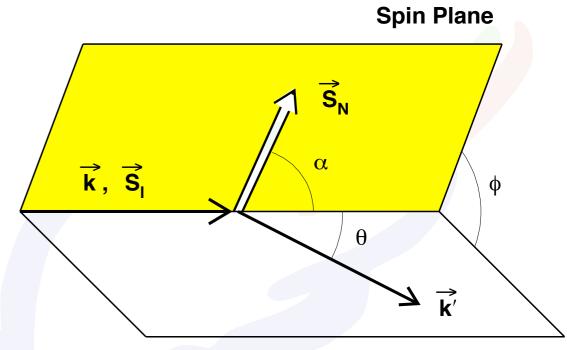
two (mirror-symmetric) halves-> no homogenous azimuthalcoverage

Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton discrimination 2GeV<p<15GeV



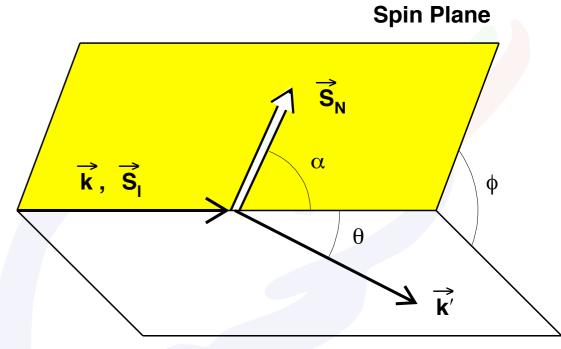
$$\frac{\mathrm{d}^2 \sigma(s, S)}{\mathrm{d}x \, \mathrm{d}Q^2} = \frac{2\pi \alpha^2 y^2}{Q^6} \mathbf{L}_{\mu\nu}(s) \mathbf{W}^{\mu\nu}(S)$$



Scattering Plane

$$\frac{\mathrm{d}^2 \sigma(s, S)}{\mathrm{d}x \, \mathrm{d}Q^2} = \frac{2\pi \alpha^2 y^2}{Q^6} \mathbf{L}_{\mu\nu}(s) \mathbf{W}^{\mu\nu}(S)$$

Lepton Tensor



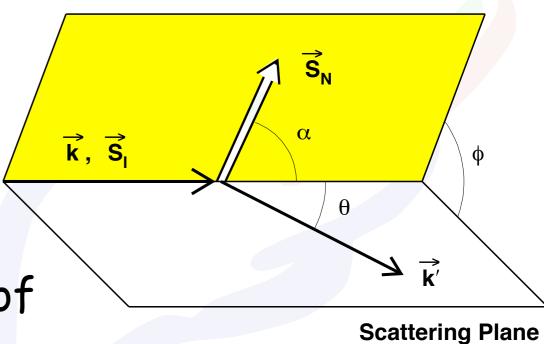
Scattering Plane

Spin Plane

$$\frac{\mathrm{d}^2 \sigma(s, S)}{\mathrm{d}x \, \mathrm{d}Q^2} = \frac{2\pi\alpha^2 y^2}{Q^6} \mathbf{L}_{\mu\nu}(s) \mathbf{W}^{\mu\nu}(S)$$

Lepton Tensor

Hadron Tensor
parametrized in terms of
Structure Functions

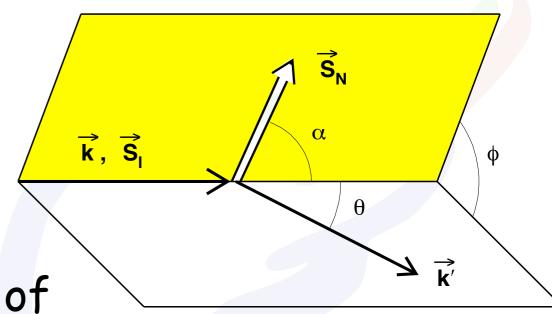


Spin Plane

$$\frac{\mathrm{d}^2 \sigma(s, S)}{\mathrm{d}x \, \mathrm{d}Q^2} = \frac{2\pi \alpha^2 y^2}{Q^6} \mathbf{L}_{\mu\nu}(s) \mathbf{W}^{\mu\nu}(S)$$

Lepton Tensor

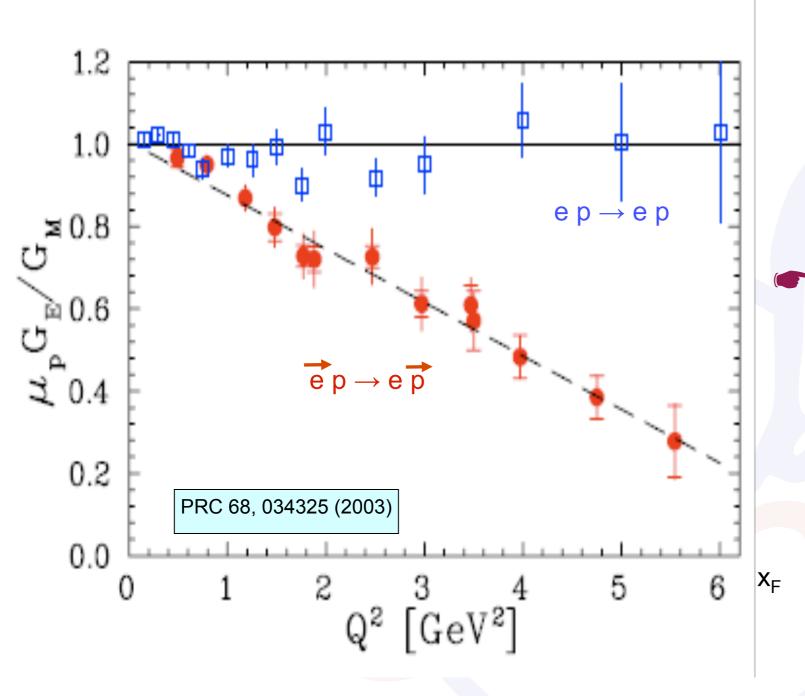
Hadron Tensor parametrized in terms of



Scattering Plane

$$\frac{d^{3}\sigma}{dxdyd\phi} \propto \frac{y}{2}F_{1}(x,Q^{2}) + \frac{1-y-\gamma^{2}y^{2}}{2xy}F_{2}(x,Q^{2}) -P_{l}P_{T}\cos\alpha \left[\left(1-\frac{y}{2}-\frac{\gamma^{2}y^{2}}{4}\right)g_{1}(x,Q^{2}) - \frac{\gamma^{2}y}{2}g_{2}(x,Q^{2})\right] +P_{l}P_{T}\sin\alpha\cos\phi\gamma\sqrt{1-y-\frac{\gamma^{2}y^{2}}{4}}\left(\frac{y}{2}g_{1}(x,Q^{2}) + g_{2}(x,Q^{2})\right)$$

Check the details!



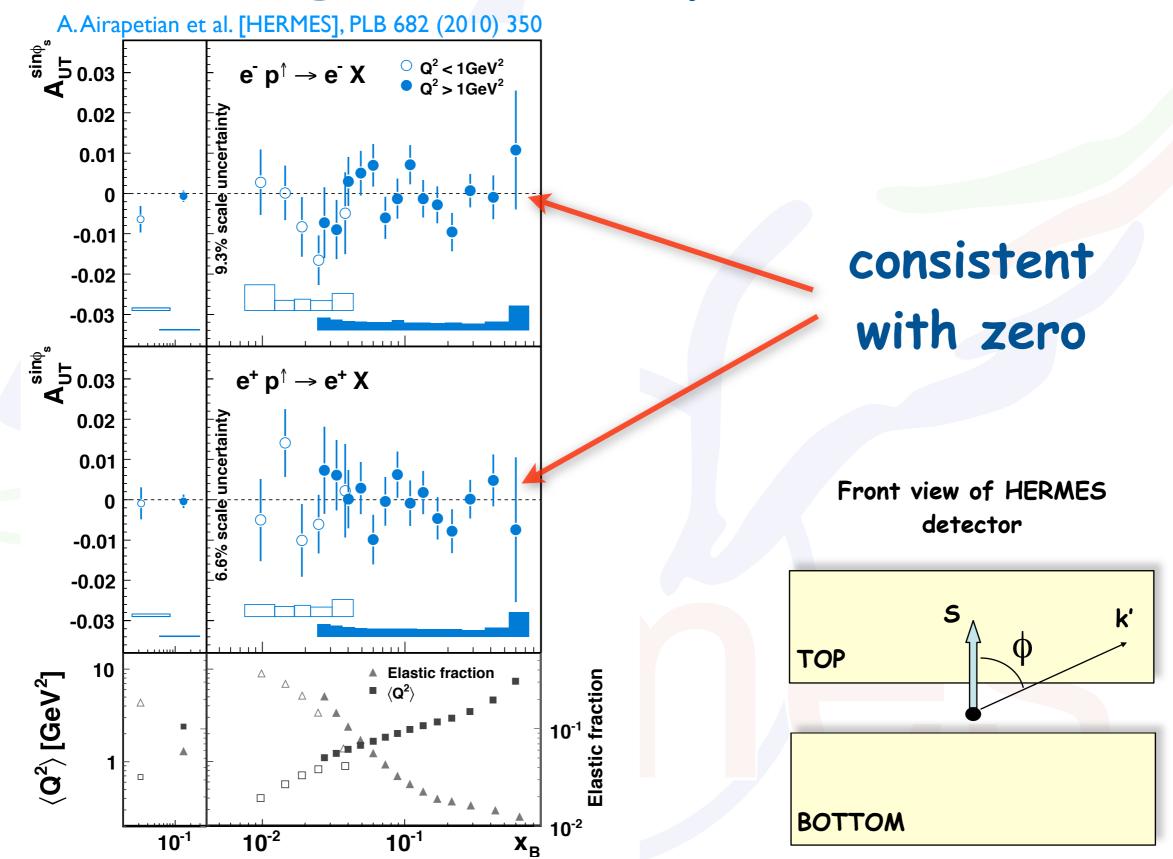
two-photon exchange important?!

Two-photon exchange

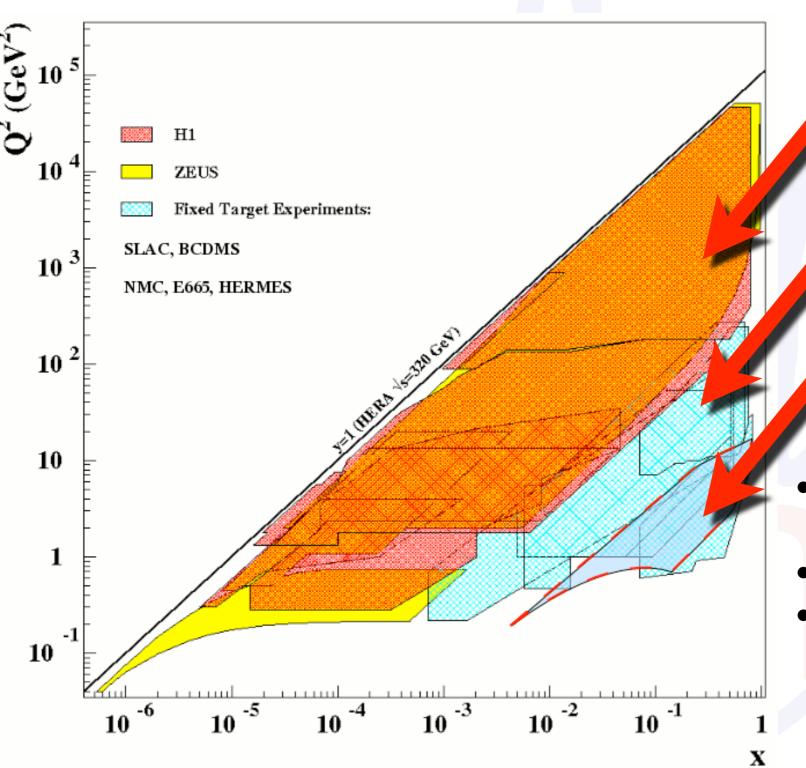
Candidate to explain discrepancy in form-factor measurements

- Interference between oneand two-photon exchange
 amplitudes leads to SSAs
 in inclusive DIS off transversely polarized targets
- cross section proportional to S(kxk') either measure
 left-right asymmetries or sine modulation
- sensitive to beam charge due to odd number of e.m. couplings to beam

No sign of two-photon exchange



Why measure F2 at HERMES?



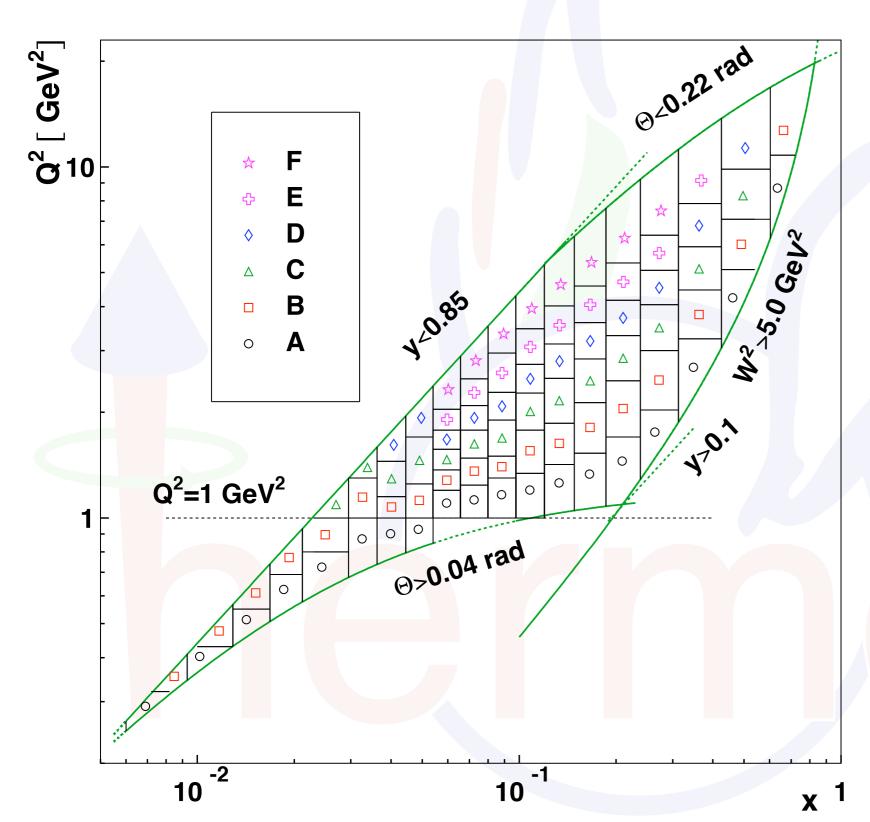
Collider experiments

Fixed target experiments

HERMES

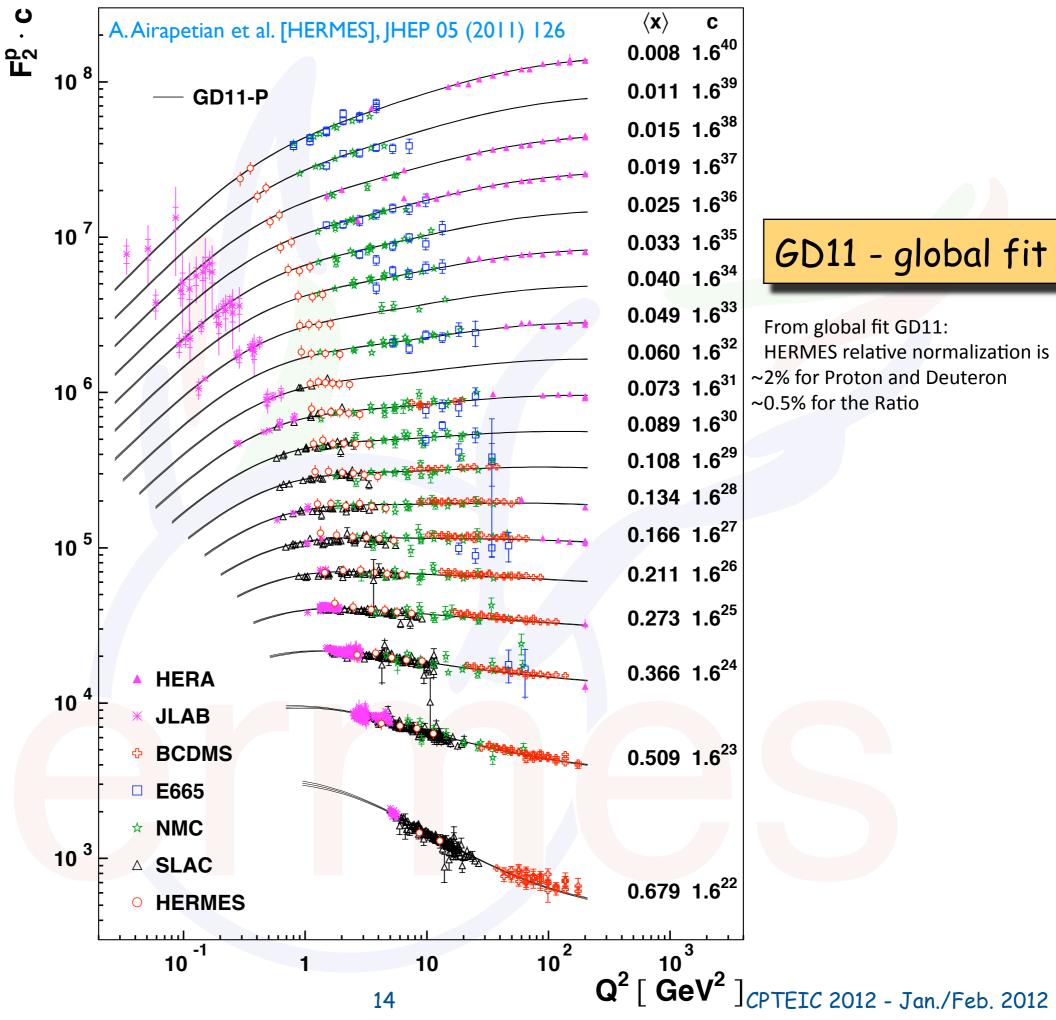
- complementary kinematic coverage compared to colliders
- direct info at HERMES kinematics
- higher statistics compared to other fixed target experiments:
 - ► HERMES: 58 million DIS (P+D)
 - NMC: 9 million DIS (P+D)

HERMES kinematic plane



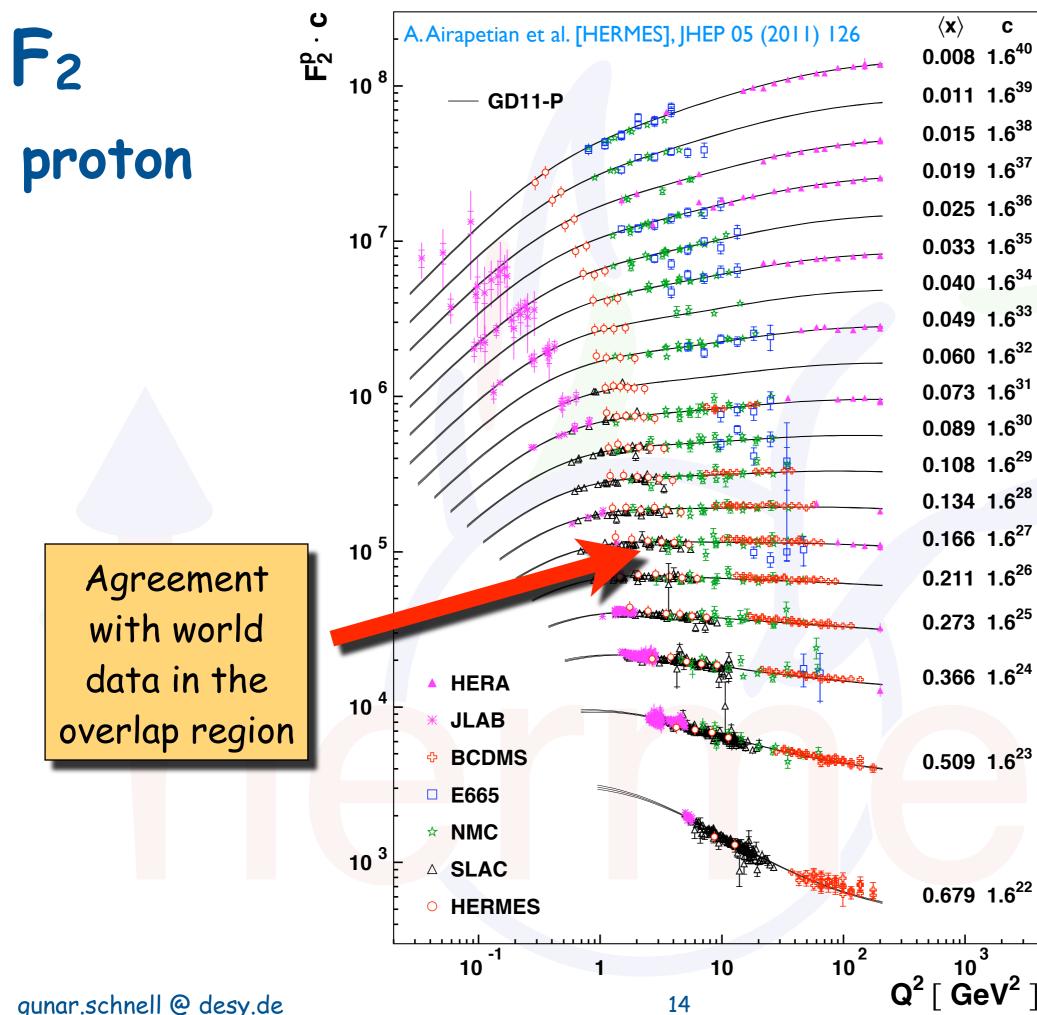
binning used for F2 and g1

F₂ proton



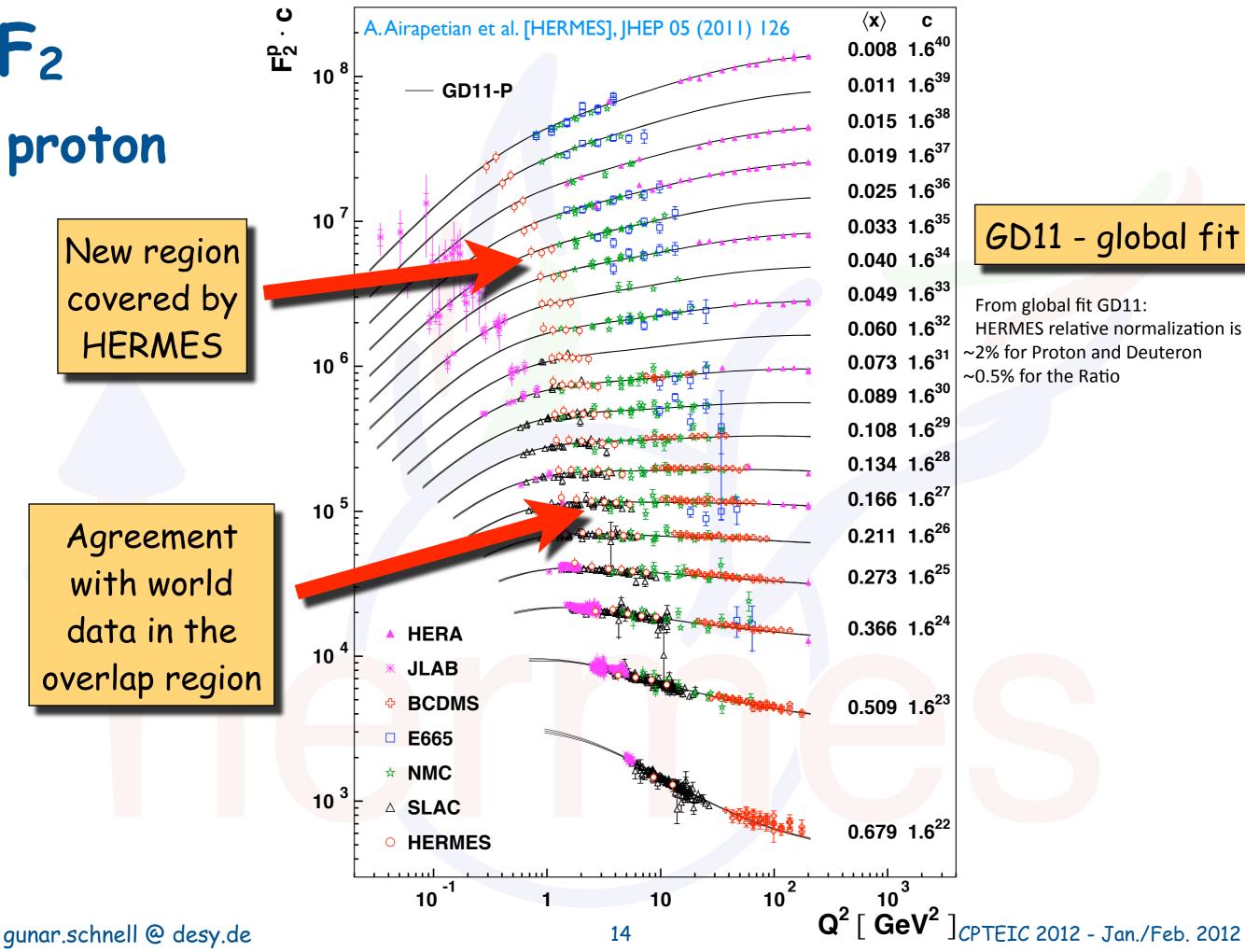
GD11 - global fit

From global fit GD11: **HERMES** relative normalization is ~2% for Proton and Deuteron ~0.5% for the Ratio



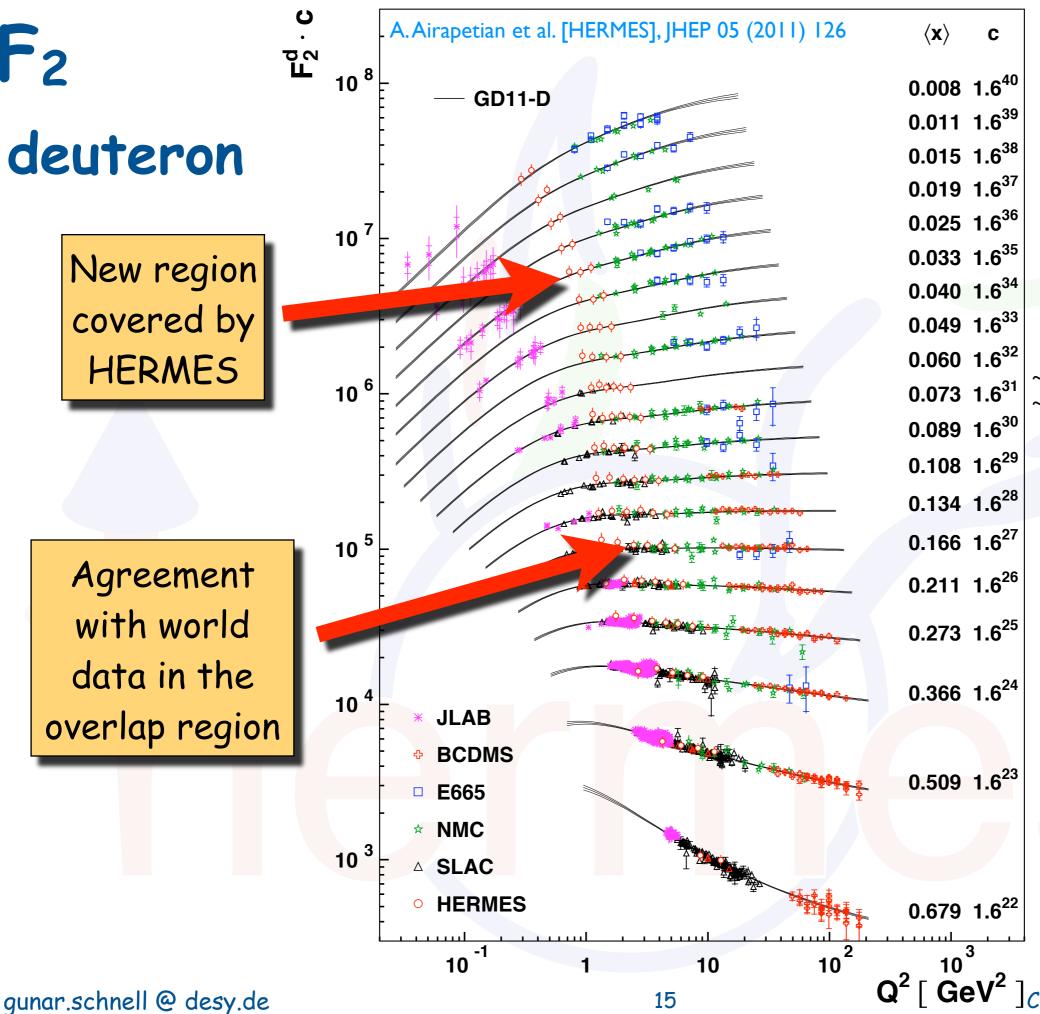
GD11 - global fit

From global fit GD11: **HERMES** relative normalization is ~2% for Proton and Deuteron ~0.5% for the Ratio



GD11 - global fit

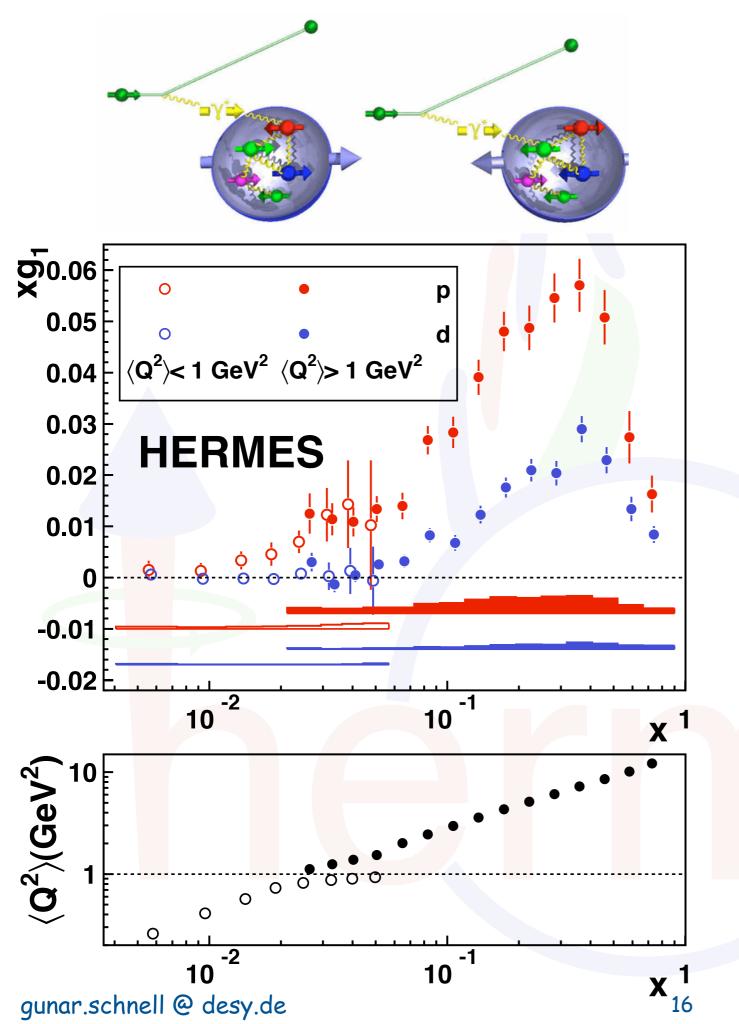
From global fit GD11: **HERMES** relative normalization is ~2% for Proton and Deuteron ~0.5% for the Ratio



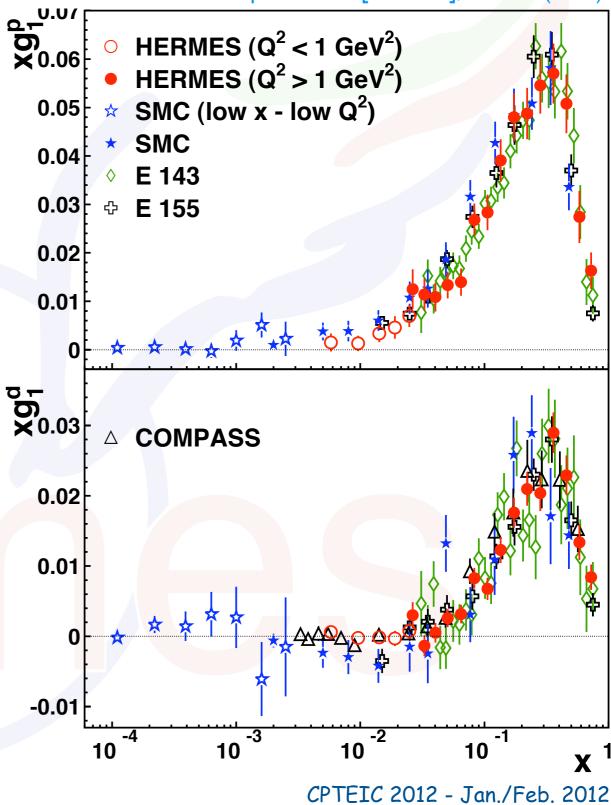
GD11 - global fit

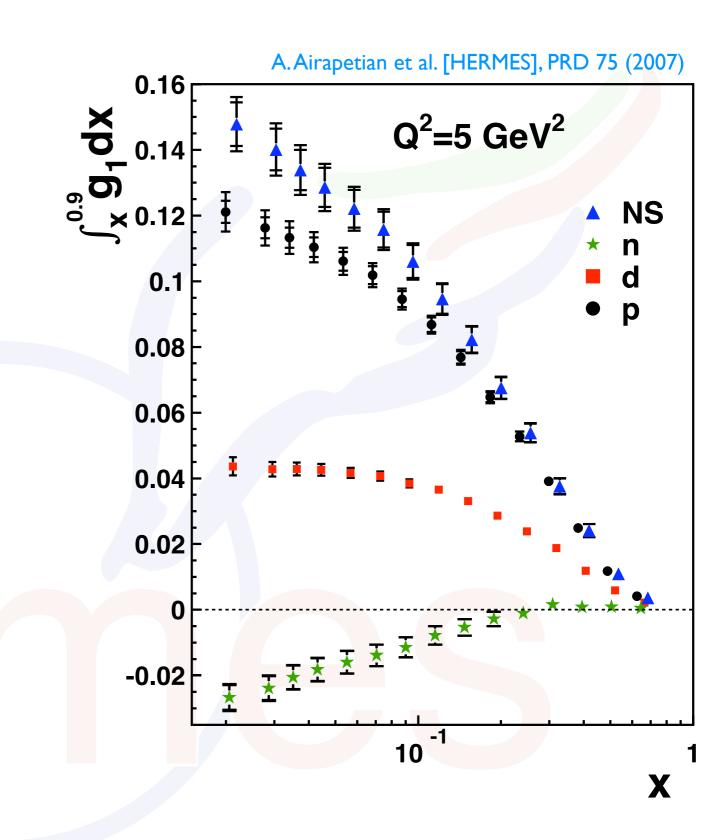
From global fit GD11: **HERMES** relative normalization is ~2% for Proton and Deuteron ~0.5% for the Ratio

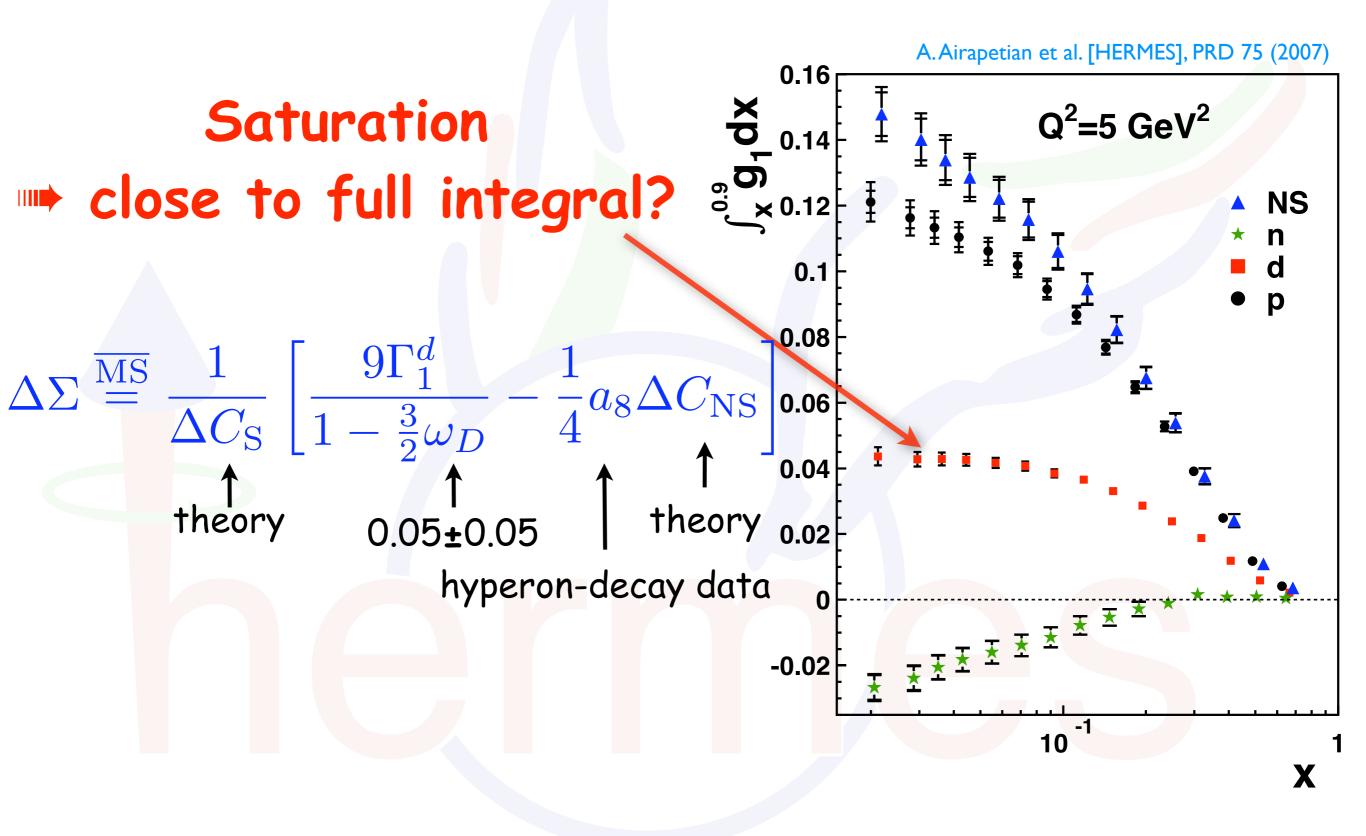
 $Q^2 \lceil GeV^2 \rceil_{CPTEIC 2012 - Jan./Feb. 2012}$

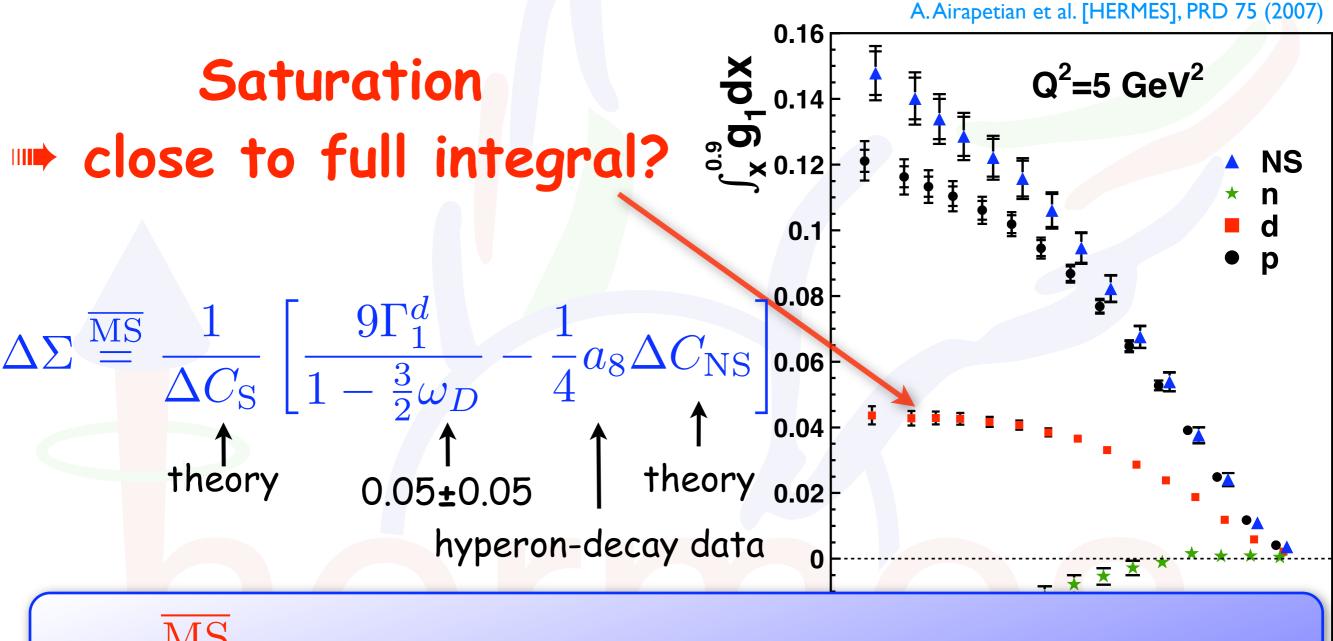


Polarized SF g₁

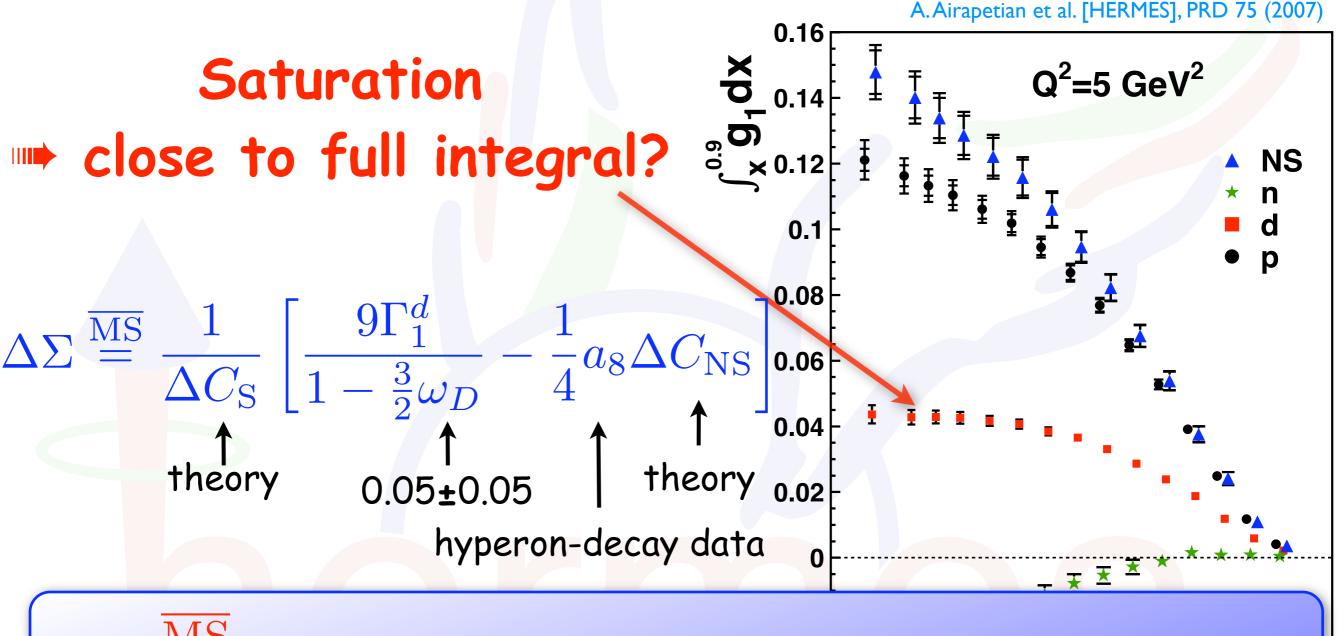








$$\Delta \Sigma \stackrel{\overline{\rm MS}}{=} 0.330 \pm 0.011_{\rm theory} \pm 0.025_{\rm exp} \pm 0.028_{\rm evol}$$

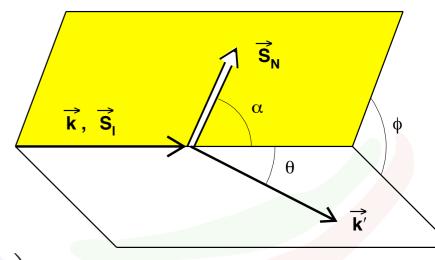


$$\Delta \Sigma \stackrel{\overline{MS}}{=} 0.330 \pm 0.011_{theory} \pm 0.025_{exp} \pm 0.028_{evol}$$

most precise result; only 1/3 of nucleon spin from quarks

$$rac{oldsymbol{\sigma}^{
ightarrow \Downarrow}(\phi) \, - \, oldsymbol{\sigma}^{
ightarrow \Uparrow}(\phi)}{oldsymbol{\sigma}^{
ightarrow \Downarrow}(\phi) \, + \, oldsymbol{\sigma}^{
ightarrow \Uparrow}(\phi)} = rac{oldsymbol{\Delta} oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} =$$

$$= \frac{-\gamma \sqrt{1-y-\frac{\gamma^2 y^2}{4}} \left(\frac{y}{2} g_1(x,Q^2) + g_2(x,Q^2)\right)}{\left[\frac{y}{2} F_1(x,Q^2) + \frac{1}{2xy} \left(1-y-\frac{\gamma^2 y^2}{4}\right) F_2(x,Q^2)\right]} \ constant \\ A_T$$

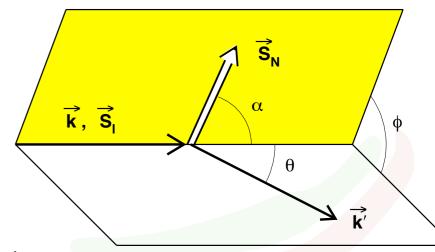


Scattering Plane

Spin Plane

Extraction of g2

$$rac{oldsymbol{\sigma}^{
ightarrow \psi}(\phi) \, - \, oldsymbol{\sigma}^{
ightarrow \uparrow \uparrow}(\phi)}{oldsymbol{\sigma}^{
ightarrow \psi}(\phi) \, + \, oldsymbol{\sigma}^{
ightarrow \uparrow \uparrow}(\phi)} = rac{oldsymbol{\Delta} oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = rac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} = \frac{oldsymbol{\sigma}_{\mathbf{T}}}{\overline{olds$$



Spin Plane

$$= \frac{-\gamma \sqrt{1-y-\frac{\gamma^2 y^2}{4}} \left(\frac{y}{2} g_1(x,Q^2) + g_2(x,Q^2)\right)}{\left[\frac{y}{2} F_1(x,Q^2) + \frac{1}{2xy} \left(1-y-\frac{\gamma^2 y^2}{4}\right) F_2(x,Q^2)\right]} cc$$

 $\mathbf{A_{T}}$

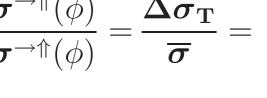
fit to double-spin asymmetry

$$\mathbf{A_2} = rac{\mathbf{1}}{\mathbf{d}(\mathbf{1} + oldsymbol{\gamma}oldsymbol{\xi})}$$

$$\mathbf{A_2} = rac{1}{\mathbf{d}(1+\gamma \xi)} \;\; \mathbf{A_T} \; + \;\; rac{\xi(1+\gamma^2)}{1+\gamma \xi} rac{\mathbf{g_1}}{\mathbf{F_1}}$$

Extraction of 92

$$rac{oldsymbol{\sigma}^{
ightarrow \Downarrow}(\phi) \, - \, oldsymbol{\sigma}^{
ightarrow \Uparrow}(\phi)}{oldsymbol{\sigma}^{
ightarrow \Downarrow}(\phi) \, + \, oldsymbol{\sigma}^{
ightarrow \Uparrow}(\phi)} = rac{oldsymbol{\Delta} oldsymbol{\sigma}_{\mathbf{T}}}{\overline{oldsymbol{\sigma}}} =$$



$$=\frac{-\gamma\sqrt{1-y-\frac{\gamma^{2}y^{2}}{4}\left(\frac{y}{2}g_{1}(x,Q^{2})+g_{2}(x,Q^{2})\right)}}{\left[\frac{y}{2}F_{1}(x,Q^{2})+\frac{1}{2xy}\left(1-y-\frac{\gamma^{2}y^{2}}{4}\right)F_{2}(x,Q^{2})\right]}\cos\phi$$

 $\mathbf{A_{T}}$

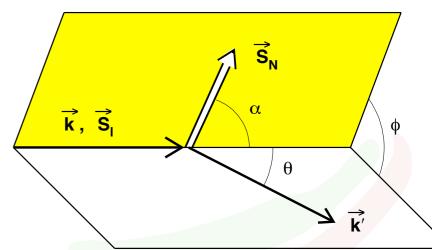
fit to double-spin asymmetry

$$\mathbf{A_2} = rac{1}{\mathbf{d}(1+\gamma \xi)} \;\; \mathbf{A_T} \; + \;\; rac{\xi(1+\gamma^2)}{1+\gamma \xi} rac{\mathbf{g_1}}{\mathbf{F_1}}$$

$$\mathbf{g_2} = \frac{\mathbf{F_1}}{\gamma \mathbf{d}(1 + \mathbf{f_1})}$$

$$\mathbf{g_2} = rac{\mathbf{F_1}}{oldsymbol{\gamma}\mathbf{d}(\mathbf{1} + oldsymbol{\gamma}oldsymbol{\xi})} \; \mathbf{A_T} \; - \; rac{\mathbf{F_1}(oldsymbol{\gamma} \; - \; oldsymbol{\xi})}{oldsymbol{\gamma}(\mathbf{1} + oldsymbol{\gamma}oldsymbol{\xi})} \, rac{\mathbf{g_1}}{\mathbf{F_1}}$$

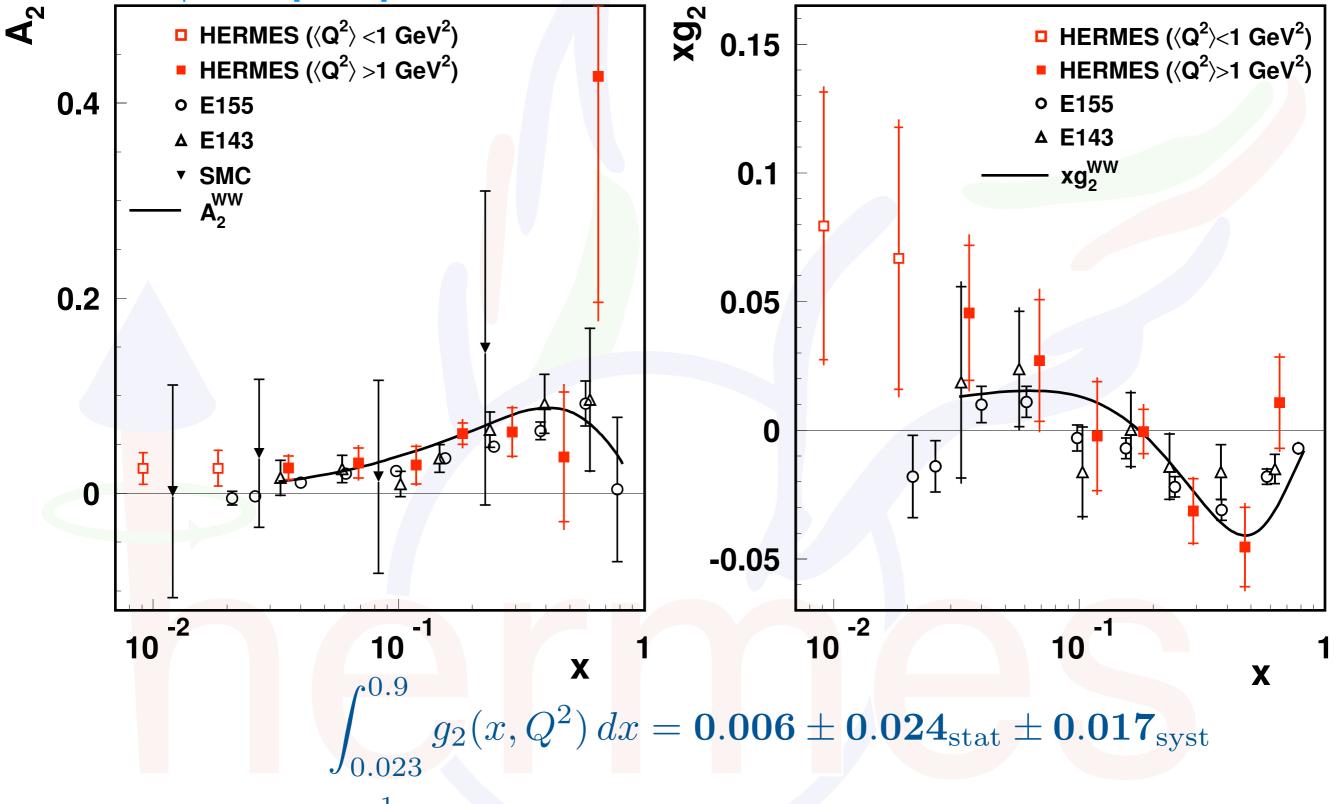
Spin Plane



Scattering Plane

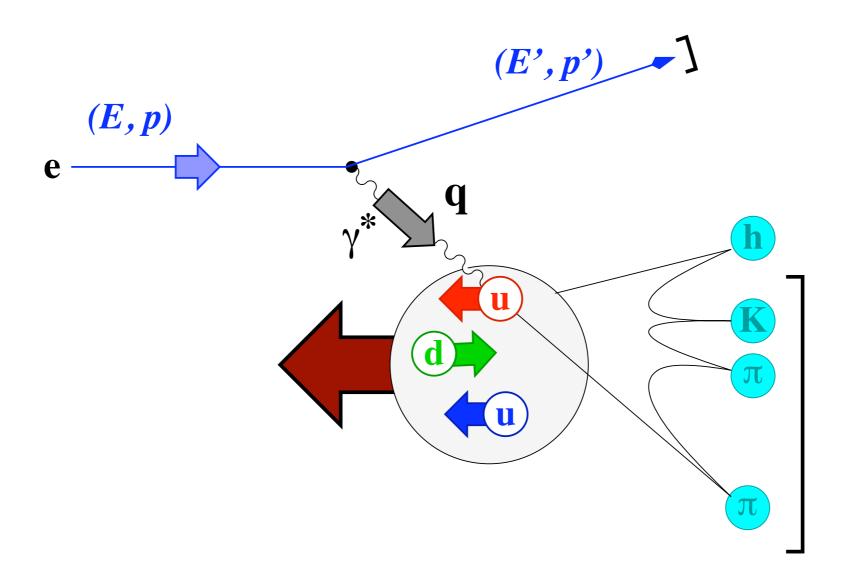
parameterizations

Results on A2 and xg2



$$\mathbf{d_2(Q^2)} \equiv 3 \int_0^1 \!\! x^2 \, ar{g}_2(x,Q^2) \, dx = \mathbf{0.0148} \pm \mathbf{0.0096}_{\mathrm{stat}} \pm \mathbf{0.0048}_{\mathrm{syst}}$$

Semi-Inclusive DIS



- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K++K- asymmetries, i.e., $A_{||,d}(x,Q^2)$ and $A_{||,d}^{K^++K^-}(x,z,Q^2)$, as well as K++K- multiplicities on deuteron

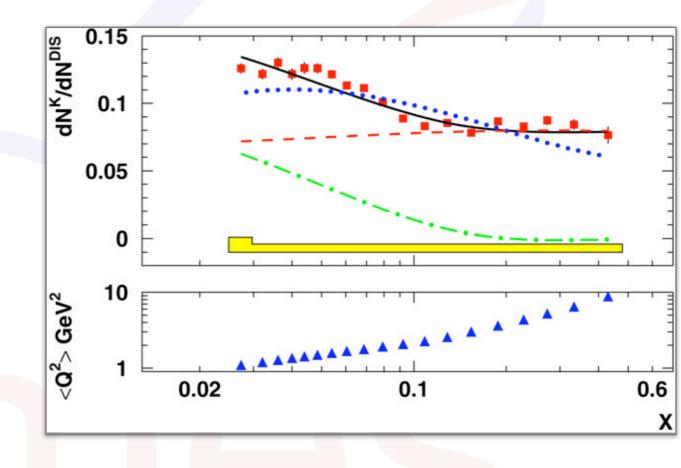
$$\int \mathcal{D}_{S}^{K}(z) dz \simeq Q(x) \left[5 \frac{d^{2}N^{K}(x)}{d^{2}N^{DIS}(x)} - \int \mathcal{D}_{Q}^{K}(z) dz \right]$$

$$A_{\parallel,d}(x) \frac{\mathrm{d}^2 N^{\mathrm{DIS}}(x)}{\mathrm{d}x \,\mathrm{d}Q^2} = \mathcal{K}_{LL}(x, Q^2) \big[5\Delta Q(x) + 2\Delta S(x) \big]$$

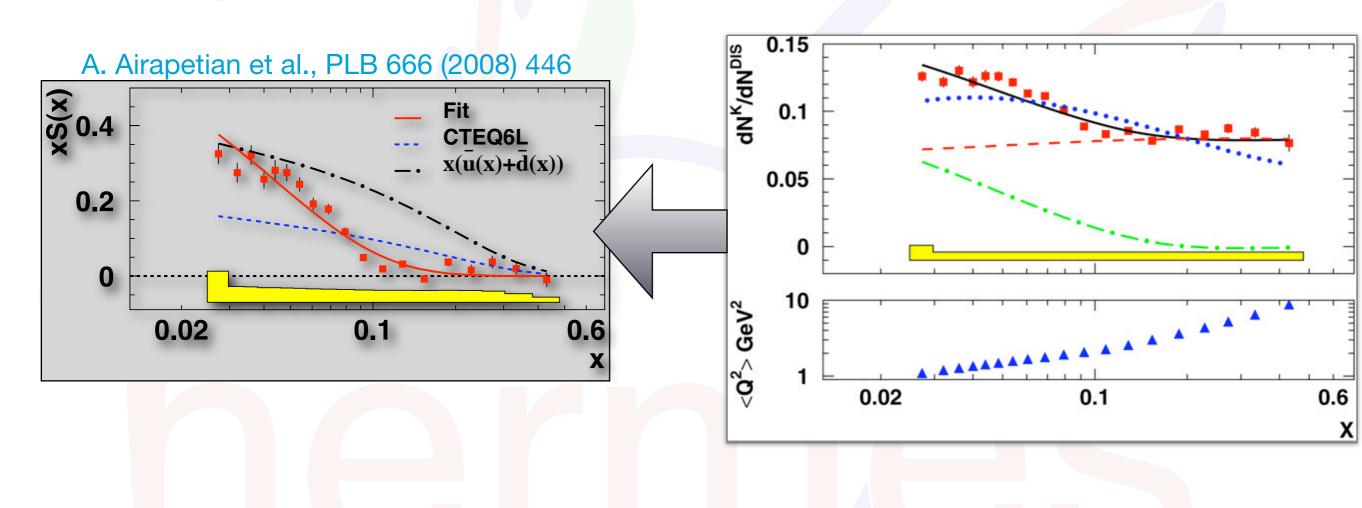
$$A_{\parallel,d}^{K^{\pm}}(x) \frac{\mathrm{d}^2 N^K(x)}{\mathrm{d}x \,\mathrm{d}Q^2}$$

$$= \mathcal{K}_{LL}(x, Q^2) \left[\Delta Q(x) \int \mathcal{D}_Q^K(z) dz + \Delta S(x) \int \mathcal{D}_S^K(z) dz \right]$$

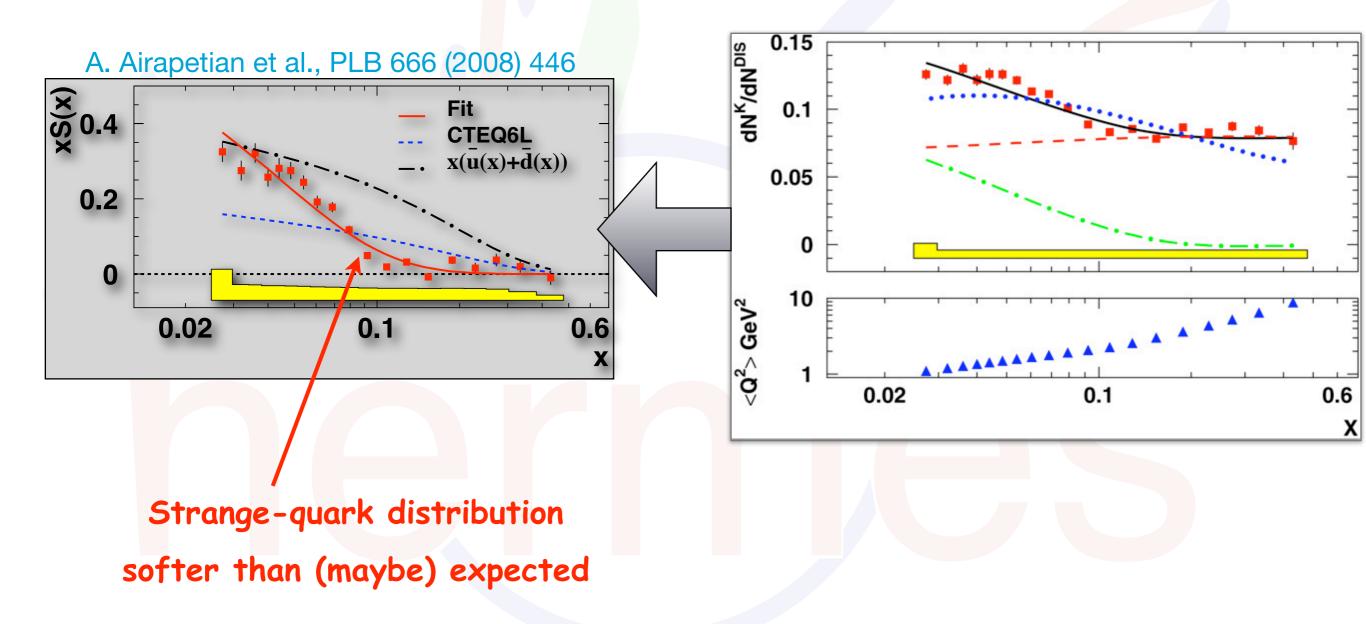
- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K++K- asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K++K- multiplicities on deuteron



- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K++K- asymmetries, i.e., $A_{||,d}(x,Q^2)$ and $A_{||,d}^{K^++K^-}(x,z,Q^2)$, as well as K++K- multiplicities on deuteron

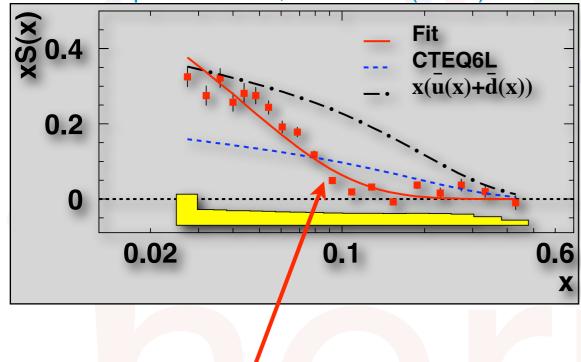


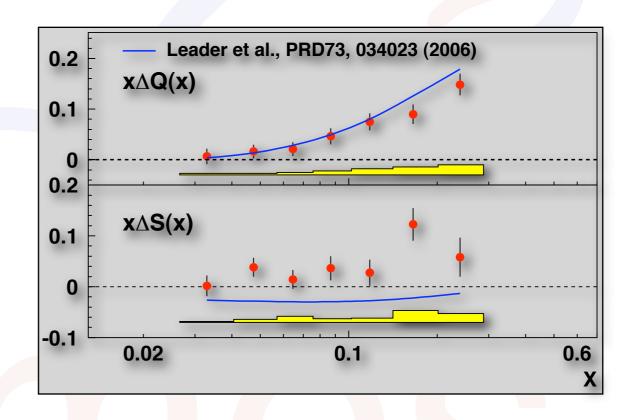
- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K++K- asymmetries, i.e., $A_{||,d}(x,Q^2)$ and $A_{||,d}^{K^++K^-}(x,z,Q^2)$, as well as K++K- multiplicities on deuteron



- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K+K- asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K+K- multiplicities on deuteron

A. Airapetian et al., PLB 666 (2008) 446



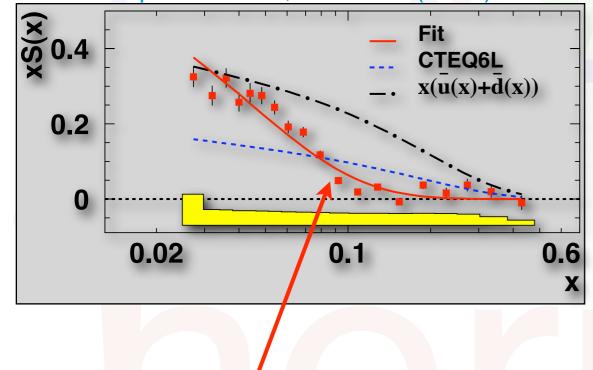


Strange-quark distribution

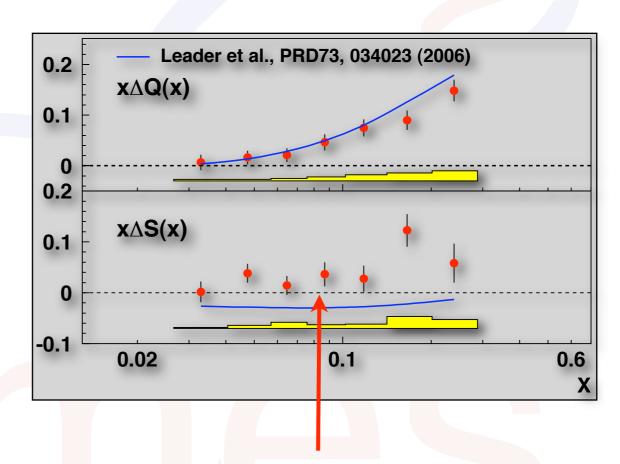
softer than (maybe) expected

- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K+K- asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K+K- multiplicities on deuteron

A. Airapetian et al., PLB 666 (2008) 446

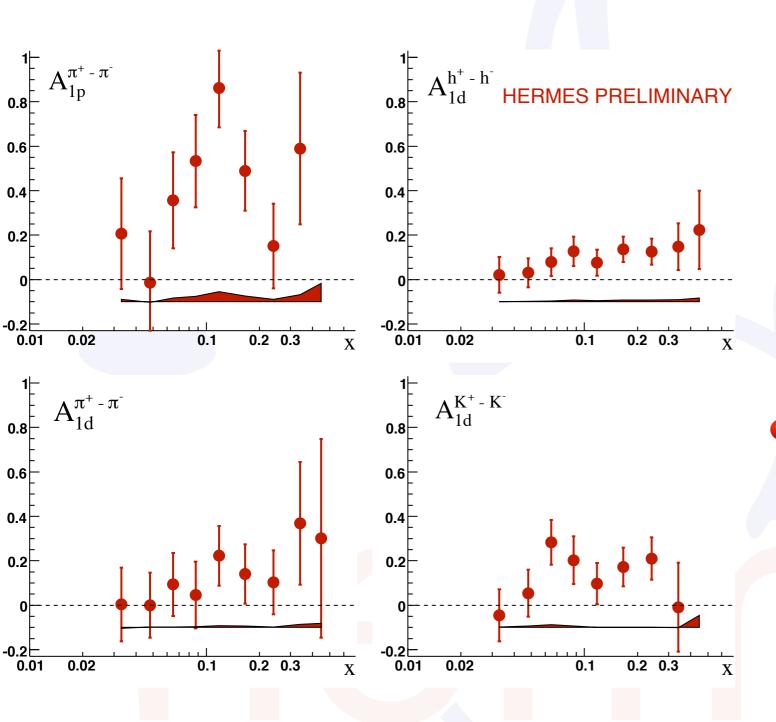


Strange-quark distribution softer than (maybe) expected



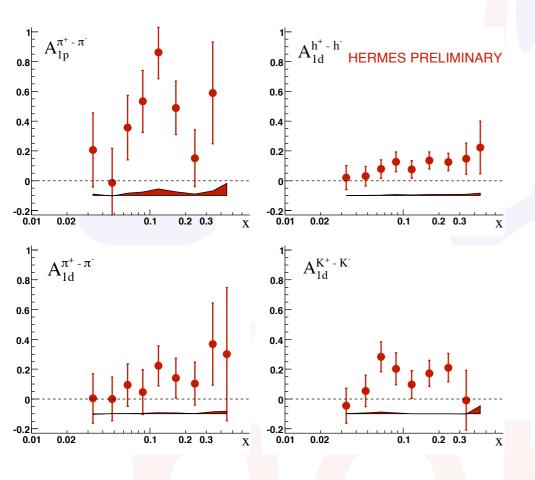
Strange-quark helicity distribution consistent with zero or slightly positive in contrast to inclusive DIS analyses

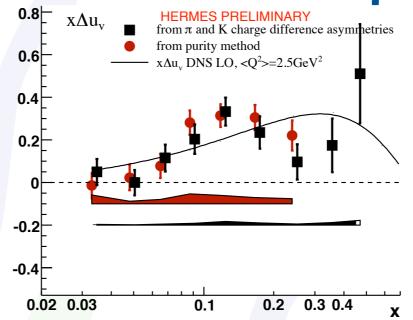
Helicity density - valence quarks

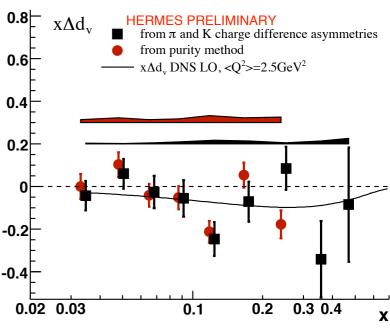


charge-difference double-spin asymmetries

Helicity density - valence quarks

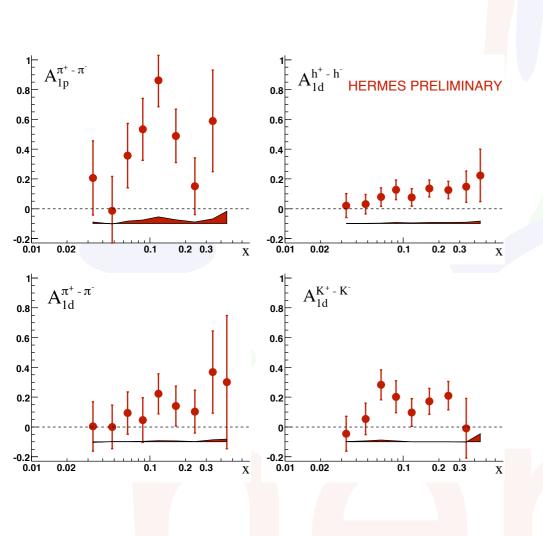


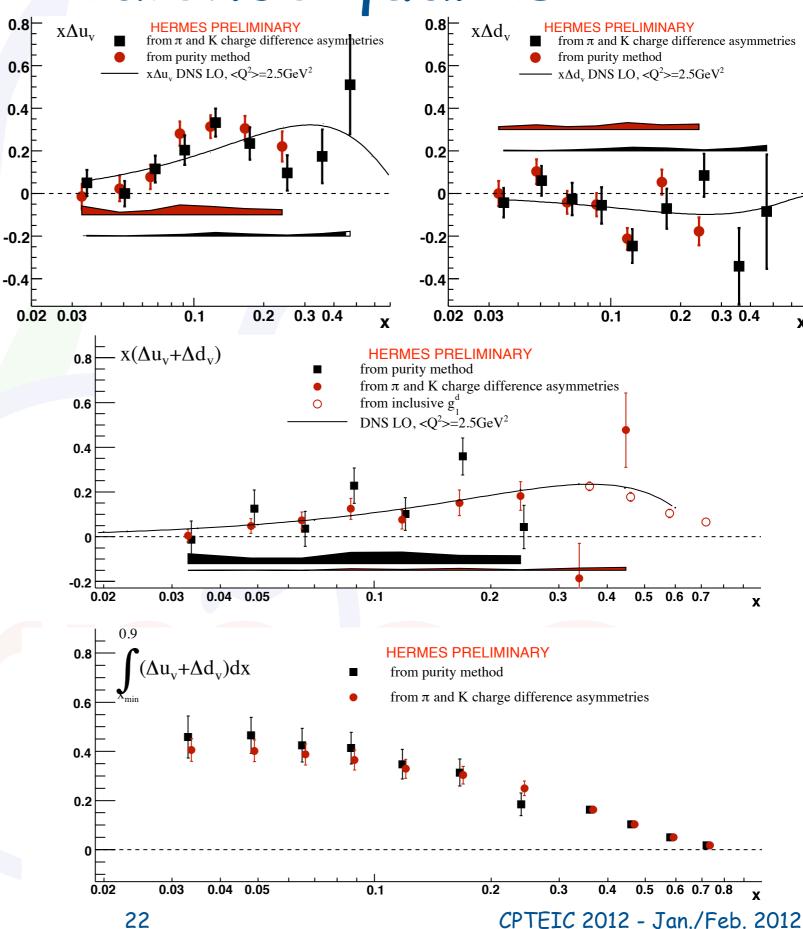




- charge-difference double-spin asymmetries
- use charge-conjugation symmetry to extract, at LO, valence distributions

Helicity density - valence quarks





going beyond collinear

Spin-Momentum Structure of the Nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

quark pol.

		U	${ m L}$	${ m T}$
pol.	U	f_1		h_1^\perp
leon	L		g_{1L}	h_{1L}^{\perp}
nucleon	T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-Momentum Structure of the Nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right|$$

helicity

quark pol.

		U	$oxed{L}$	T
poi.	U	f_1		h_1^{\perp}
leon	L		g_{1L}	h_{1L}^{\perp}
nucı	T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$

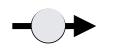
- each TMD describes a particular spinrrelation
 - functions in black survive integration over transverse momentum
 - functions in green box are chirally odd pretzelosity red are naive T-odd

Sivers

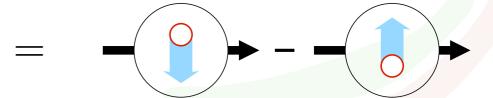
transversity

TMDs - Probabilistic interpretation

Proton goes out of the screen/ photon goes into the screen



nucleon with transverse or longitudinal spin



parton with transverse or longitudinal spin

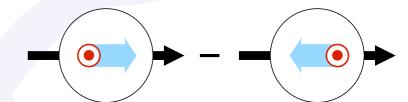
parton transverse momentum

$$f_1 = \bigcirc$$

$$g_1 = \bigcirc$$

$$h_1^{\perp} =$$

$$g_{1T} =$$



$$h_{1L}^{\perp} =$$

$$n_{1T}^{\perp} = -$$

[courtesy of A. Bacchetta, Pavia]

Cross section without polarization

26

$$F_{XY,Z} = F_{XY,Z}^{\text{target}}(x,y,z,P_{h\perp})$$
 beam virtual-photon polarization

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_{UU,T}} \right\}$$

$$\gamma = \frac{2Mx}{Q}$$

$$\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^{2}y^{2}}{1 - y + \frac{1}{2}y^{2} + \frac{1}{4}\gamma^{2}y^{2}}$$

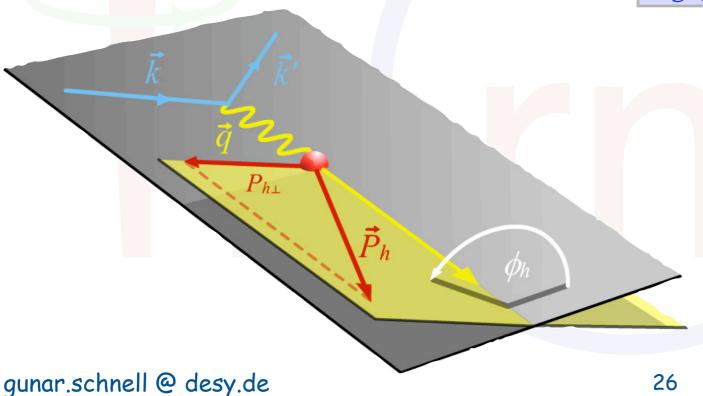
[see, e.g., Bacchetta et al., JHEP 0702 (2007) 093 CPTEIC 2012 - Jan./Feb. 2012

Cross section without polarization

$$F_{XY,Z} = F_{XY,Z}^{\text{target}}(x,y,z,P_{h\perp})$$
 beam virtual-photon polarization

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \{ \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_{UU,T} + \epsilon F_{UU,L}} \}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$



$$\gamma = \frac{2Mx}{Q}$$

$$\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^{2}y^{2}}{1 - y + \frac{1}{2}y^{2} + \frac{1}{4}\gamma^{2}y^{2}}$$

[see, e.g., Bacchetta et al., JHEP 0702 (2007) 093 CPTEIC 2012 - Jan./Feb. 2012

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

hadron multiplicity:

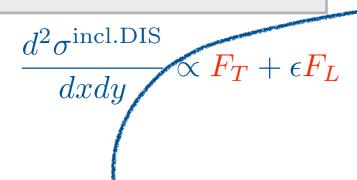
normalize to inclusive DIS cross section

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

hadron multiplicity:

normalize to inclusive DIS cross section



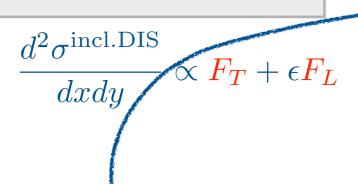
$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_T + \epsilon F_L}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

hadron multiplicity:

normalize to inclusive DIS cross section



$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_T + \epsilon F_L}$$

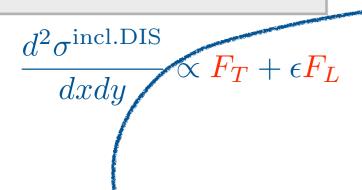
$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

hadron multiplicity:

normalize to inclusive DIS cross section



$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_T + \epsilon F_L}$$

$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

moments:

normalize to azimuthindependent cross-section

hadron multiplicity:

normalize to inclusive DIS cross section

$$\frac{d^2\sigma^{\mathrm{incl.DIS}}}{dxdy}$$
 \propto $F_T + \epsilon F_L$

$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_T + \epsilon F_L}$$

$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

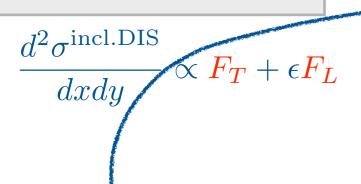
$$2\langle \cos 2\phi \rangle_{UU} \equiv 2 \frac{\int d\phi_h \cos 2\phi \, d\sigma}{\int d\phi_h d\sigma} = \frac{\epsilon F_{UU}^{\cos 2\phi}}{F_{UU,T} + \epsilon F_{UU,L}}$$

moments:

normalize to azimuthindependent cross-section

hadron multiplicity:

normalize to inclusive DIS cross section



$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_T + \epsilon F_L}$$

$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

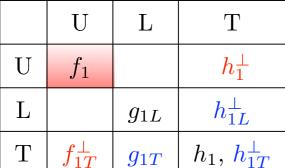
$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

$$2\langle \cos 2\phi \rangle_{UU} \equiv 2 \frac{\int d\phi_h \cos 2\phi \, d\sigma}{\int d\phi_h d\sigma} = \frac{\epsilon F_{UU}^{\cos 2\phi}}{F_{UU,T} + \epsilon F_{U,L}}$$

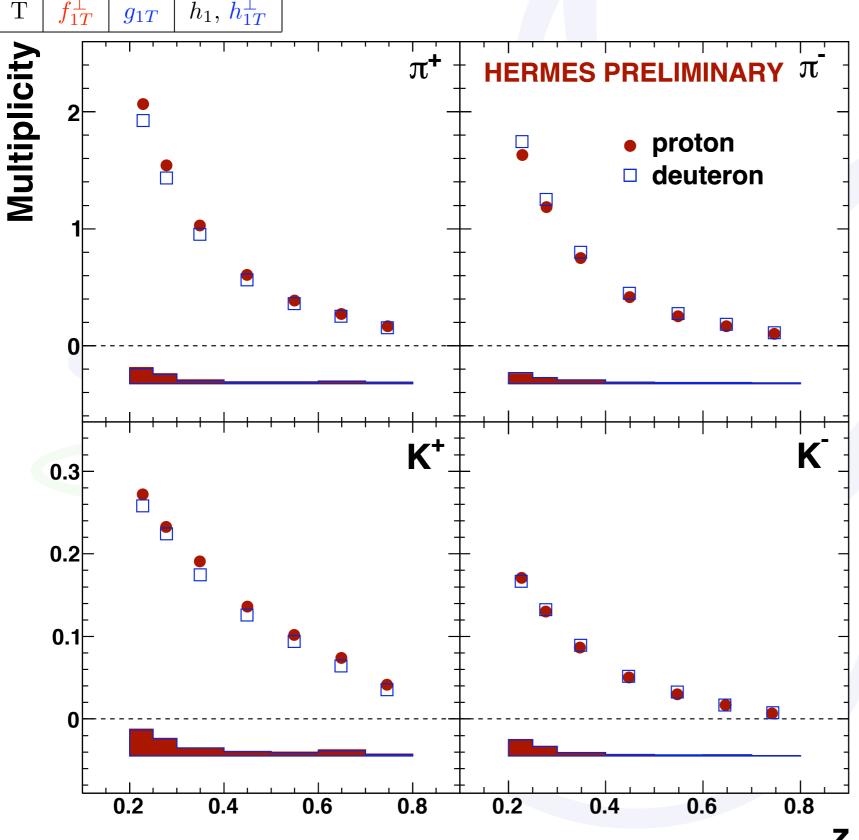
moments:

normalize to azimuthindependent cross-section

$$\approx \epsilon \frac{\sum_{q} e_{q}^{2} h_{1}^{\perp,q}(x, p_{T}^{2}) \otimes_{\text{BM}} H_{1}^{\perp,q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}$$



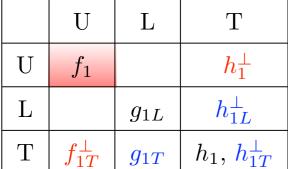
Charged-meson multiplicities



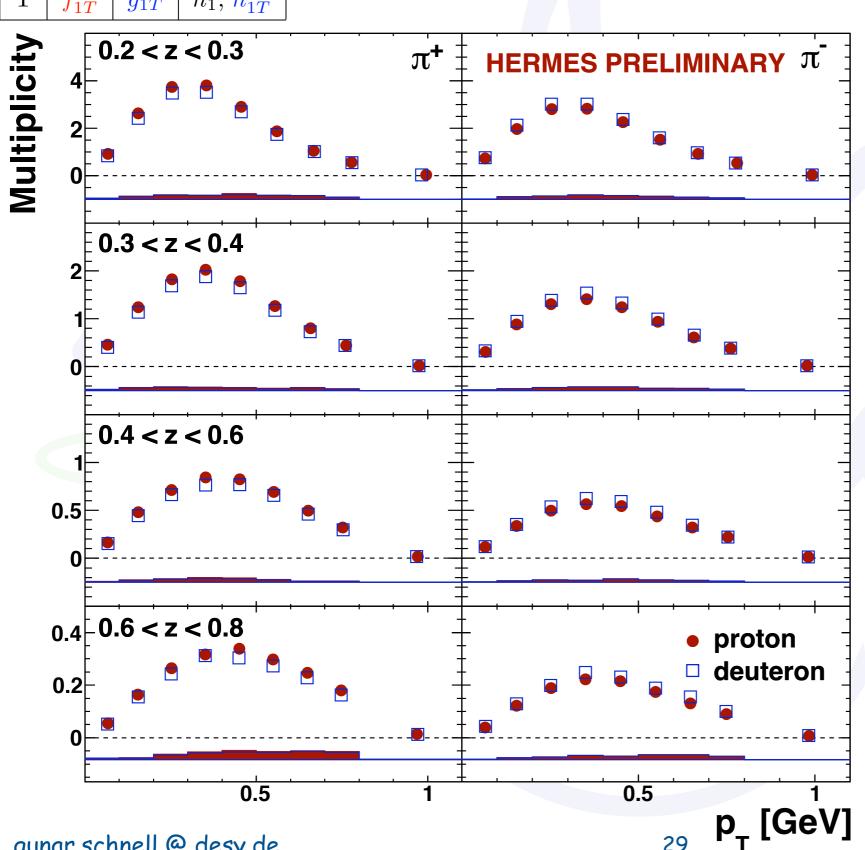
slight differences between proton and deuteron targets

most exhaustive data set on (p_T-integrated) electro-production of charged mesons on nucleons

valuable input for future FF fits, especially quark/antiquark separation

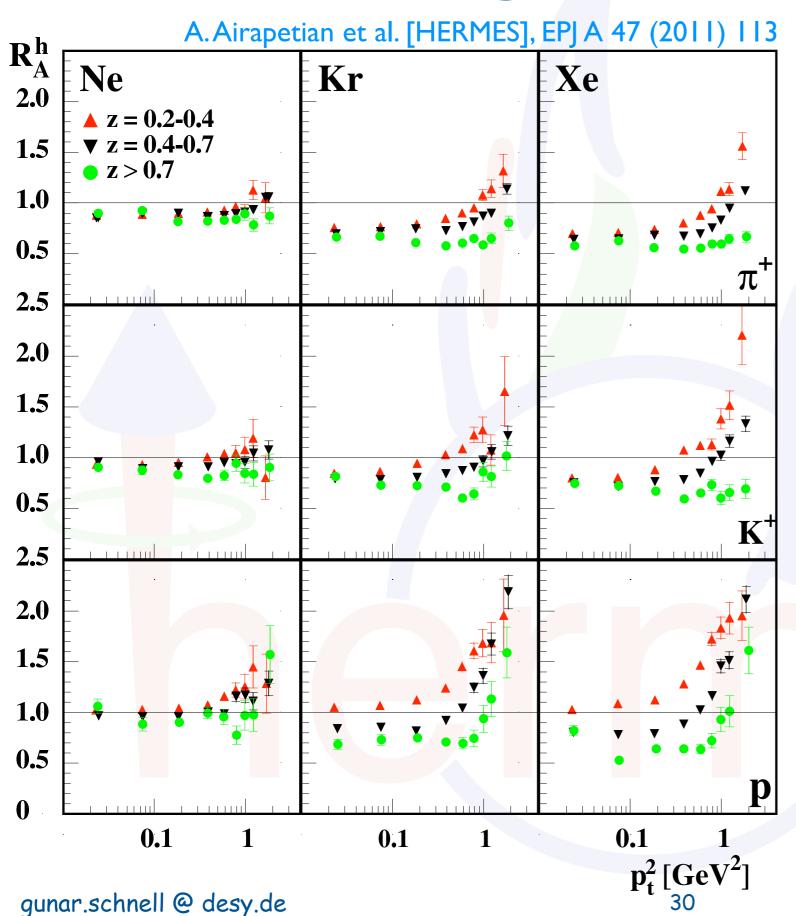


2-D z-pt dependence



only data on multi-D dependences in electro-production of mesons on pure p and d!

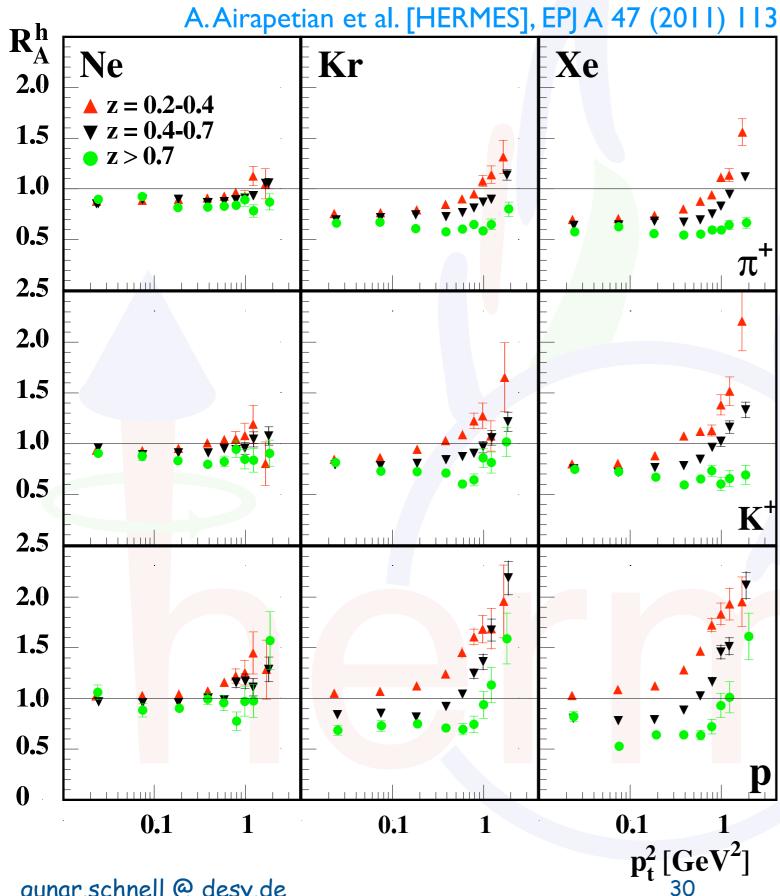
Nuclear targets: study hadronization



$$\mathbf{R_A^h} \equiv rac{\mathcal{M}_\mathbf{A}^\mathbf{h}}{\mathcal{M}_\mathbf{d}^\mathbf{h}}$$

strong p_T dependence of nuclear attenuation

Nuclear targets: study hadronization

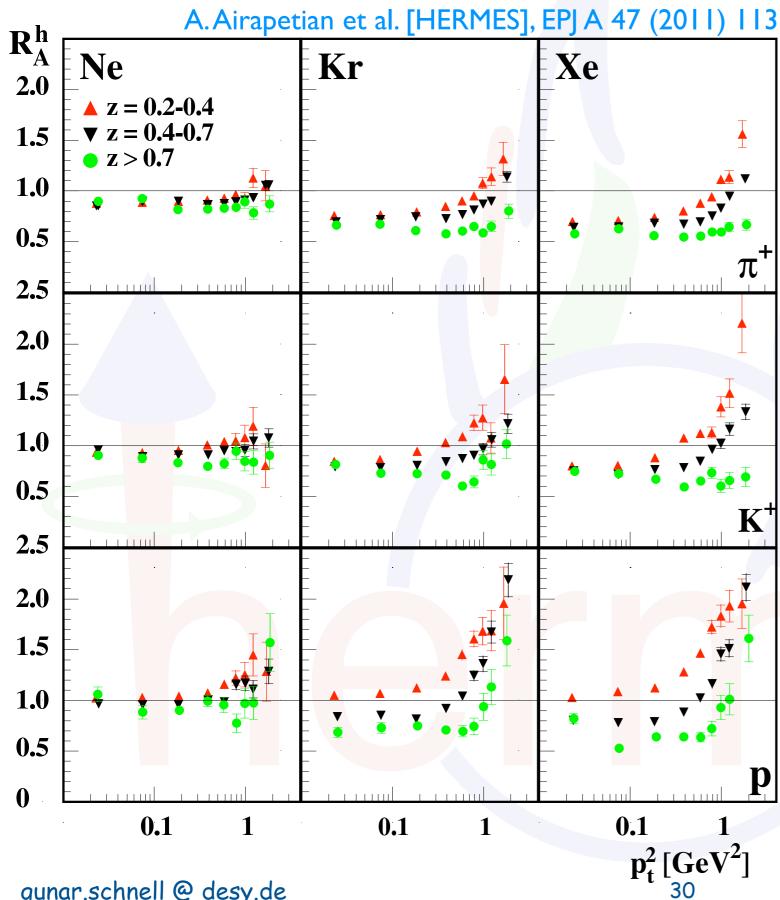


$$\mathbf{R_A^h} \equiv rac{\mathcal{M}_\mathbf{A}^\mathbf{h}}{\mathcal{M}_\mathbf{d}^\mathbf{h}}$$

strong pt dependence of nuclear attenuation

needs to be considered when interpreting TMD effects off nuclear targets (at not-too-high energies)

Nuclear targets: study hadronization



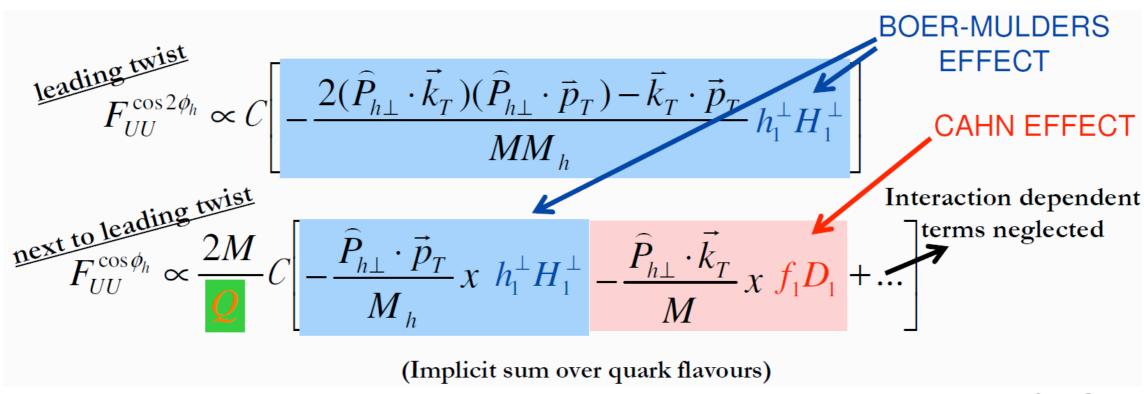
$$\mathbf{R_A^h} \equiv rac{\mathcal{M}_\mathbf{A}^\mathbf{h}}{\mathcal{M}_\mathbf{d}^\mathbf{h}}$$

strong pt dependence of nuclear attenuation

needs to be considered when interpreting TMD effects off nuclear targets (at not-too-high energies)

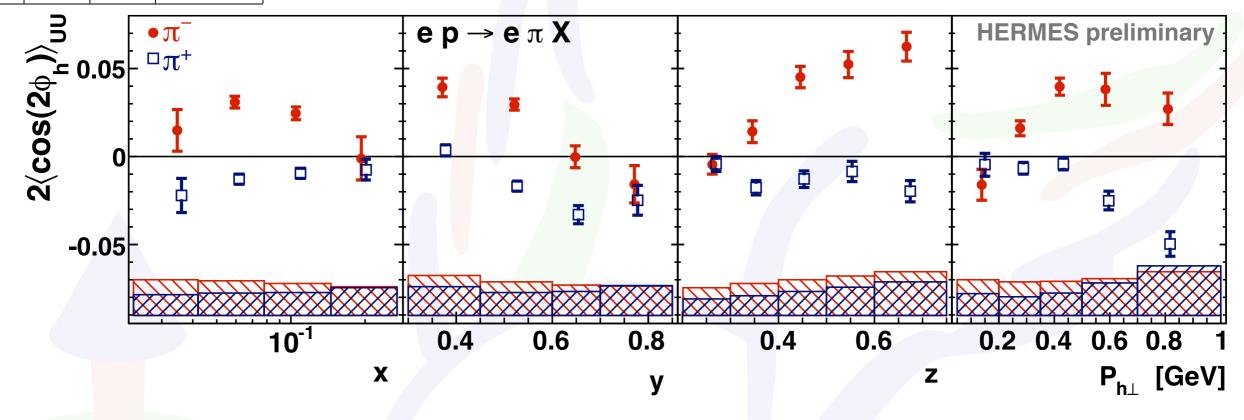
(other 2D dependences available)

Azimuthal modulations

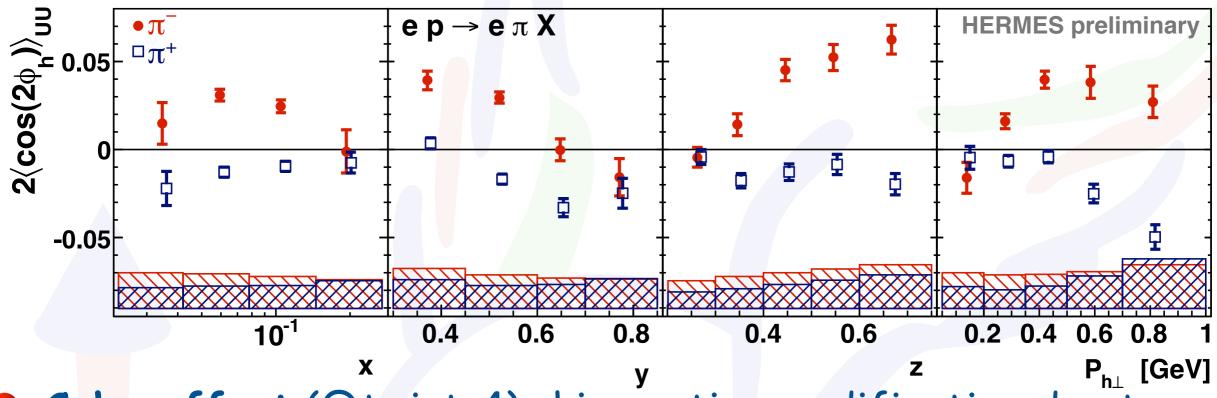


[courtesy of F. Giordano]

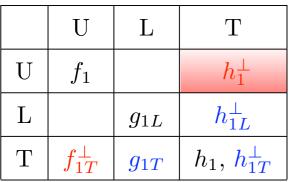
	U	${ m L}$	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

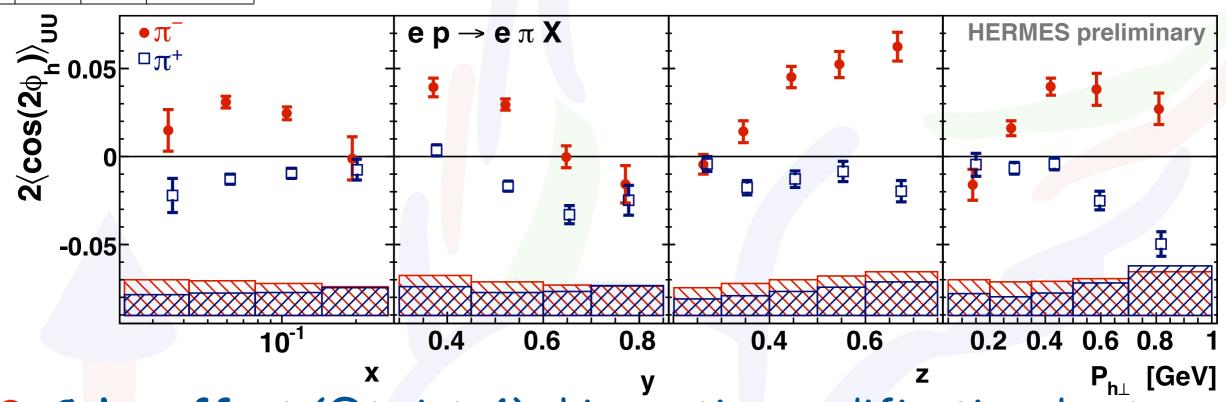


	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

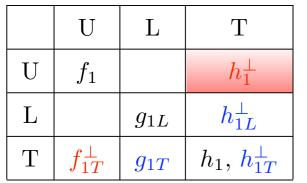


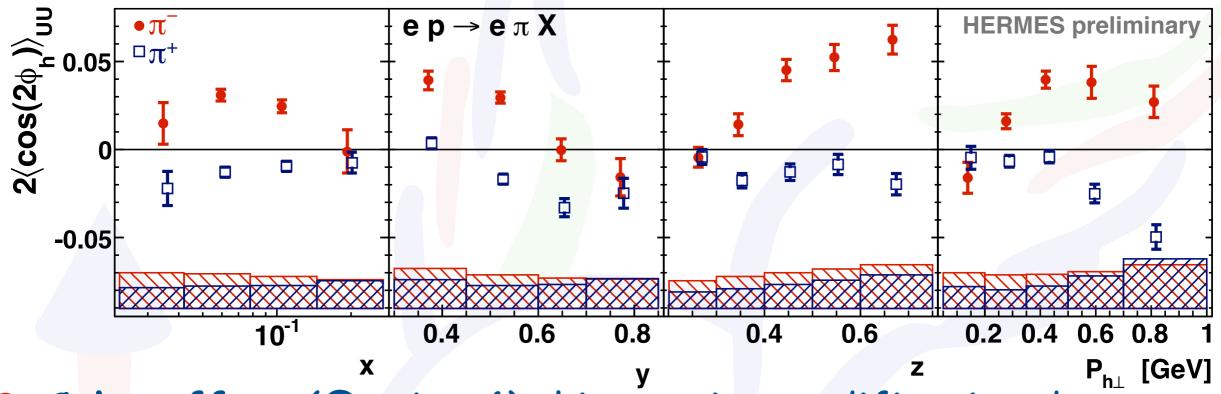
• Cahn effect (@twist-4) -kinematics modification due to transverse momenta- often assumed flavor blind





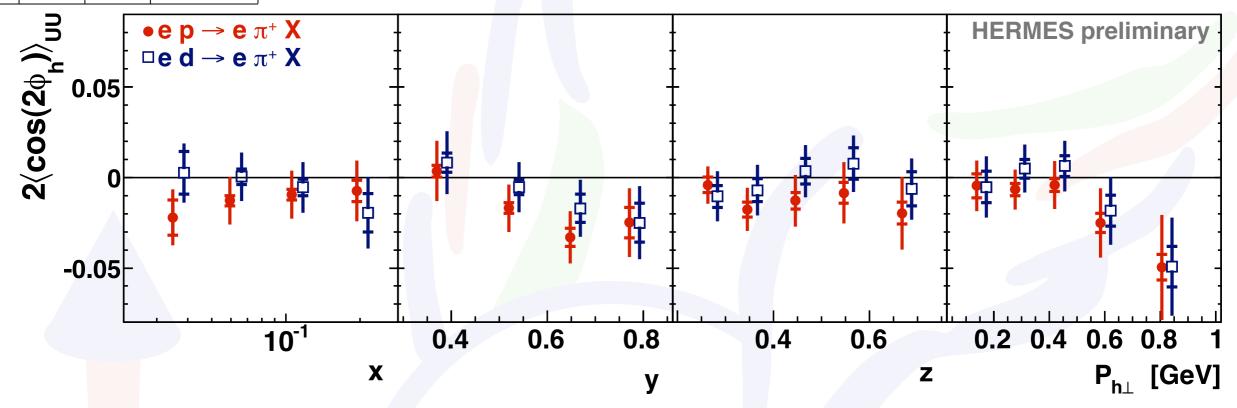
- Cahn effect (@twist-4) -kinematics modification due to transverse momenta- often assumed flavor blind
- large flavor dependence points at significant (leading-twist)
 Boer-Mulders effect



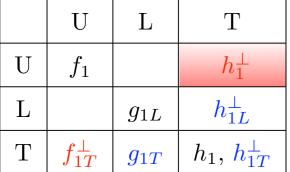


- Cahn effect (@twist-4) -kinematics modification due to transverse momenta- often assumed flavor blind
- large flavor dependence points at significant (leading-twist)
 Boer-Mulders effect
- opposite sign for opposite pion charge can be expected from same-sign BM functions for up and down quarks (if considering opposite sign for up and down Collins functions -> Collins effect)

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



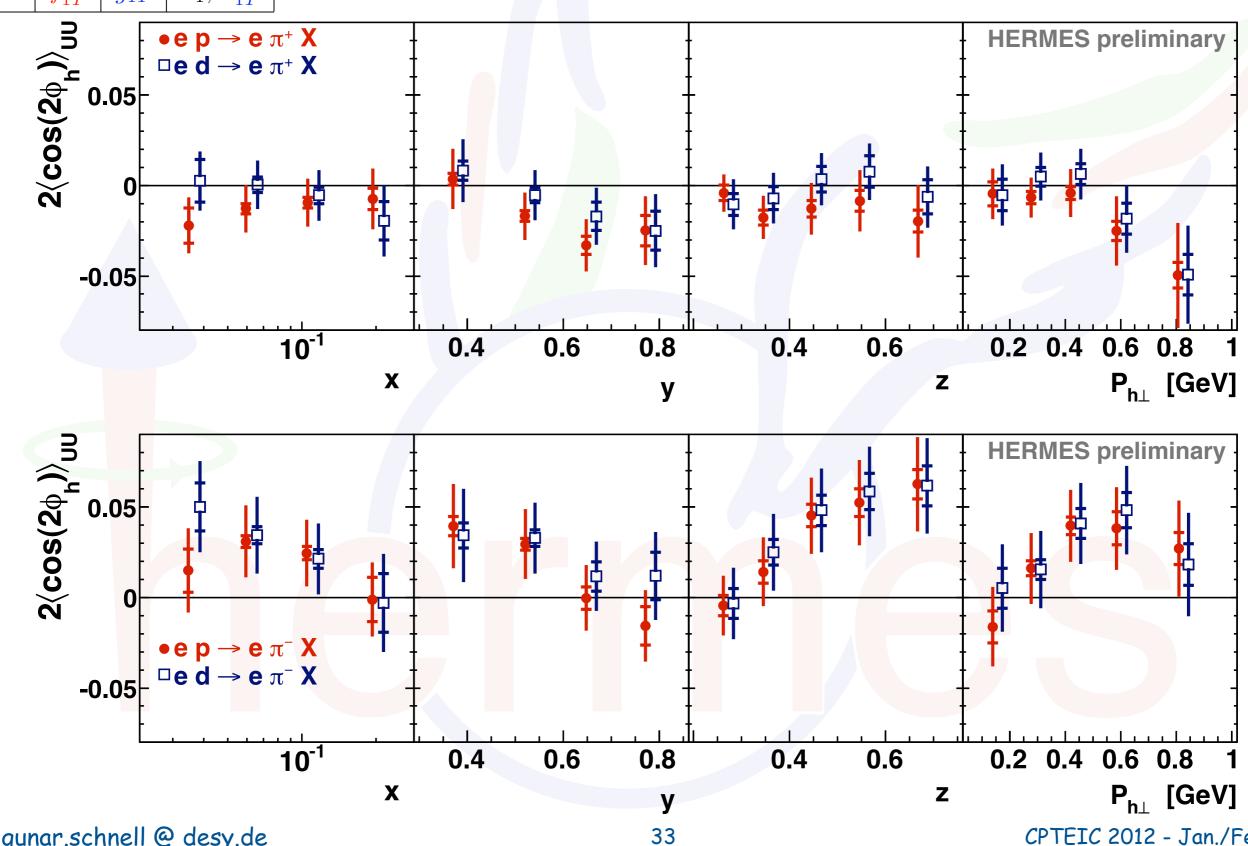
- hardly any dependence on target!
- consistent with same-sign up/down BM of similar size



gunar.schnell @ desy.de

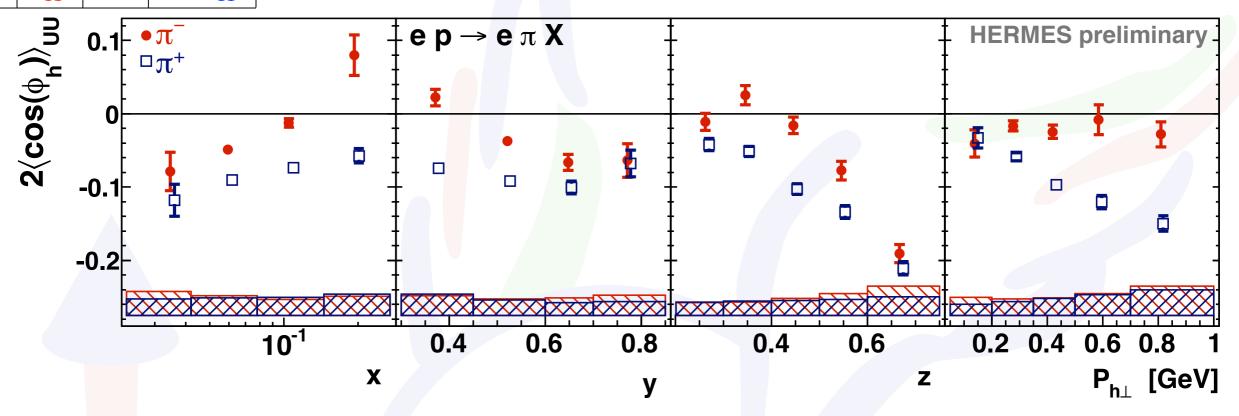
"Boer-Mulders modulation"

CPTEIC 2012 - Jan./Feb. 2012



	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	$oxed{h_1, oldsymbol{h}_{1T}^{ot}}$

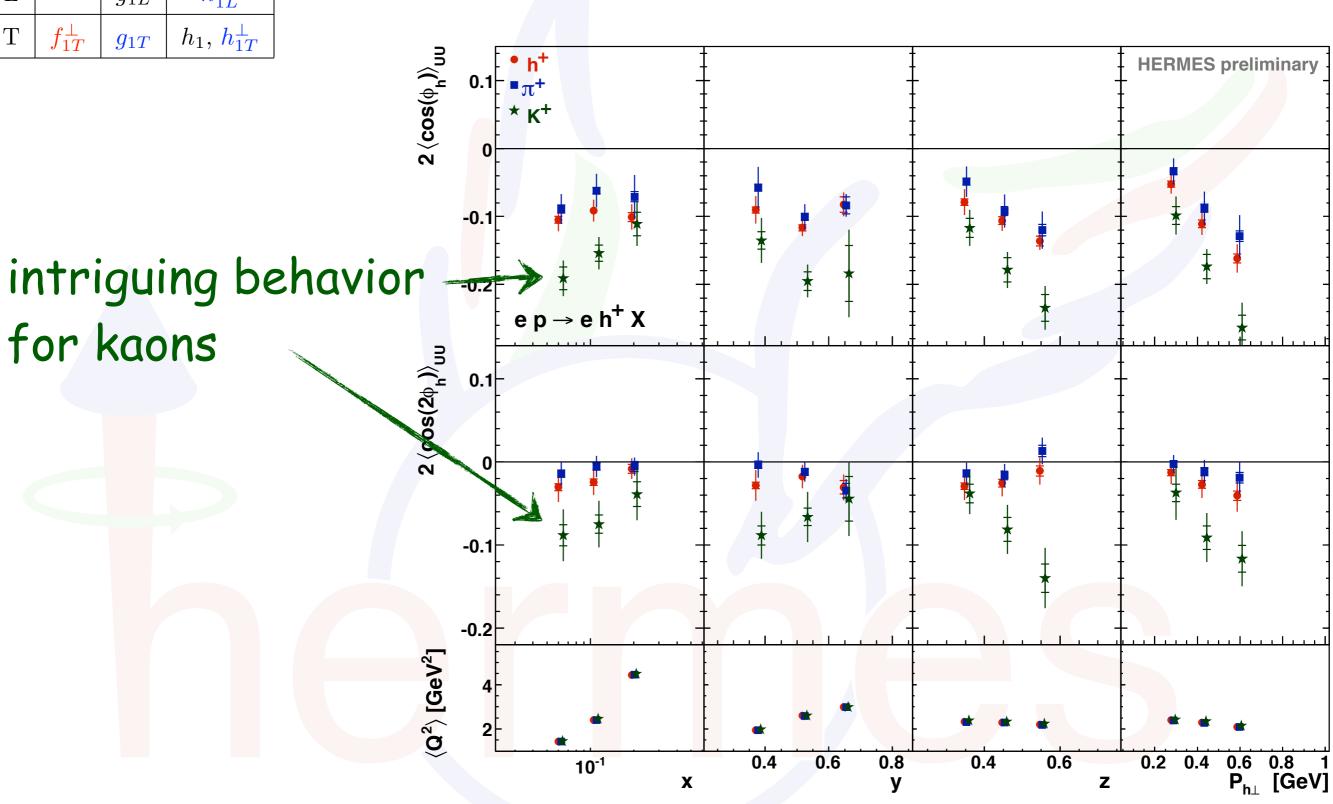
"Cahn modulation"



- on dependence on hadron charge expected for Cahn effect
- → flavor dependence of transverse momentum
- \Rightarrow sign of Boer-Mulders in $\cos\phi$ modulation (indeed, overall pattern resembles B-M modulations)
- → additional "genuine" twist-3?

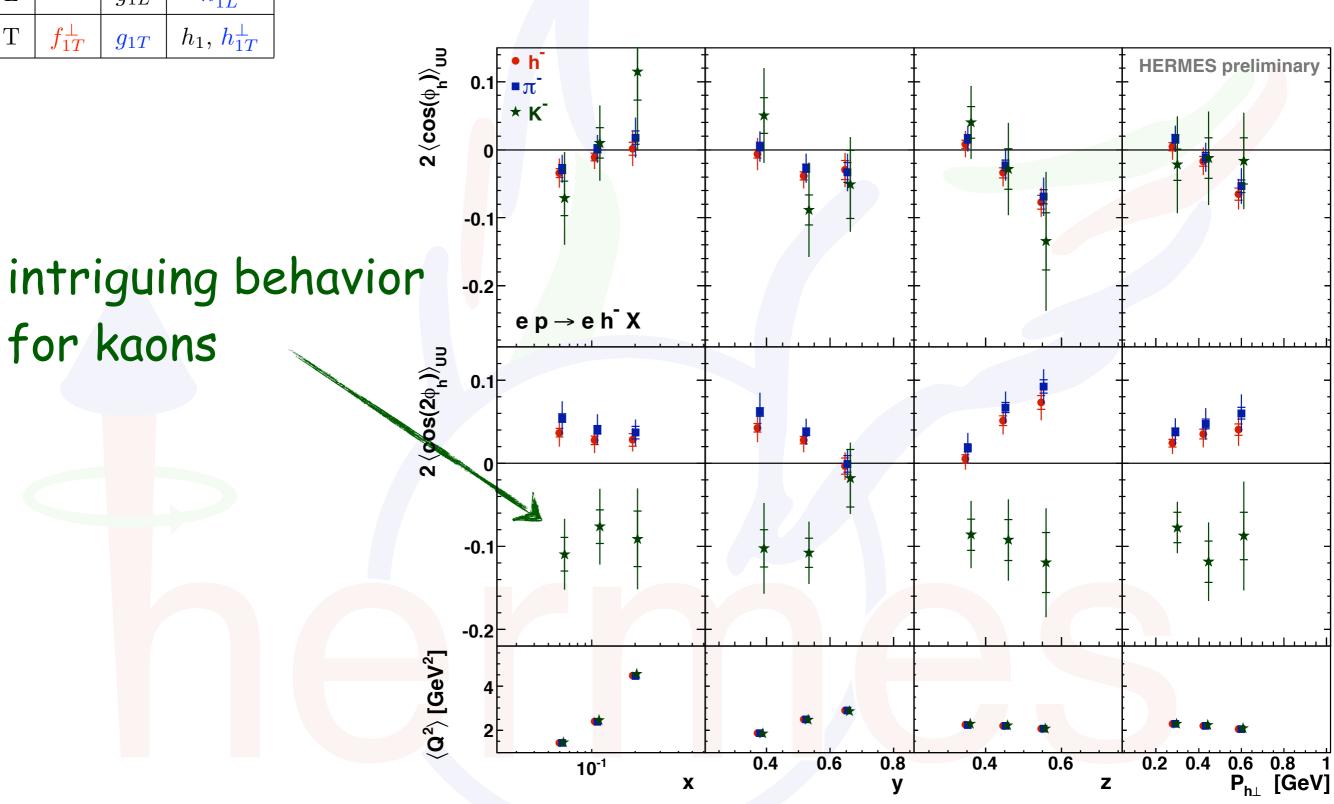
	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, \frac{h_{1T}^{\perp}}{h_{1T}}$

strange results



	U	${ m L}$	${ m T}$
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

strange results

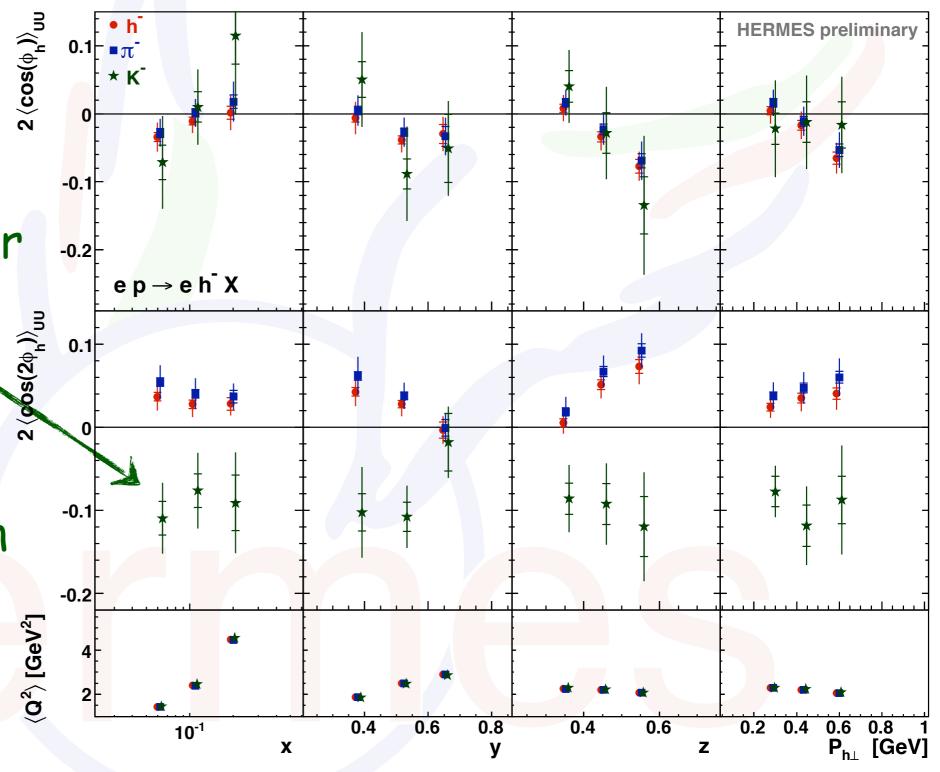


	U	L	${ m T}$
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

strange results

different pattern for kaon Collins function?

(cf. BRAHMS AN and SIDIS Collins)



... add more transverse spin ...

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
$\overline{\mathrm{T}}$	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

$$f_1^{q} = \bigcirc$$

$$g_1^q = 0 \rightarrow - 0 \rightarrow h_1^q = 0 - 0$$

$$h_1^{\mathrm{q}} = \bigcirc$$

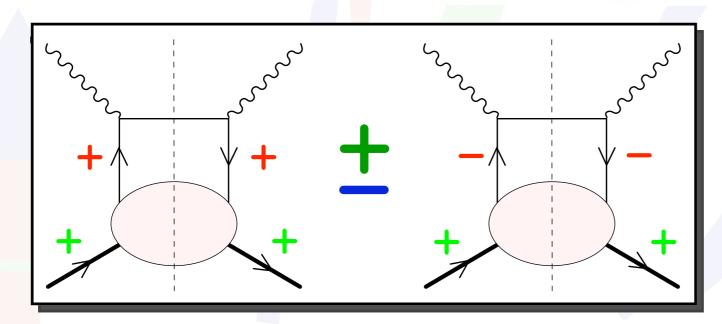
	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
${ m T}$	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

$$f_1^{q} = \bigcirc$$

$$g_1^q = \bigcirc - \bigcirc \rightarrow$$

$$h_1^{\mathrm{q}} = \bigcirc$$



$$h_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

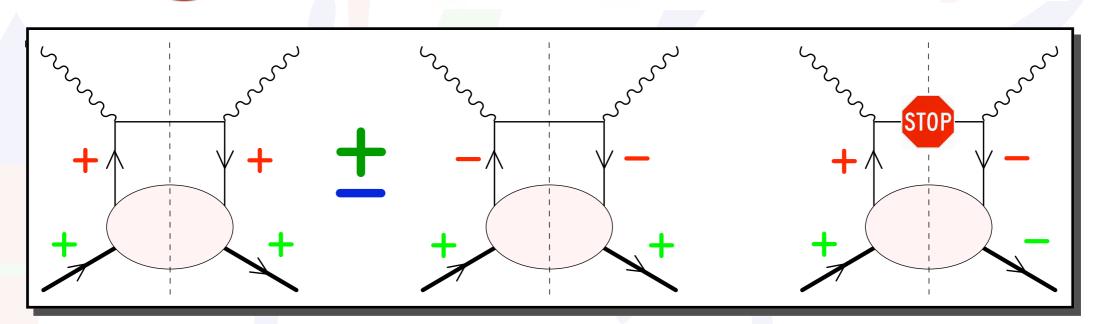
	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
$\overline{\mathrm{T}}$	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

$$f_1^q = \bigcirc$$

$$g_1^q = \bigcirc - \bigcirc \rightarrow$$

$$h_1^{\mathbf{q}} = \mathbf{Q} - \mathbf{Q}$$



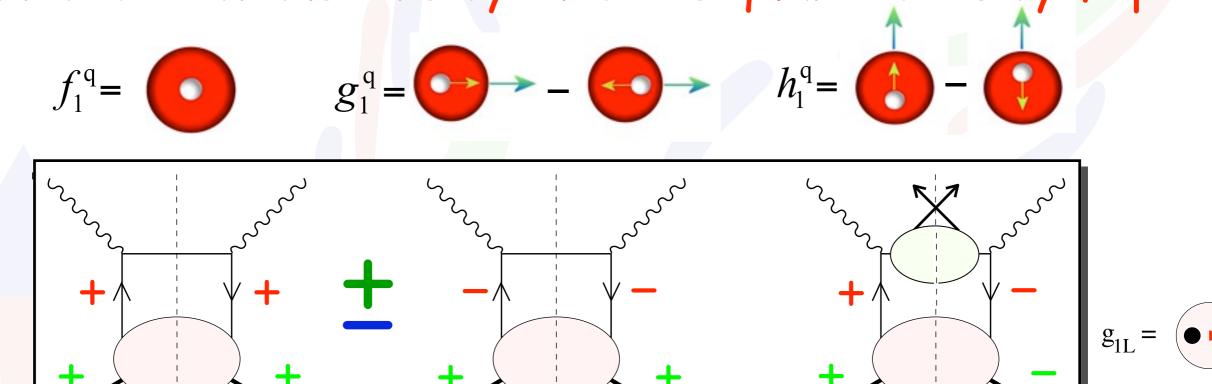
	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

need to couple to chiral-odd fragmentation function:

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

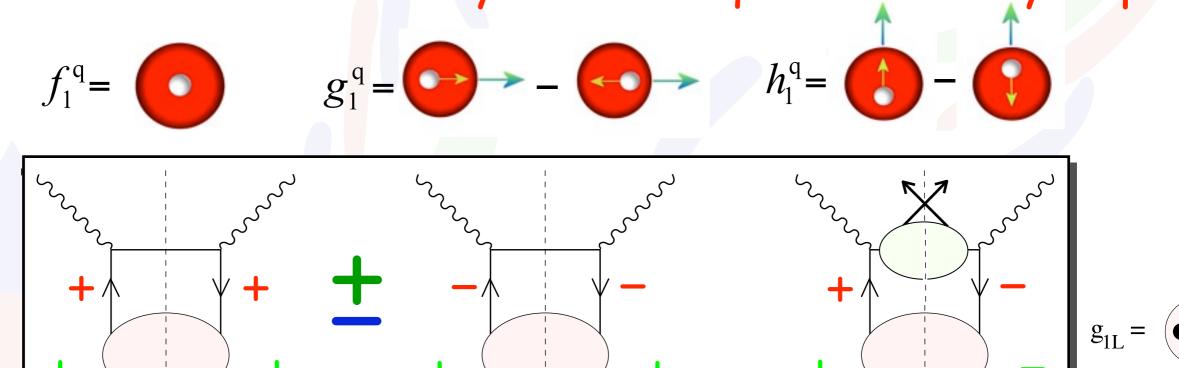


need to couple to chiral-odd fragmentation function:

Transverse spin transfer (polarized final-state hadron)

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

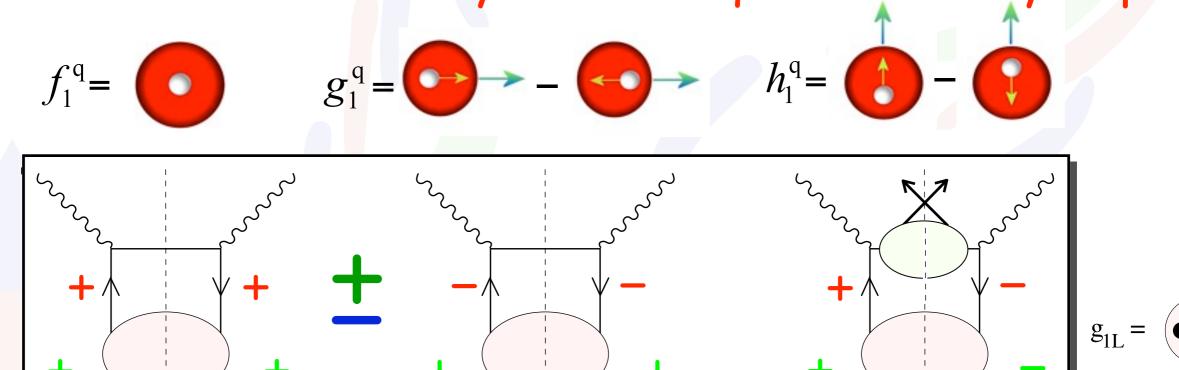


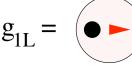
need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

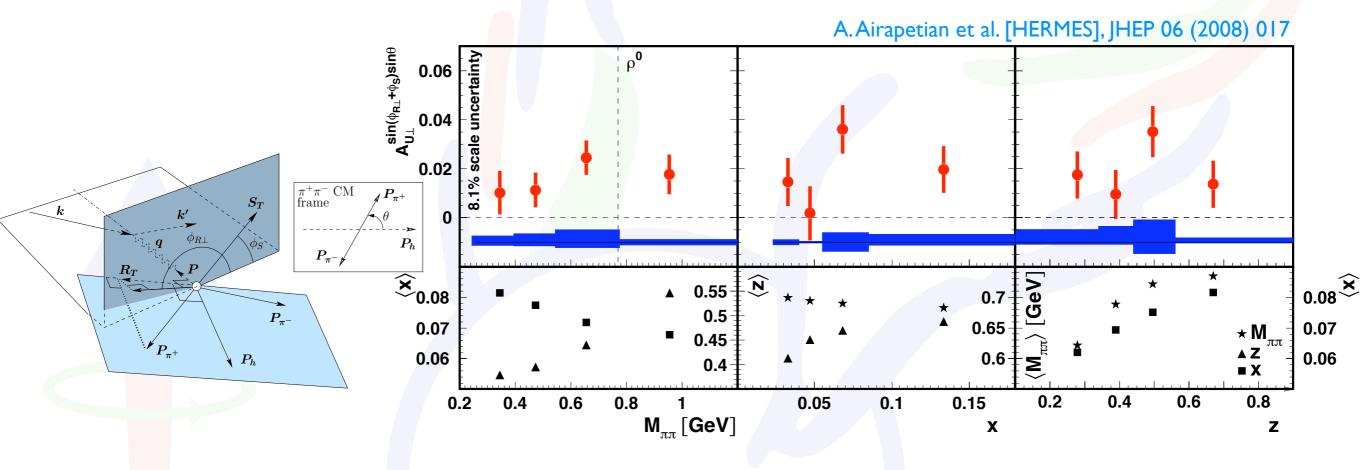




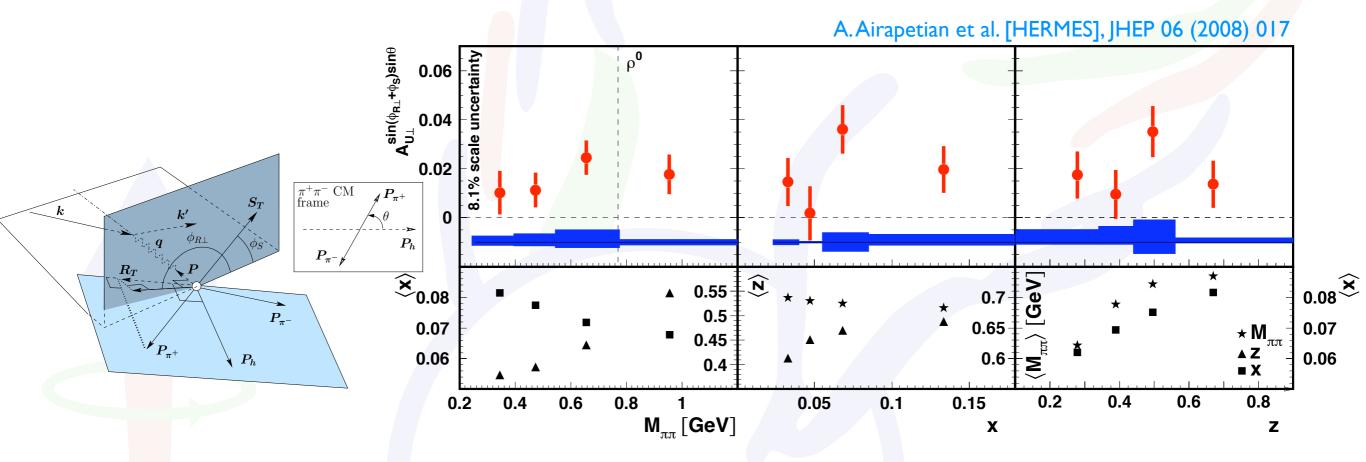
need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation
- Collins fragmentation

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

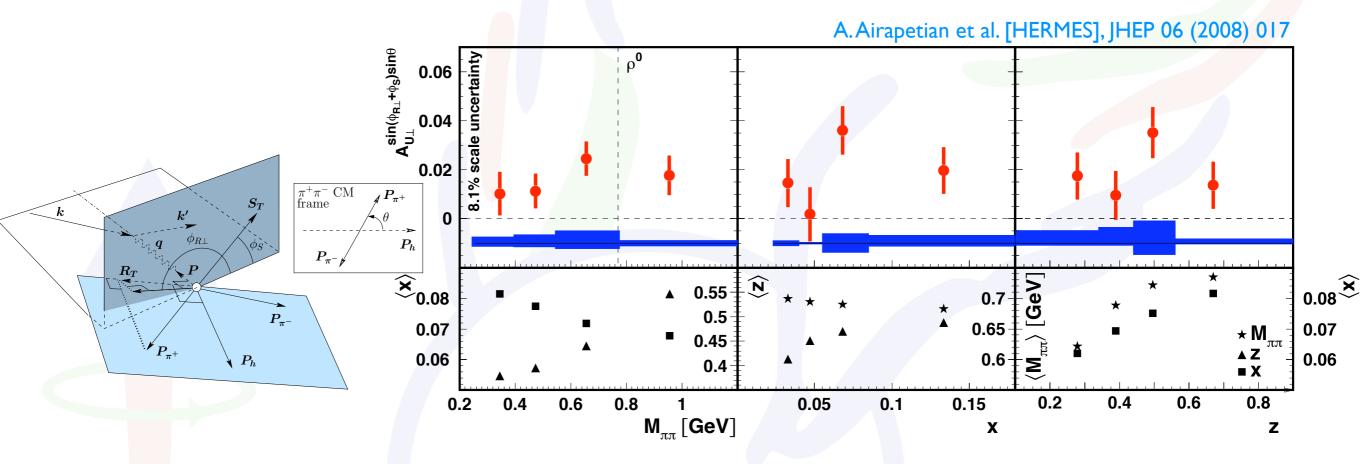


	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



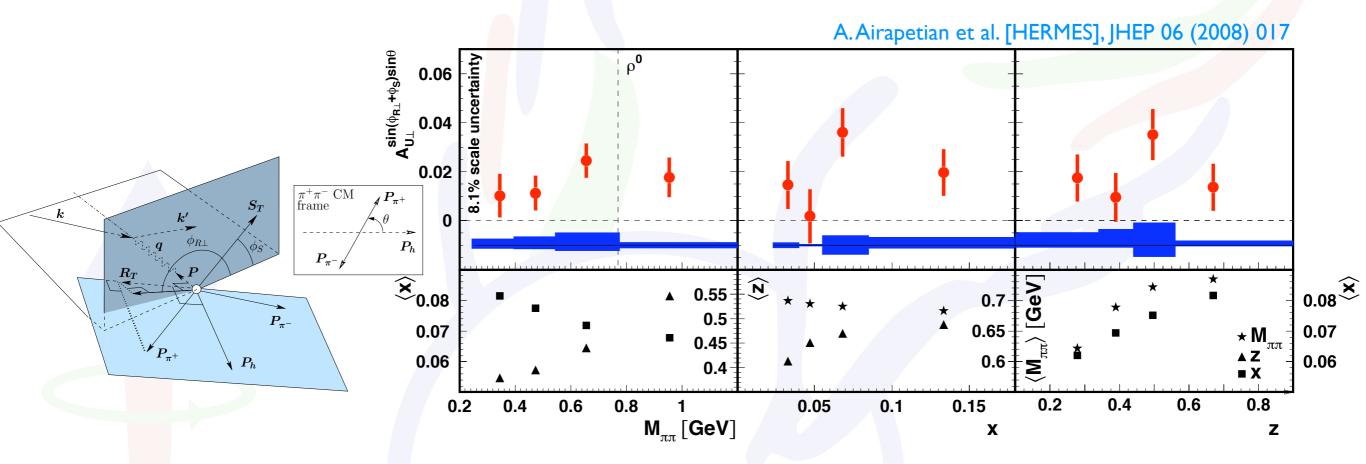
first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS

	U	${f L}$	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



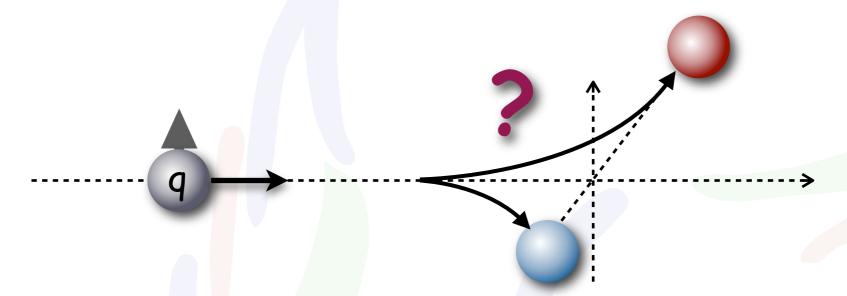
- first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS
- lacktriangle invariant-mass dependence rules out Jaffe prediction of sign change at ho mass

	U	${f L}$	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp



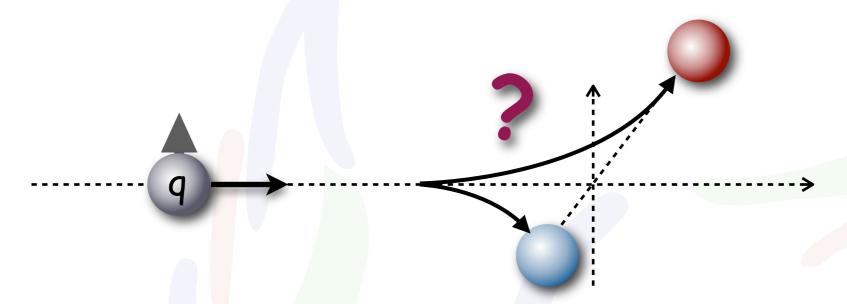
- first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS
- lacktriangle invariant-mass dependence rules out Jaffe prediction of sign change at ho mass
- more asymmetry amplitudes coming out soon

Collins fragmentation



- spin-dependence in fragmentation
- left-right asymmetry in hadron direction transverse to both quark spin and momentum

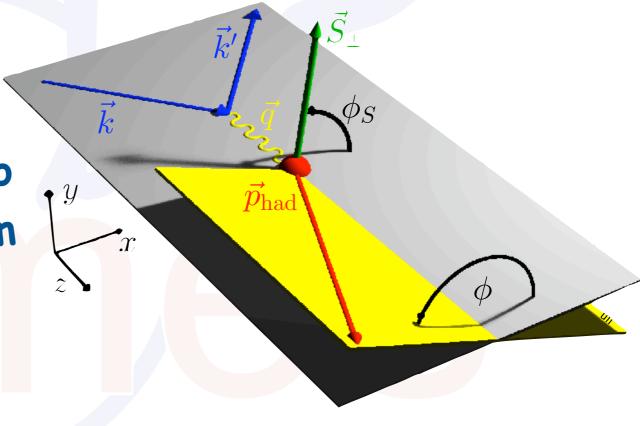
Collins fragmentation



spin-dependence in fragmentation

 left-right asymmetry in hadron direction transverse to both quark spin and momentum

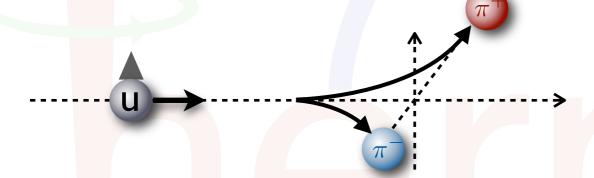
 leads to particular azimuthal distribution of hadrons produced in DIS



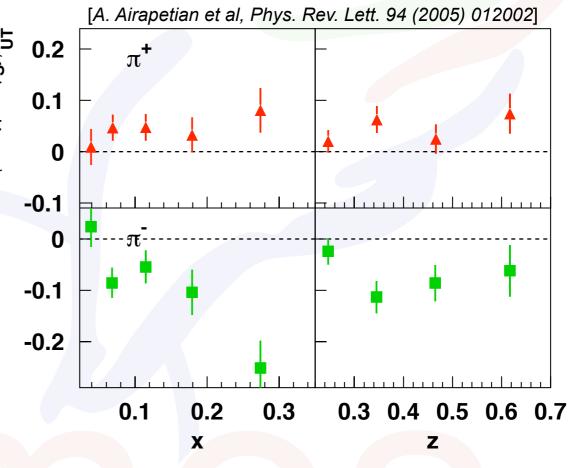
	U	${f L}$	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Transversity distribution (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one



leads to various cancellations in SSA observables



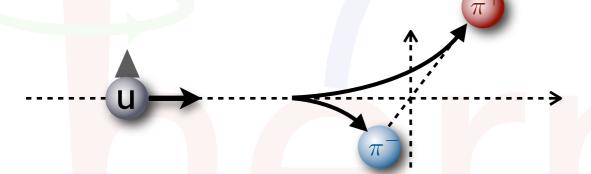
2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

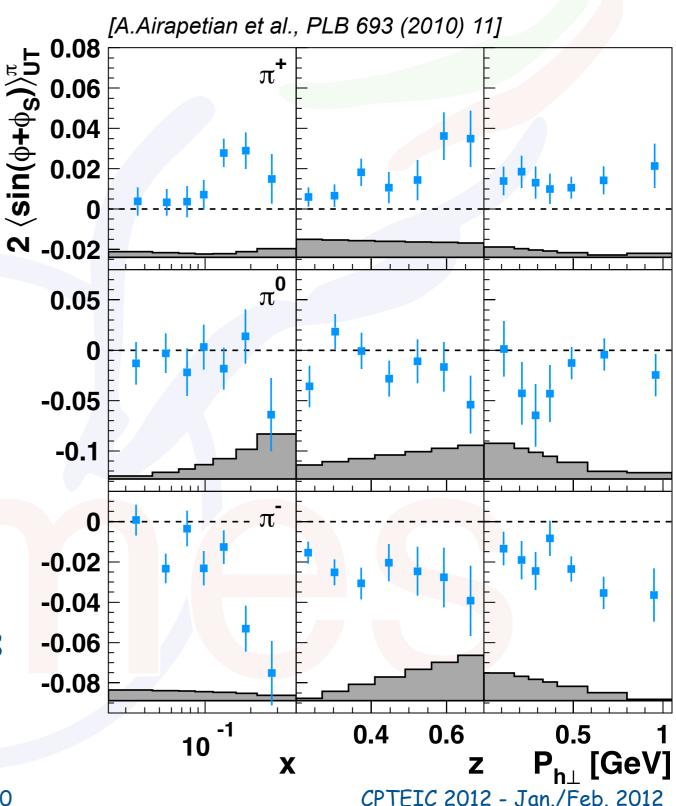
	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Transversity distribution (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

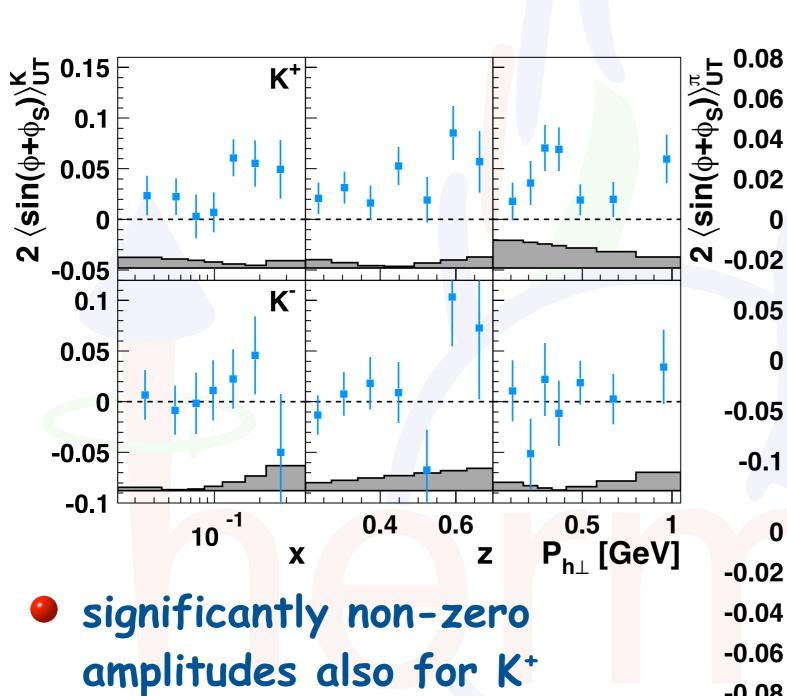


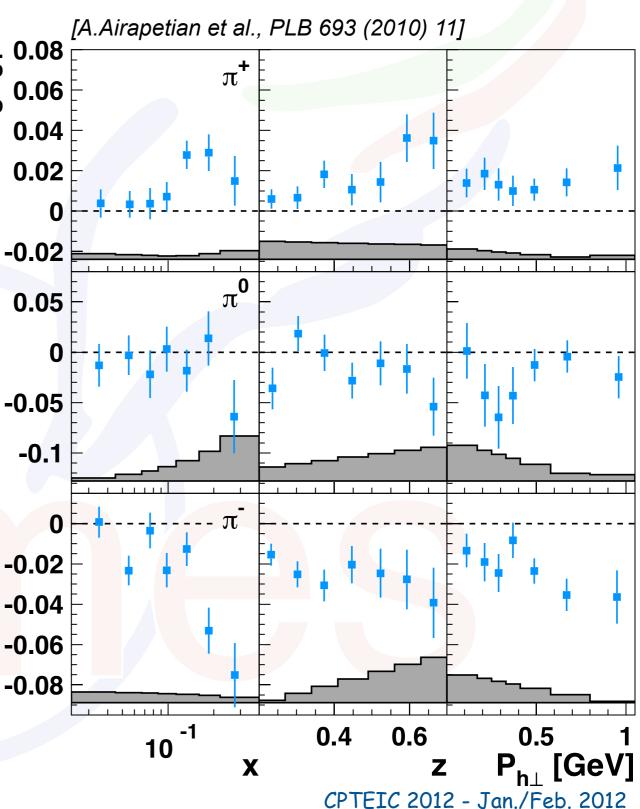
leads to various cancellations in SSA observables



	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

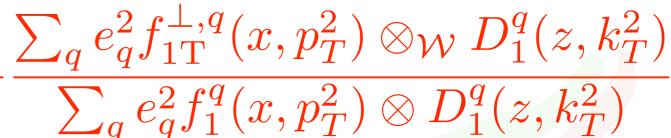
Transversity distribution (Collins fragmentation)

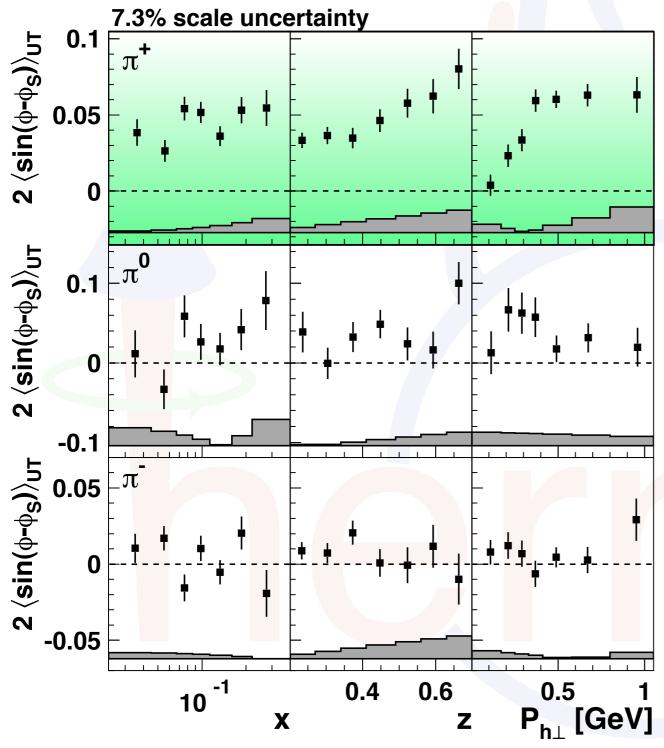




	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
${ m T}$	f_{1T}^{\perp}	q_{1T}	h_1, h_{1T}^{\perp}

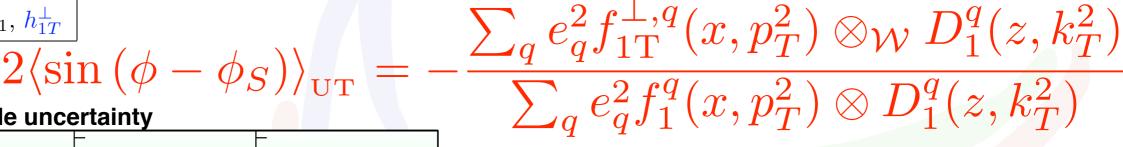
$$2\langle \sin\left(\phi - \phi_S\right)\rangle_{\text{UT}} = -1$$





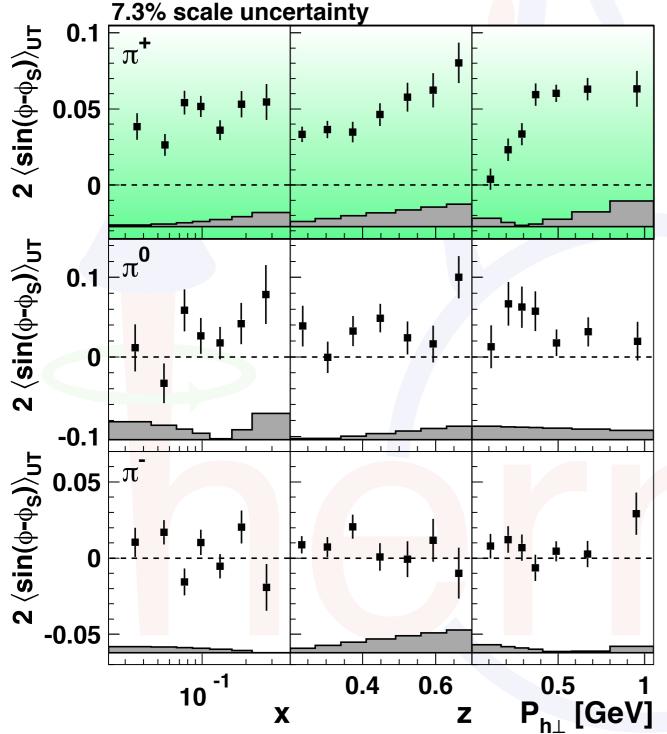
	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	q_{1T}	h_1, h_{1T}^{\perp}

$$2\langle \sin\left(\phi - \phi_S\right)\rangle_{\text{UT}} = -$$



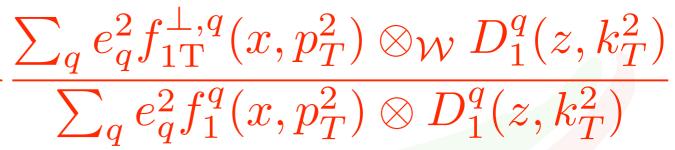
π^+ dominated by u-quark scattering:

$$\simeq - \frac{f_{1\mathrm{T}}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$



	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

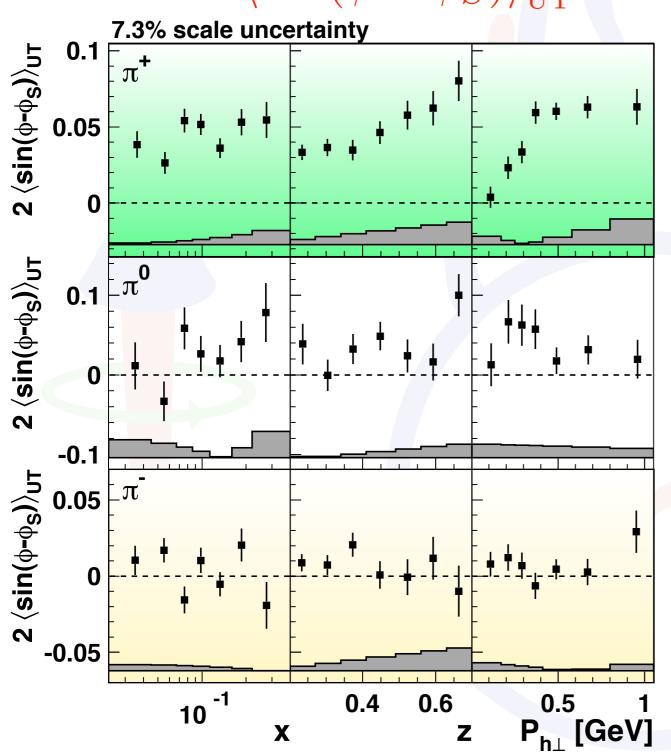
$$2\langle \sin\left(\phi - \phi_S\right)\rangle_{\text{UT}} = -$$



π^+ dominated by u-quark scattering:

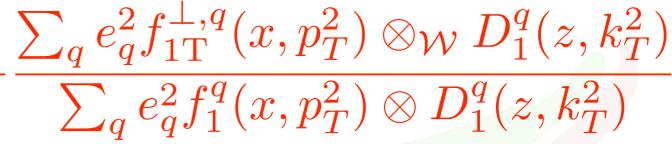
$$\simeq -\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

• d-quark Sivers DF > 0
(cancelation for
$$\pi^-$$
)



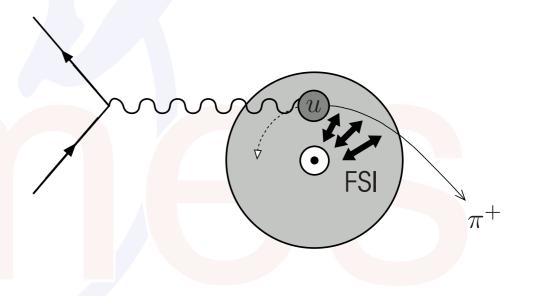
	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

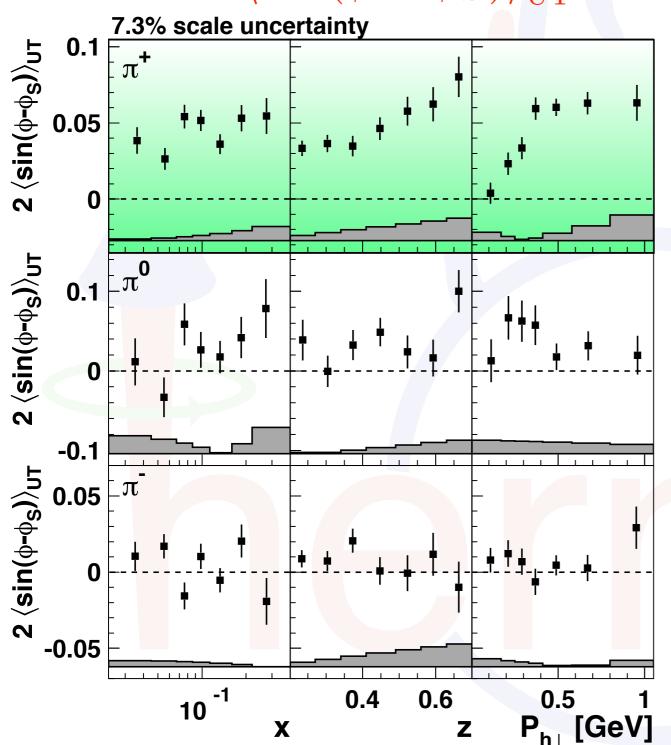
$$2\langle \sin\left(\phi - \phi_S\right)\rangle_{\text{UT}} = -$$



π^{+} dominated by u-quark scattering:

$$\simeq - \frac{f_{1\mathrm{T}}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

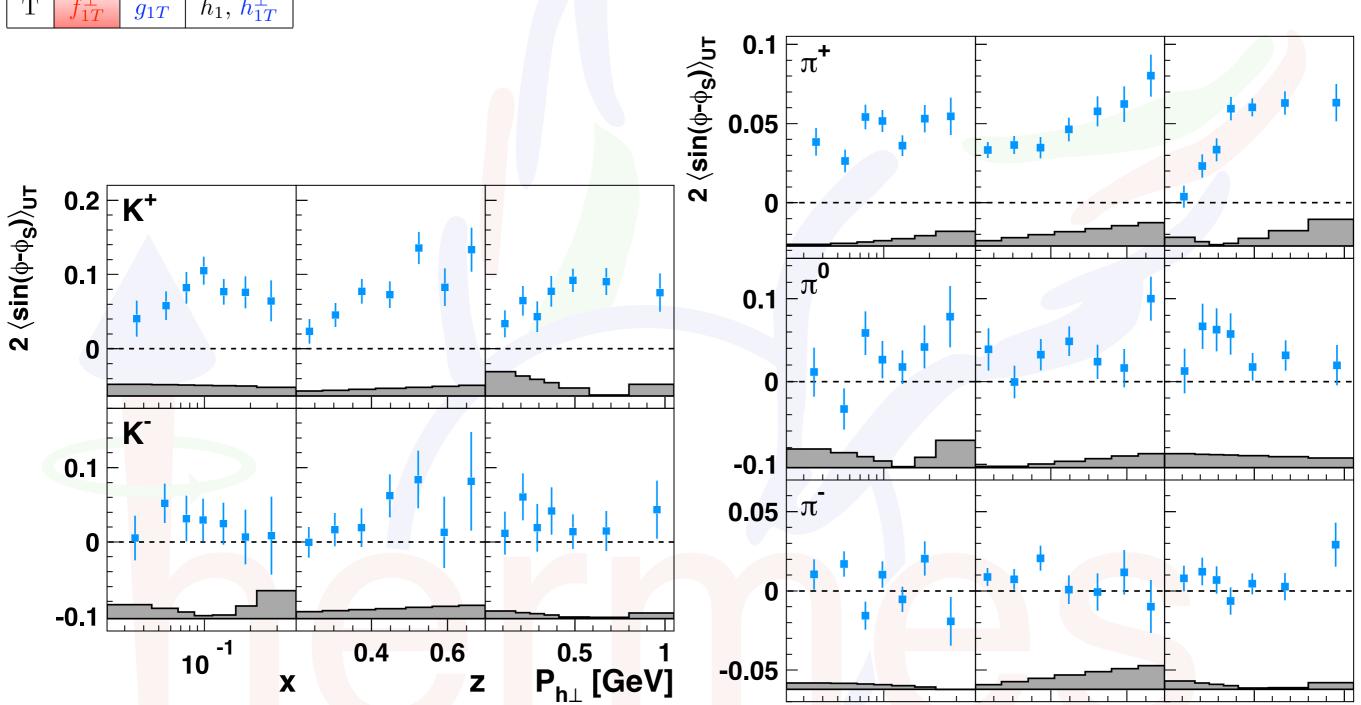




	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

The kaon Sivers amplitudes

10



0.5

P_h [GeV]

0.4

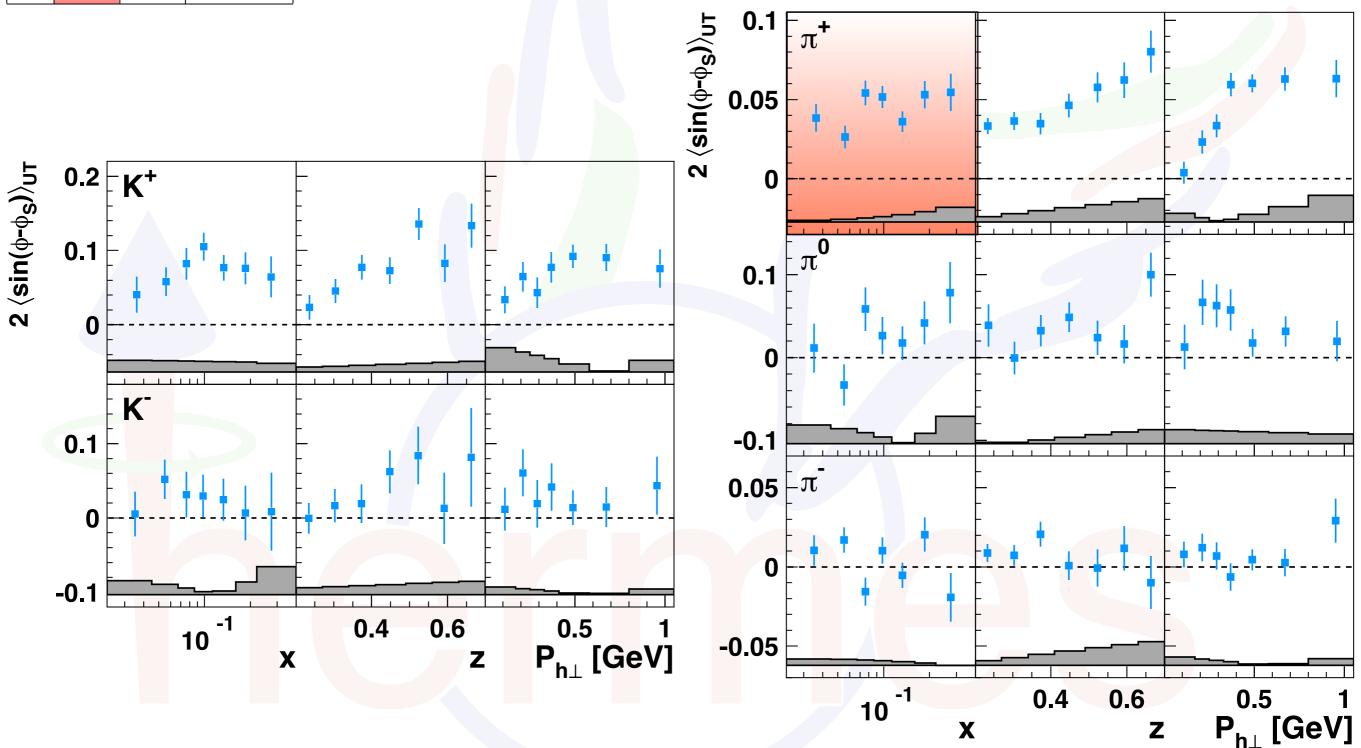
X

0.6

Z

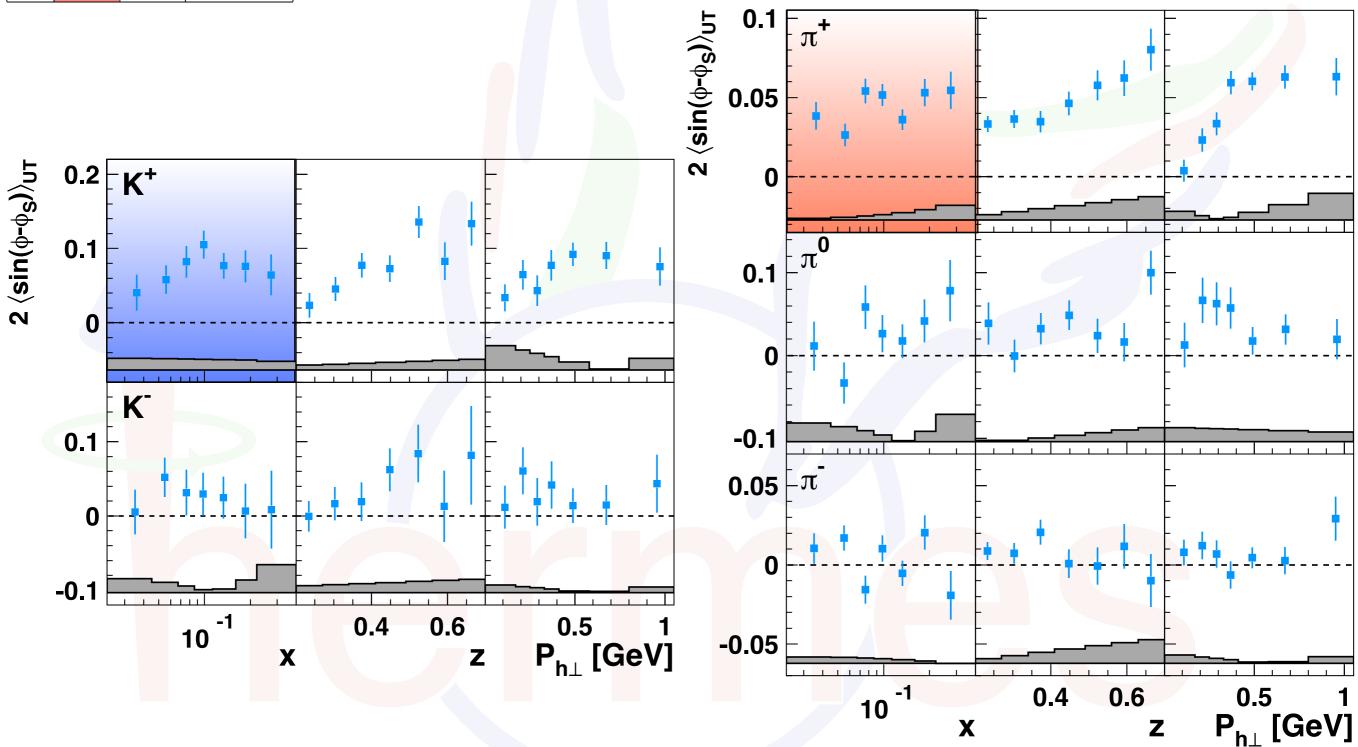
	U	${f L}$	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
${ m T}$	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

The kaon Sivers amplitudes



	U	${f L}$	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
${ m T}$	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

The kaon Sivers amplitudes



	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

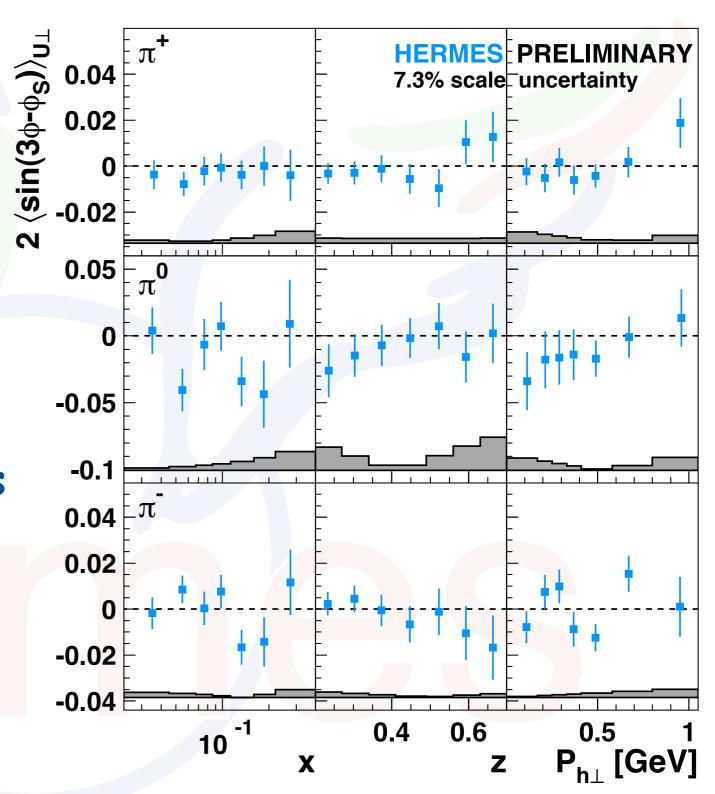
Pretzelosity

- chiral-odd → needsCollins FF (or similar)
- leads to $sin(3\phi-\phi_s)$ modulation in A_{UT}
- suppressed by two powers of P_{h⊥} (compared to, e.g., Sivers)

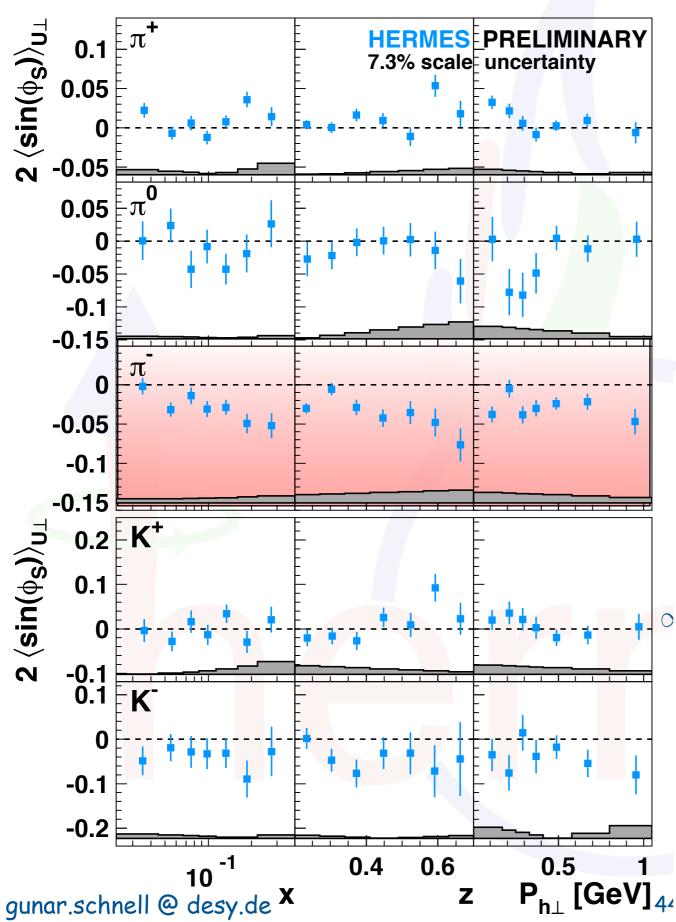
	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

- chiral-odd → needs
 Collins FF (or similar)
- leads to $sin(3\phi-\phi_s)$ modulation in A_{UT}
- suppressed by two powers of P_{h⊥} (compared to, e.g., Sivers)
- data consistent with zero

Pretzelosity

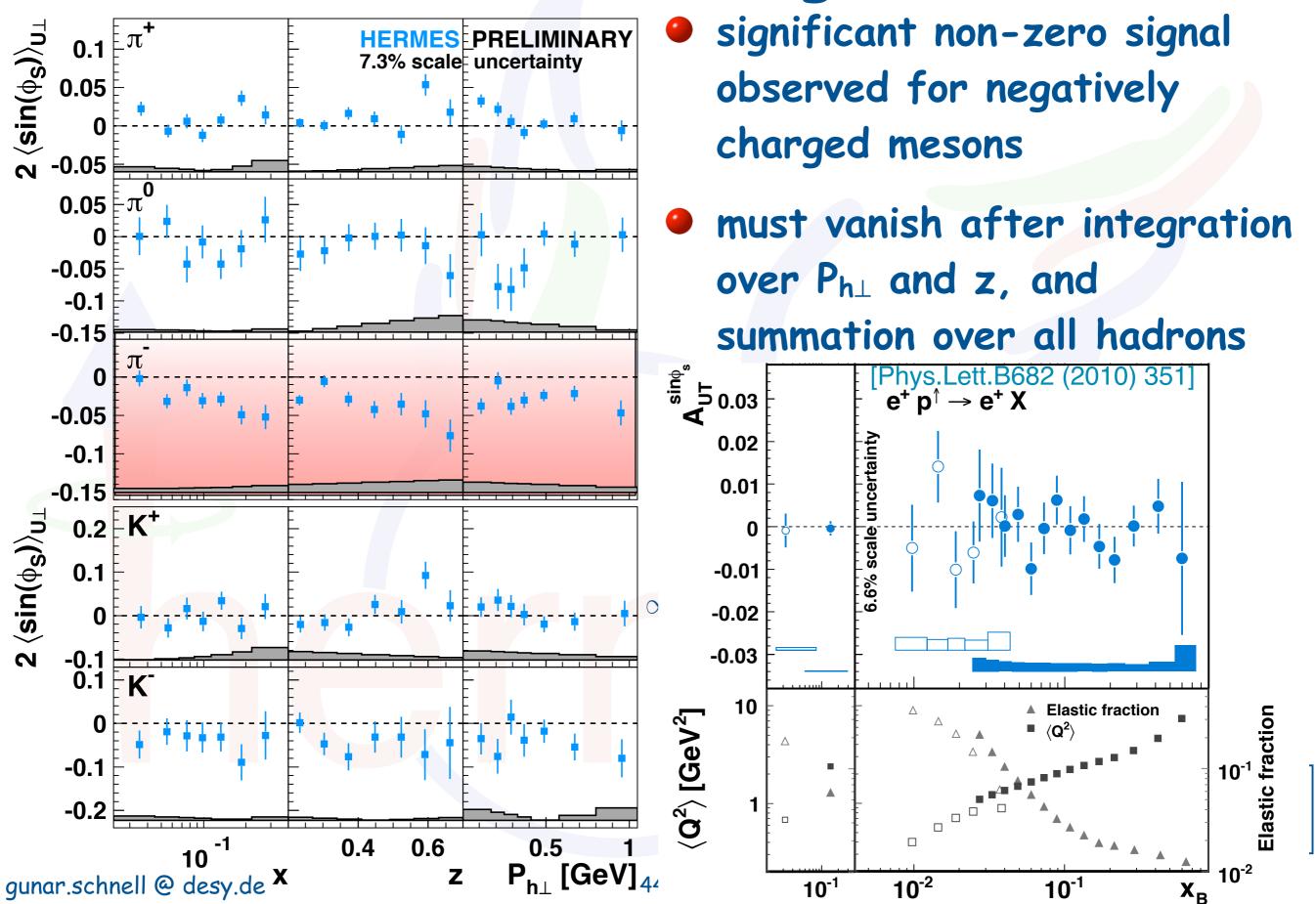


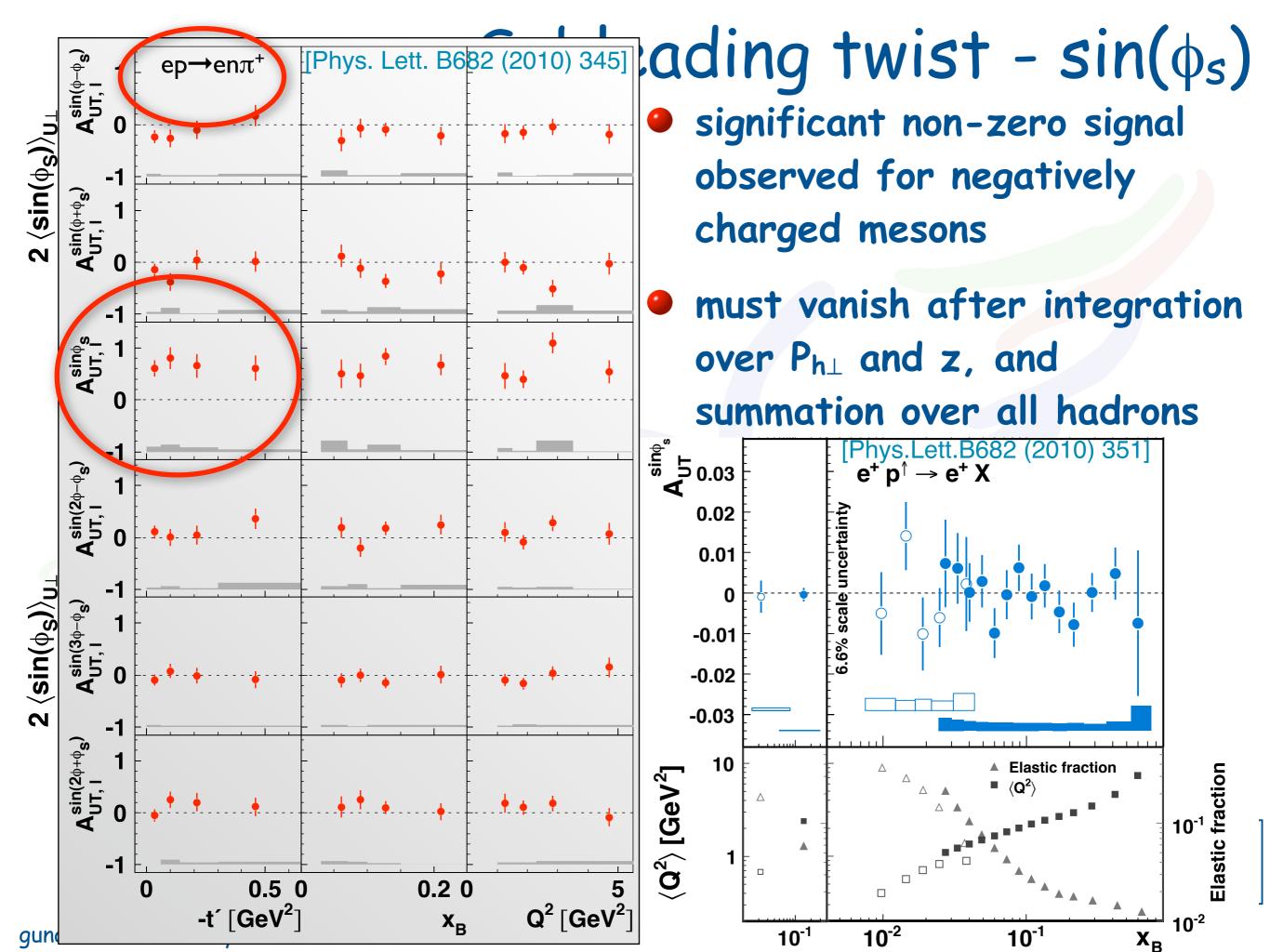
Subleading twist - $sin(\phi_s)$



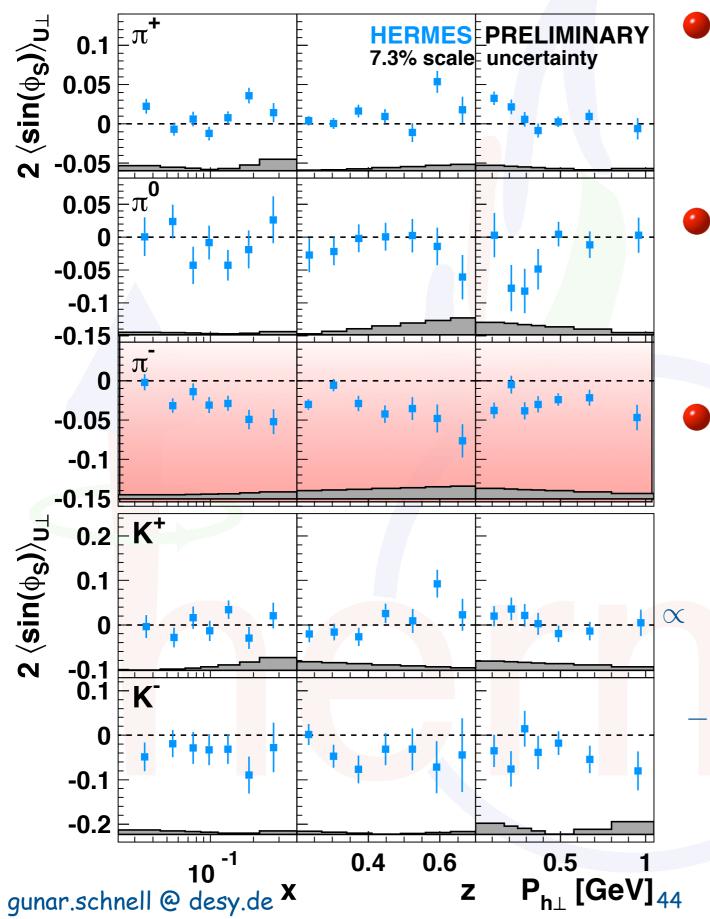
- significant non-zero signal observed for negatively charged mesons
- must vanish after integration over $P_{h\perp}$ and z, and summation over all hadrons

Subleading twist - $sin(\phi_s)$





Subleading twist - $sin(\phi_s)$



- significant non-zero signal observed for negatively charged mesons
- must vanish after integration over $P_{h\perp}$ and z, and summation over all hadrons
- various terms related to transversity, worm-gear, Sivers etc.:

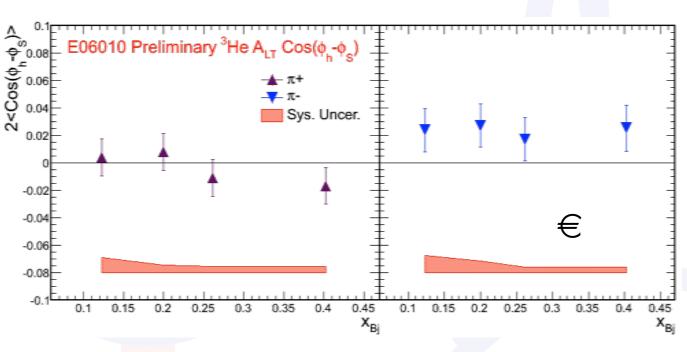
$$\left(xf_{\mathbf{T}}^{\perp}D_{\mathbf{1}}-\frac{M_{\mathbf{h}}}{\mathbf{M}}\frac{\tilde{\mathbf{H}}}{\mathbf{z}}\right)$$

$$-~\mathcal{W}(\mathbf{p_T},\mathbf{k_T},\mathbf{P_{h\perp}})\left[\left(\mathbf{xh_TH_1^{\perp}}+rac{\mathbf{M_h}}{\mathbf{M}}\mathbf{g_{1T}}rac{ ilde{\mathbf{G}}^{\perp}}{\mathbf{z}}
ight]$$

$$-\left(\mathrm{xh}_{\mathbf{T}}^{\perp}\mathrm{H}_{\mathbf{1}}^{\perp}-rac{\mathrm{M}_{\mathbf{h}}}{\mathrm{M}}\mathbf{f}_{\mathbf{1T}}^{\perp}rac{ ilde{\mathbf{D}}^{\perp}}{\mathrm{\mathbf{z}}}
ight)$$

	U	${ m L}$	T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Worm-Gear 91T



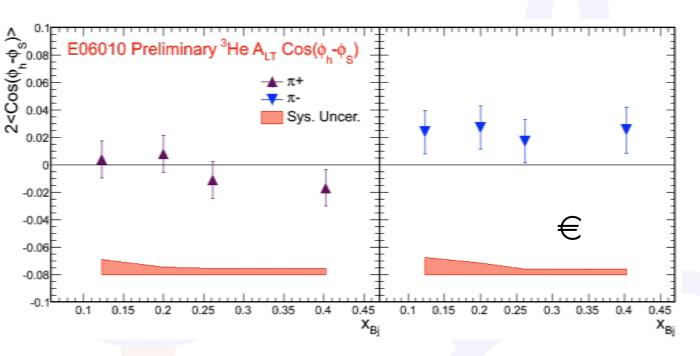
$$\propto \frac{g_{1T}^{\perp q}(x) \otimes D_{1q}^{h}(z)}{f_1^{q}(x) \otimes D_{1q}^{h}(z)}$$

$$\sigma_n^{\pi +} \propto 4d \cdot D_1^{fav} + u \cdot D_1^{unfav}$$
chiral even

$$\sigma_n^{\pi-} \propto 4d \cdot D_1^{unfav} + u \cdot D_1^{fav}$$

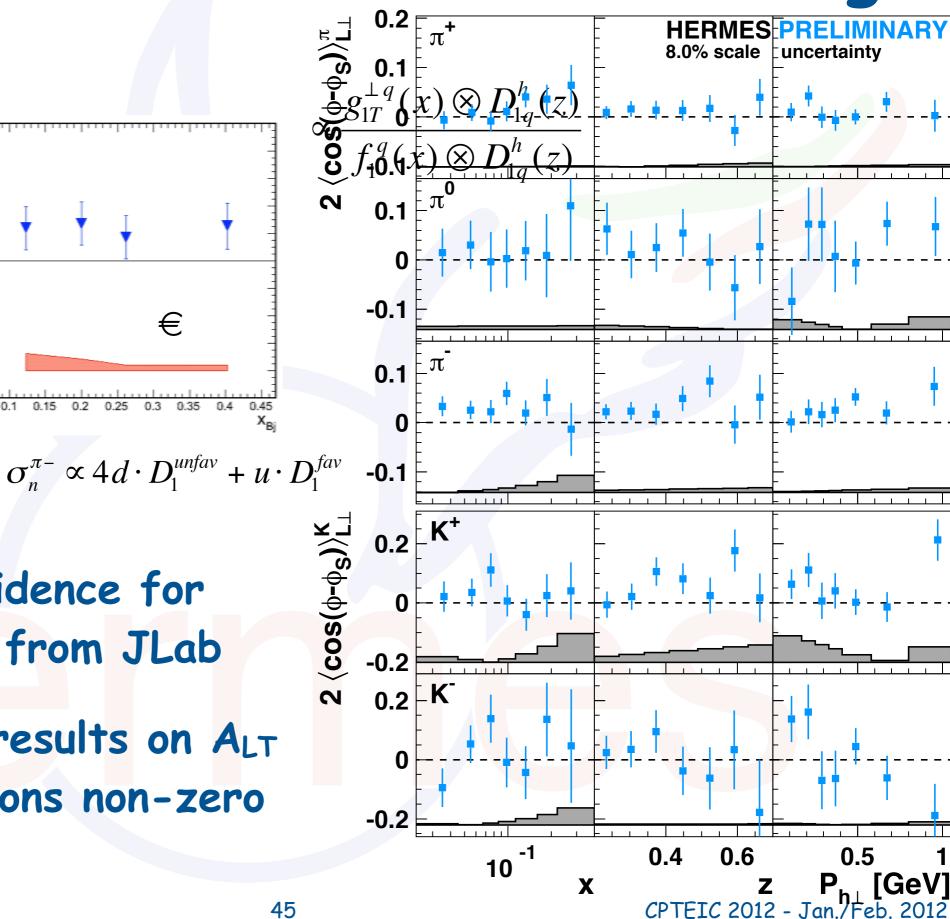
 first direct evidence for worm-gear g₁⊤ from JLab

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}



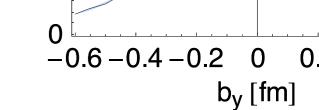
- $\sigma_n^{\pi +} \propto 4d \cdot D_1^{fav} + u \cdot D_1^{unfav}$ chiral even
 - first direct evidence for worm-gear g1T from JLab
 - also HERMES results on ALT for negative pions non-zero

Worm-Gear 91T



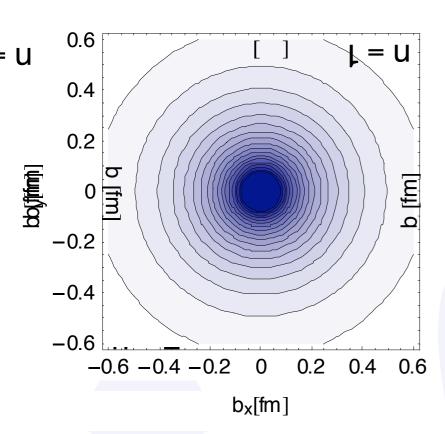
Exclusive reactions

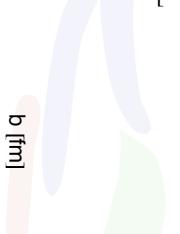
nAnother 3D1 picture of the

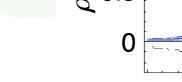


p=1.6 p=2

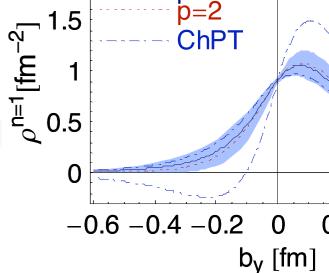
ChPT







0



Form factors:

transverse distribution of partons

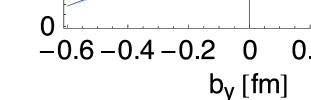
S

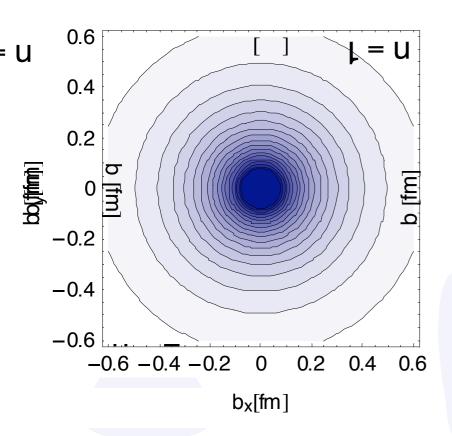
$$n = 2$$

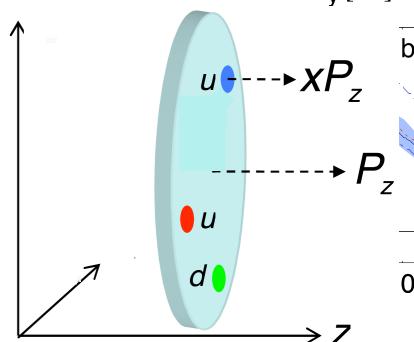
n = 2

0

nAnother 3D1 picture of the







Parton distributions: longitudinal momentum of partons

Form factors:

transverse distribution of partons

$$n = 2$$

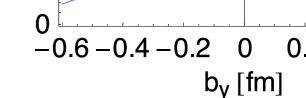
0.5

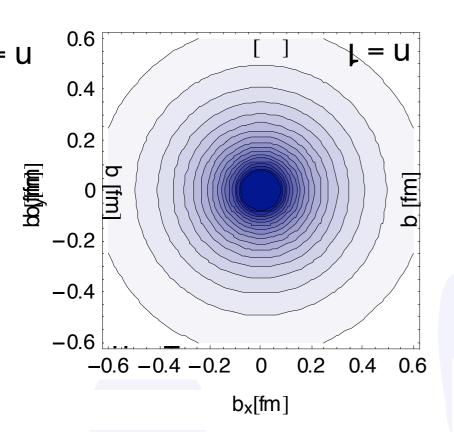
0

0.5

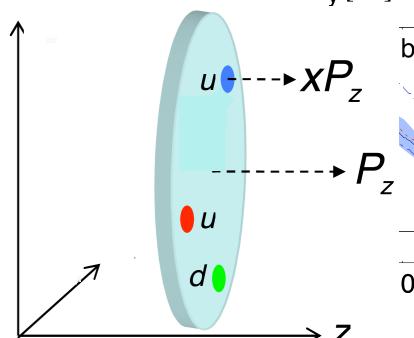
0

nAnother 3D1 picture of the





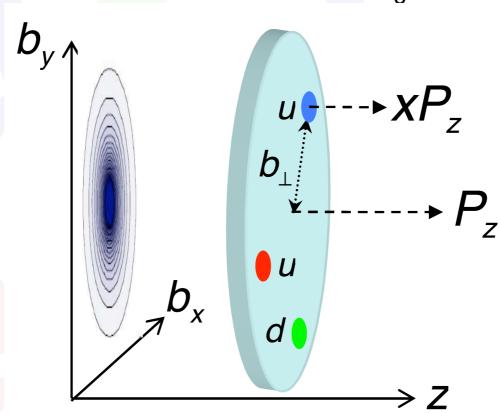
$\mathbf{h} \equiv \mathbf{b}$ \mathbf{b}



Form factors:

transverse distribution of partons

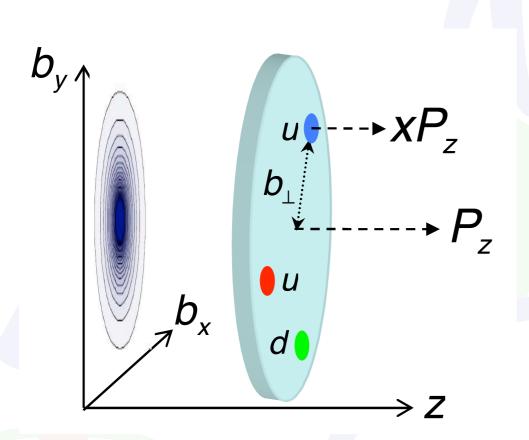
$$n = 2$$

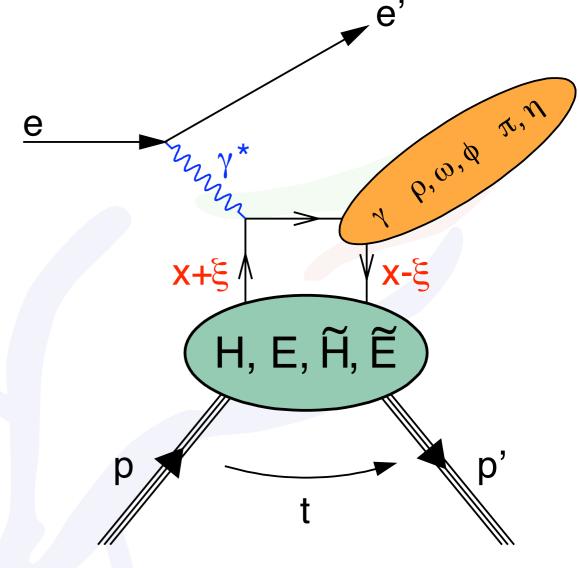


Parton distributions: longitudinal momentum of partons

Nucleon Tomography

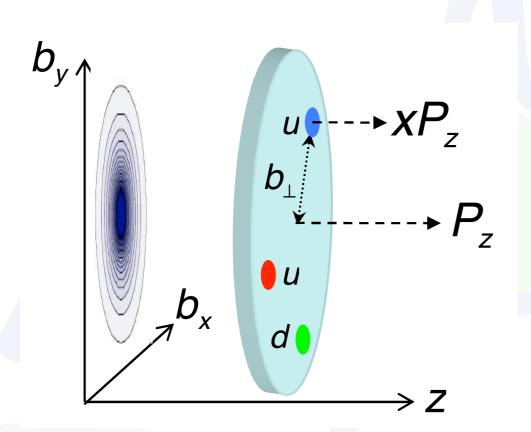
correlated info on transverse position and longitudinal momentum

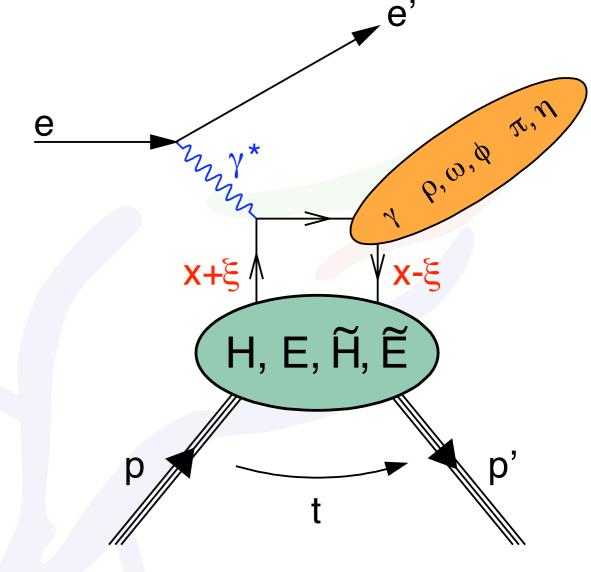




x: average longitudinal momentum fraction of active quark (usually not observed & $x \neq x_B$)

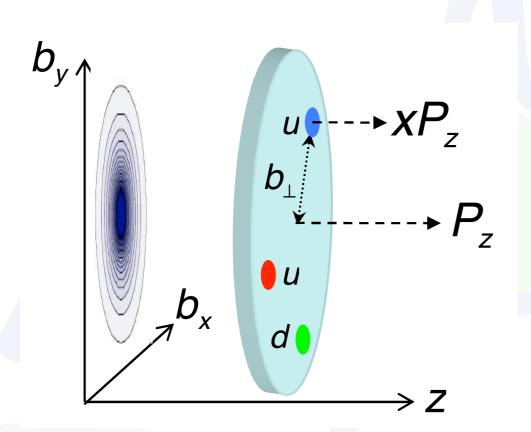
 ξ : half the longitudinal momentum change $\approx x_B/(2-x_B)$

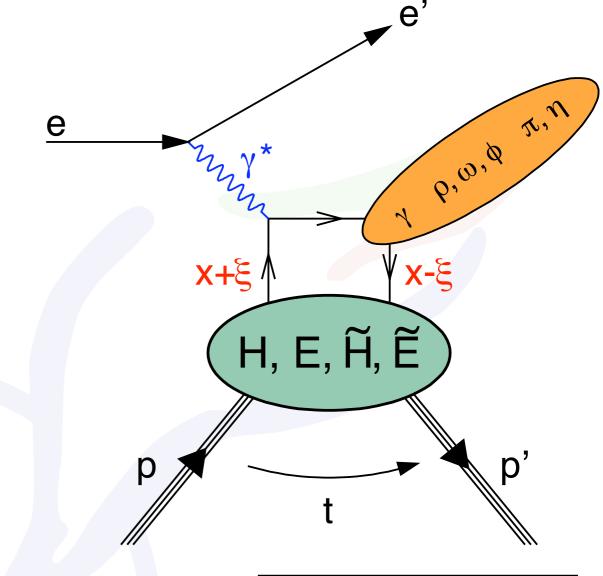




	no quark helicity flip	quark helicity flip
no nucleon helicity flip	Н	\widetilde{H}
nucleon helicity flip	Ε	\widetilde{E}

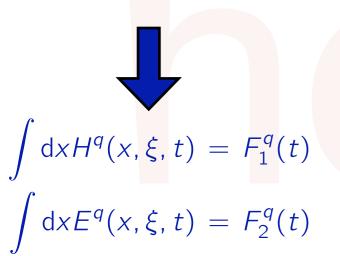
(+ 4 more chiral-odd functions)



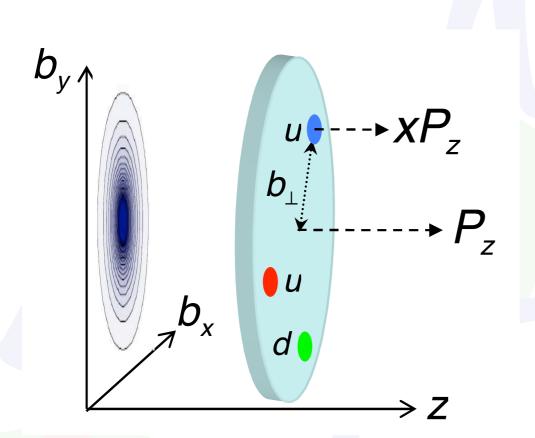


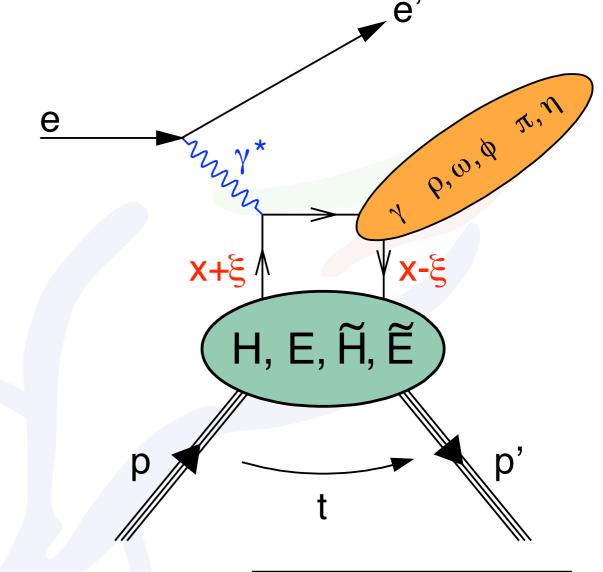
	no quark helicity flip	quark helicity flip
no nucleon helicity flip	Н	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

(+ 4 more chiral-odd functions)



48





$\int dx H^q(x,\xi,t) = F_1^q(t)$	$H^{q}(x, \xi = 0, t = 0) = q(x)$
$\int dx E^q(x,\xi,t) = F_2^q(t)$	$\widetilde{H}^{q}(x,\xi=0,t=0) = \Delta q(x)$

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	Н	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

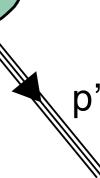
(+ 4 more chiral-odd functions)

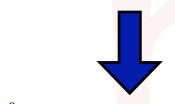
 b_y

Ji relation (1996)

$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, x \, (H_q(x, \xi, t) + E_q(x, \xi, t))$$

Moments of certain GPDs relate directly to the total angular momentum of quarks





$$\int dx H^q(x,\xi,t) = F_1^q(t)$$

$$\int dx E^q(x,\xi,t) = F_2^q(t)$$

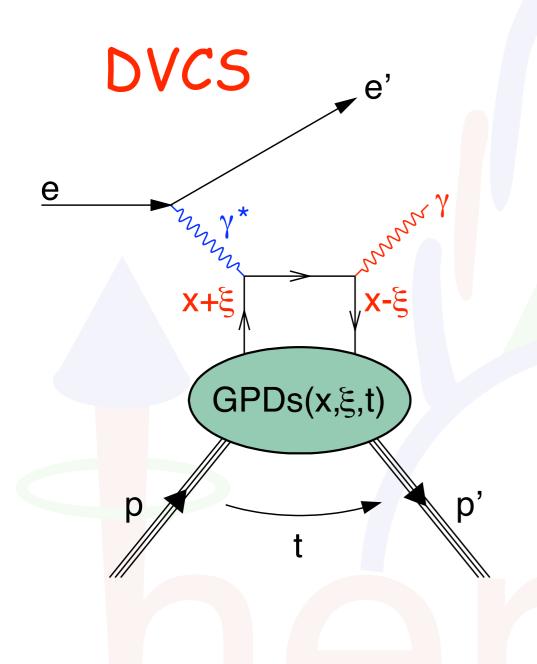
$$H^{q}(x, \xi = 0, t = 0) = q(x)$$

$$\widetilde{H}^{q}(x, \xi = 0, t = 0) = \Delta q(x)$$

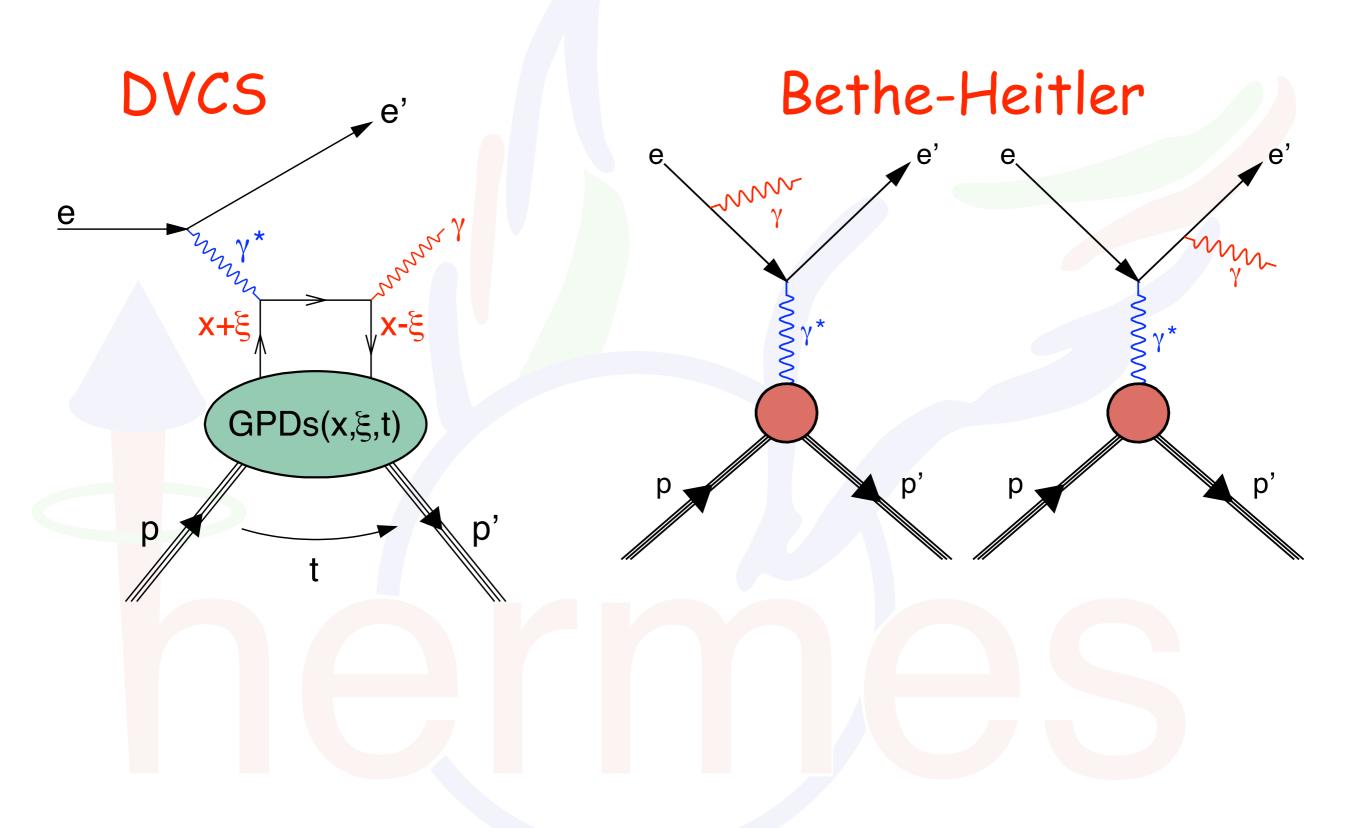
	no quark helicity flip	quark helicity flip
no nucleon helicity flip	Н	\widetilde{H}
nucleon helicity flip	Ē	\widetilde{E}

(+ 4 more chiral-odd functions)

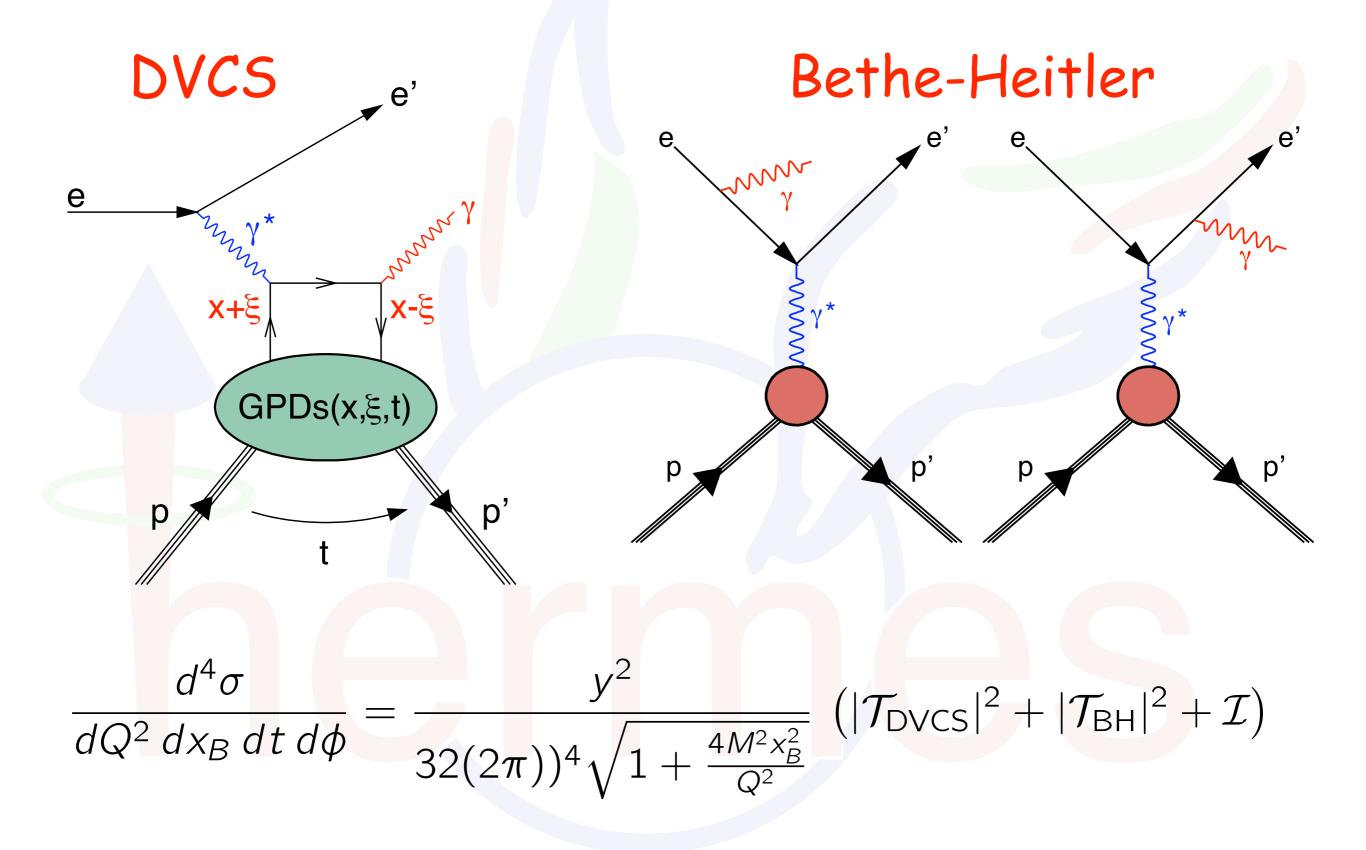
Real-photon production



Real-photon production



Real-photon production



- beam polarization P_B
- beam charge CB
- · here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\mathsf{BH}}|^2 = rac{\mathcal{K}_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi)$$

- beam polarization P_B
- beam charge CB
- · here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\text{BH}}|^2 = \frac{\mathcal{K}_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$$

- beam polarization P_B
- beam charge C_B
- · here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\mathsf{BH}}|^2 = rac{\mathcal{K}_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + \frac{2}{P_B} \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right]$$

- beam polarization P_B
- beam charge C_B
- · here: unpolarized target

Fourier expansion for ϕ :

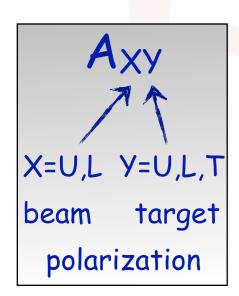
$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^2 c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^1 s_n^{\text{DVCS}} \sin(n\phi) \right]$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + P_B \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right]$$

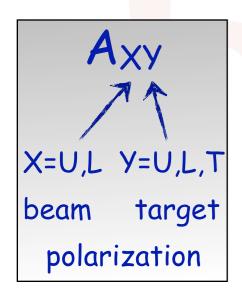
bilinear ("DVCS") or linear in GPDs

$$\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B A_{LU}^{DVCS}(\phi) + C_B P_B A_{LU}^{T}(\phi) + C_B A_C(\phi)\right]$$



$$\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{\text{UU}}(\phi) \cdot \left[1 + P_B \mathcal{A}_{\text{LU}}^{\text{DVCS}}(\phi) + C_B P_B \mathcal{A}_{\text{LU}}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_{\text{C}}(\phi)\right]$$

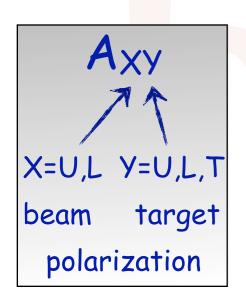
$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} P_{\text{B}} \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi)$$



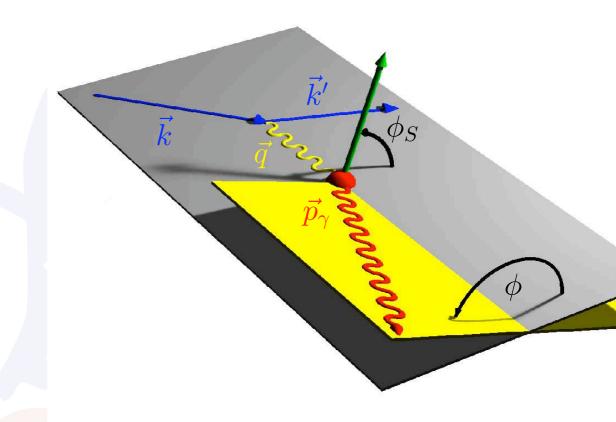
$$\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_{C}(\phi)\right]$$

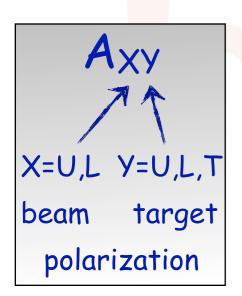
$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} P_{\text{B}} \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi)$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^{3} c_n^{\mathcal{I}} \cos(n\phi) \right]$$



$$\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B A_{LU}^{DVCS}(\phi) + C_B P_B A_{LU}^{\mathcal{I}}(\phi) + C_B A_C(\phi)\right]$$





$$\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_{C}(\phi) + P_T \mathcal{A}_{UT}^{DVCS}(\phi, \phi_S) + C_B P_T \mathcal{A}_{UT}^{\mathcal{I}}(\phi, \phi_S) \right]$$



Cross section:

$$\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{\text{UU}}(\phi) \cdot \left[1 + P_B \mathcal{A}_{\text{LU}}^{\text{DVCS}}(\phi) + C_B P_B \mathcal{A}_{\text{LU}}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_{\text{C}}(\phi) + P_T \mathcal{A}_{\text{UT}}^{\text{DVCS}}(\phi, \phi_S) + C_B P_T \mathcal{A}_{\text{UT}}^{\mathcal{I}}(\phi, \phi_S) \right]$$

Azimuthal asymmetries, e.g.,

• Beam-charge asymmetry $A_c(\phi)$:

$$d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \text{Re}[F_1\mathcal{H}] \cdot \cos\phi$$

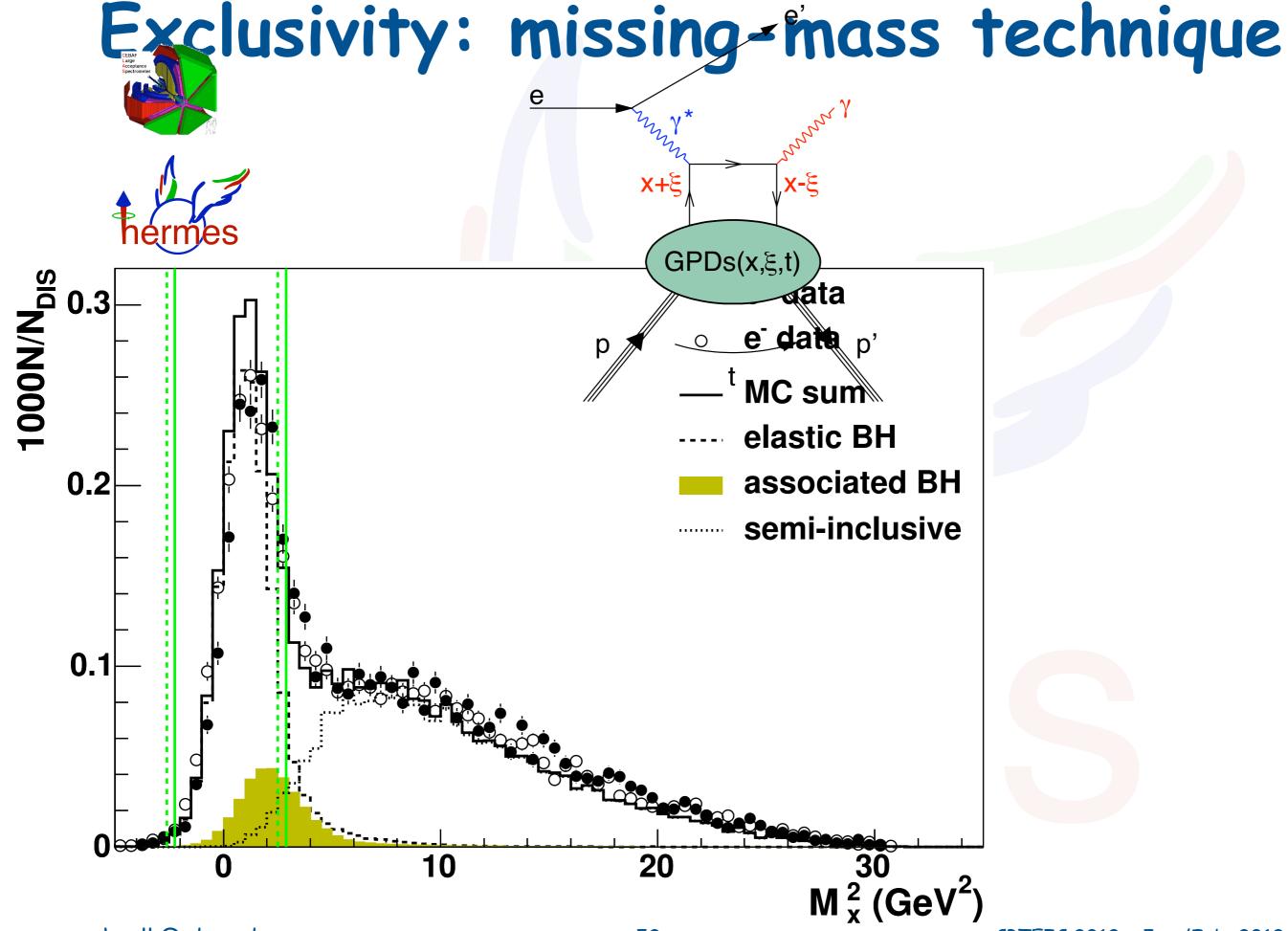
• Beam-helicity asymmetry $A_{LU}^{I}(\phi)$:

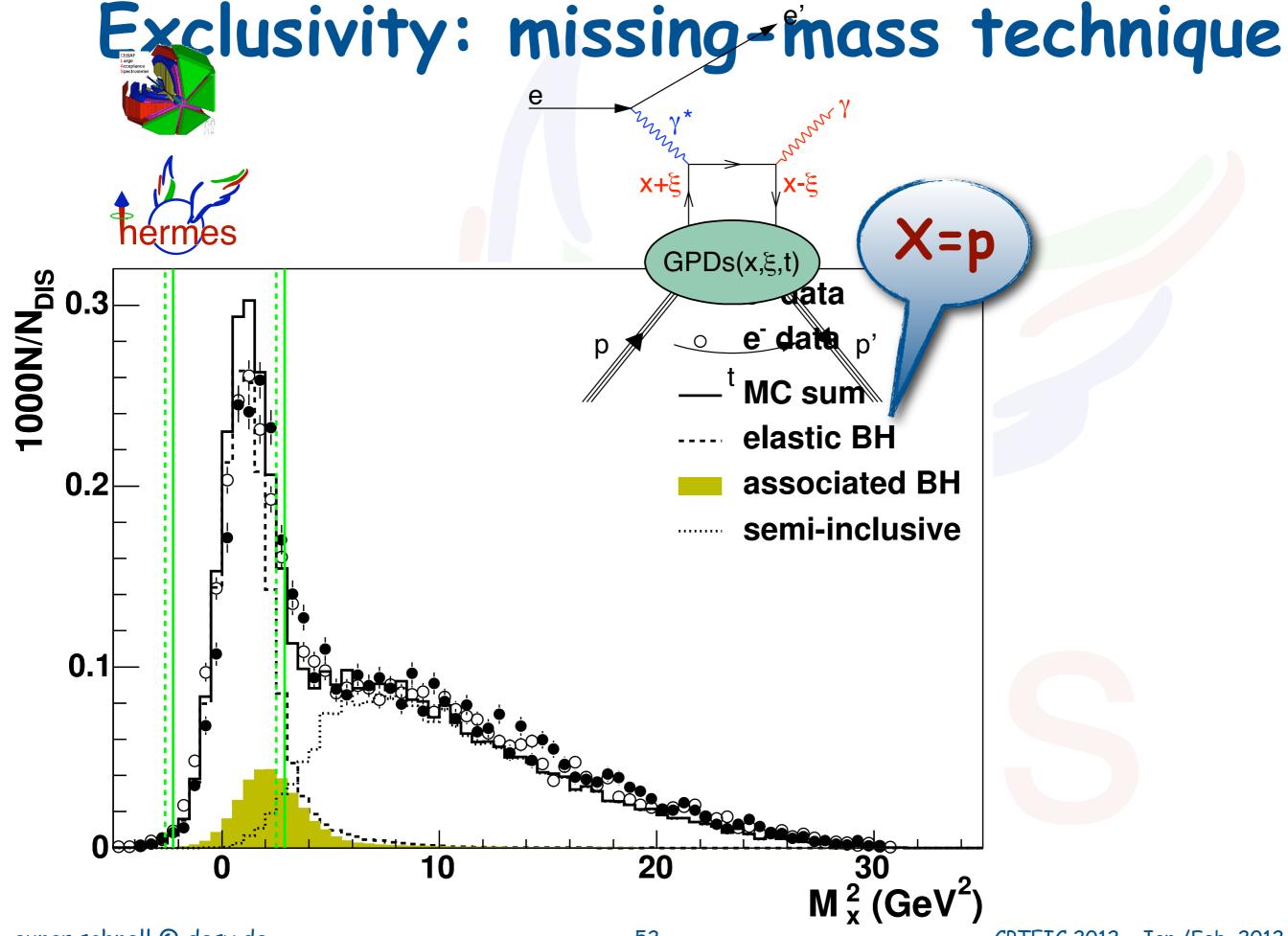
$$d\sigma(e^{\rightarrow},\phi) - d\sigma(e^{\leftarrow},\phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin\phi$$

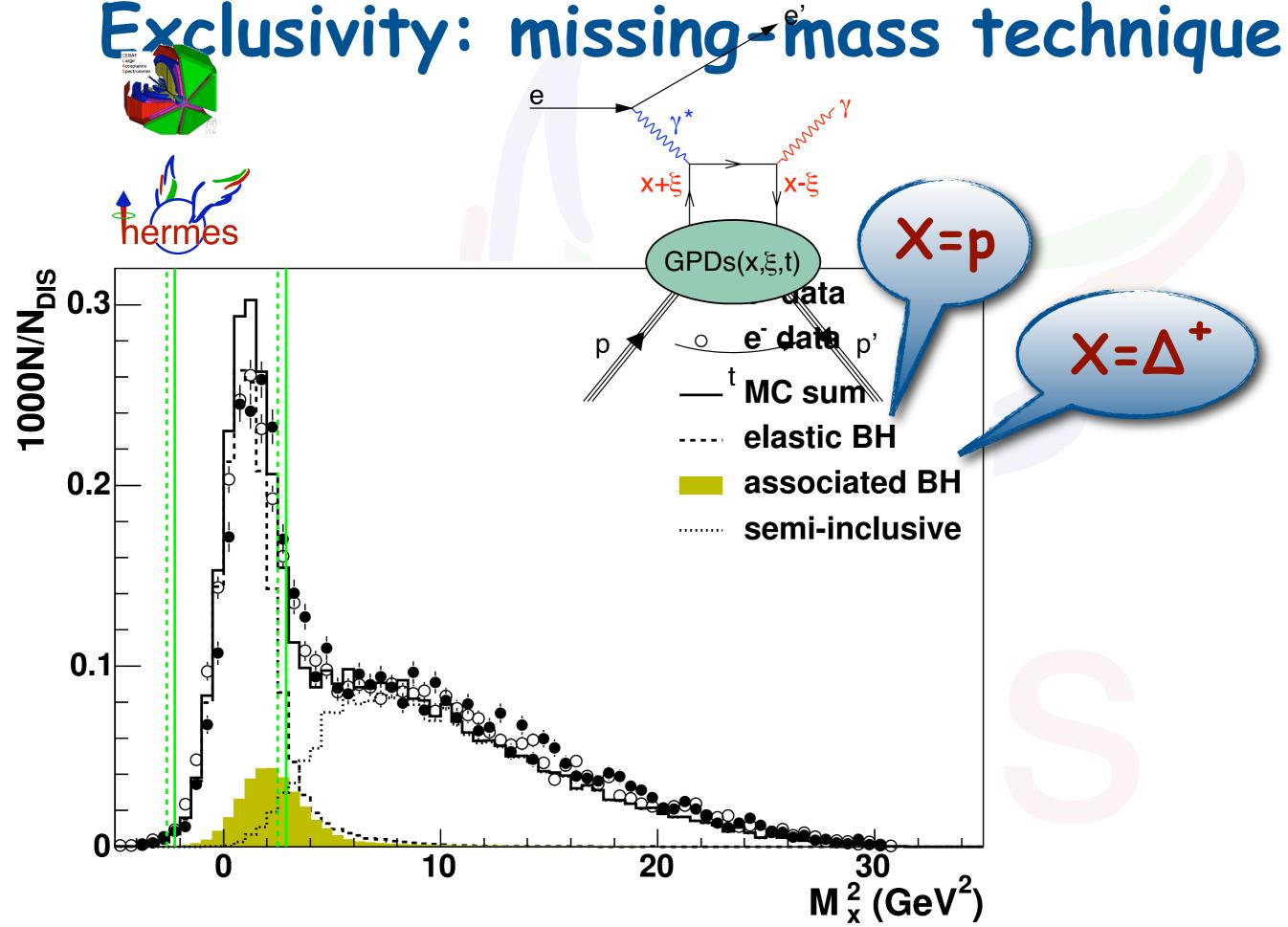
• Transverse target-spin asymmetry $A_{UT}^{I}(\phi)$:

$$d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi) \propto \operatorname{Im}[F_2 \mathcal{H} - F_1 \mathcal{E}] \cdot \sin(\phi - \phi_S) \cos \phi + \operatorname{Im}[F_2 \widetilde{\mathcal{H}} - F_1 \xi \widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S) \sin \phi$$

 $(F_1, F_2 \text{ are the Dirac and Pauli form factors})$ $(\mathcal{H}, \mathcal{E} \dots \text{ Compton form factors involving GPDs } H, E, \dots)$

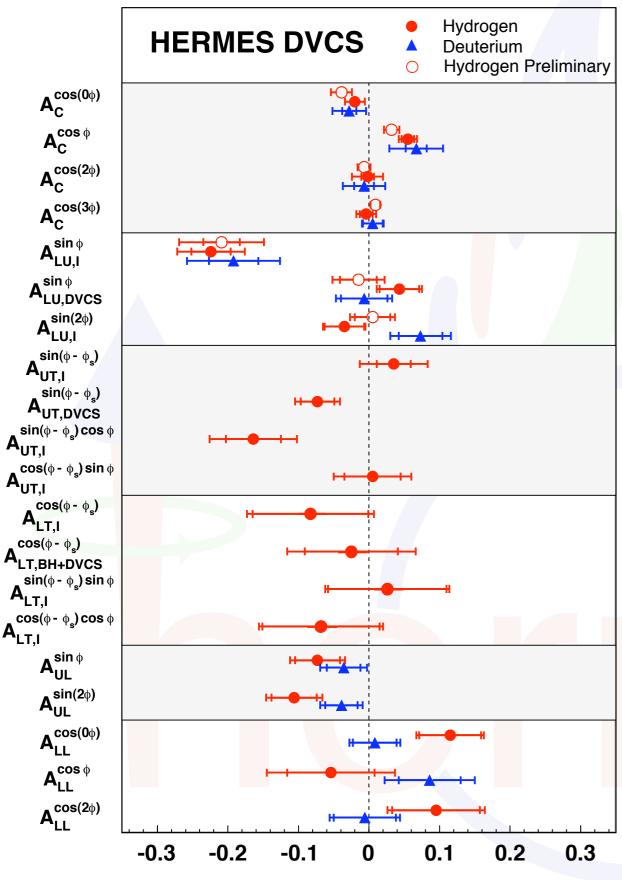






Exclusivity: missing-mass technique X=p GPDs(x,ξ,t) 1000N/N_{DIS} aata 0.3 e data p' $X = \Delta^{+}$ MC sum elastic BH 0.2 associated BH semi-inclusive $X=\pi^0+$ 0.1 20 30 10 M_x^2 (GeV²)

A wealth of azimuthal amplitudes



Amplitude Value

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

Transverse target spin asymmetries:

GPD E from proton target

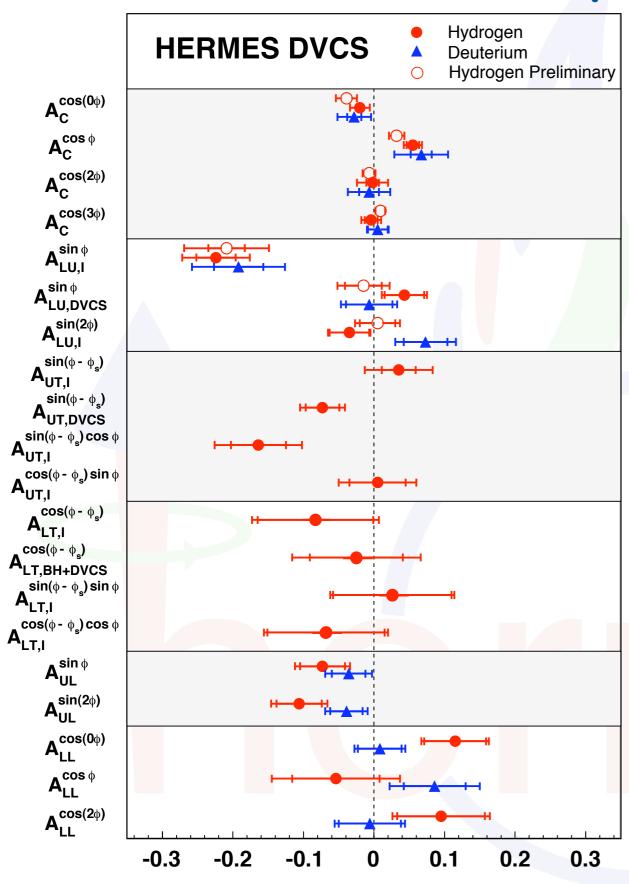
Longitudinal target spin asymmetry:

GPD H

Double-spin asymmetry:

GPD H

A wealth of azimuthal amplitudes



Amplitude Value

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

Transverse target spin asymmetries:

GPD E from proton target

Longitudinal target spin asymmetry:

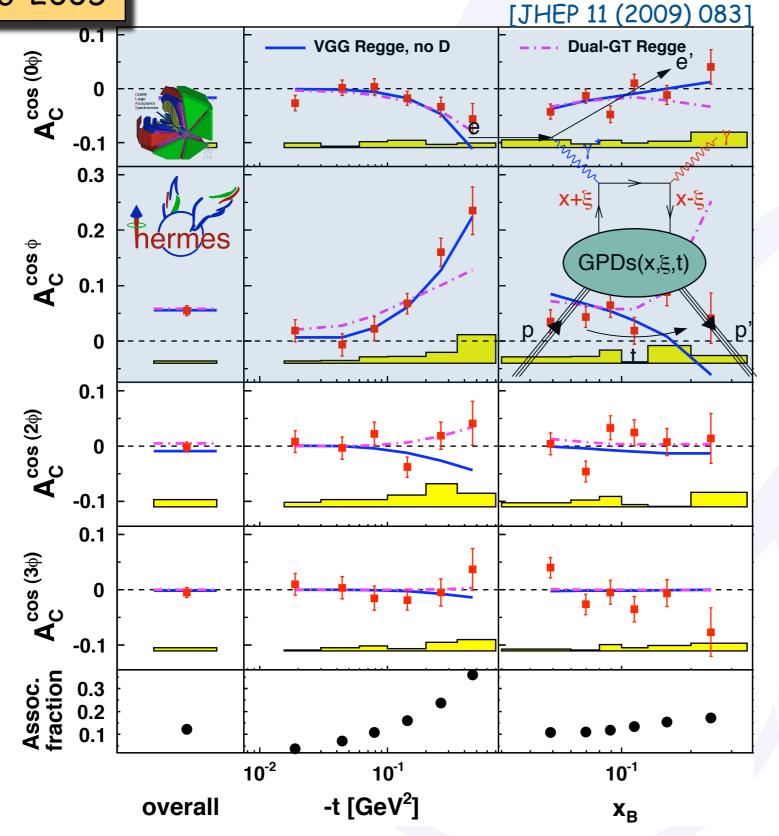
GPD H

Double-spin asymmetry:

GPD H

data: 1996-2005

resibetisn-omadyesasymmetry



constant term:

$$\propto -A_C^{\cos\phi}$$

$$\propto \text{Re}[F_1\mathcal{H}]$$

[higher twist]

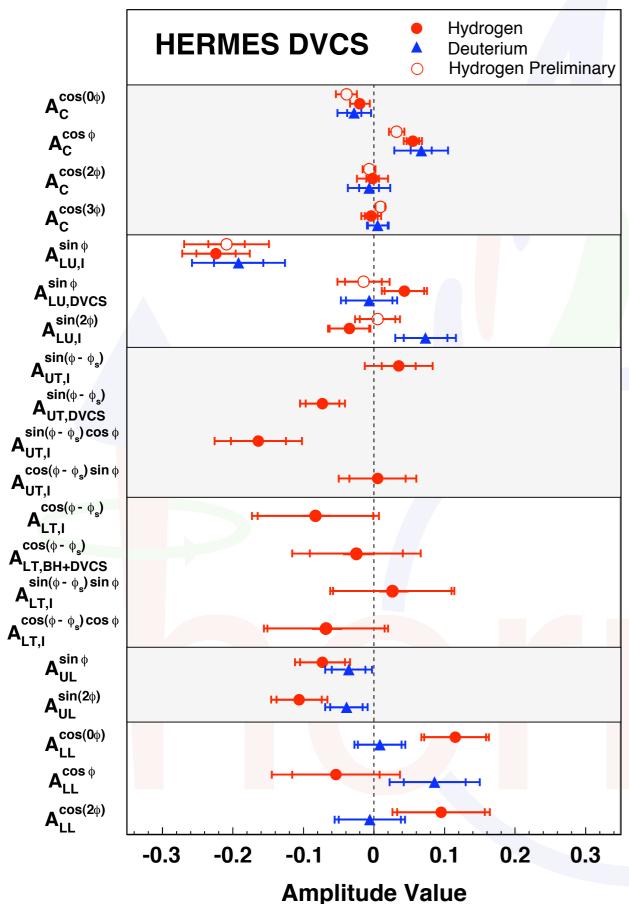
[gluon leading twist]

Resonant fraction:

$$e
ho
ightarrow e \Delta^+ \gamma$$

model prediction "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401

A wealth of azimuthal amplitudes



Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

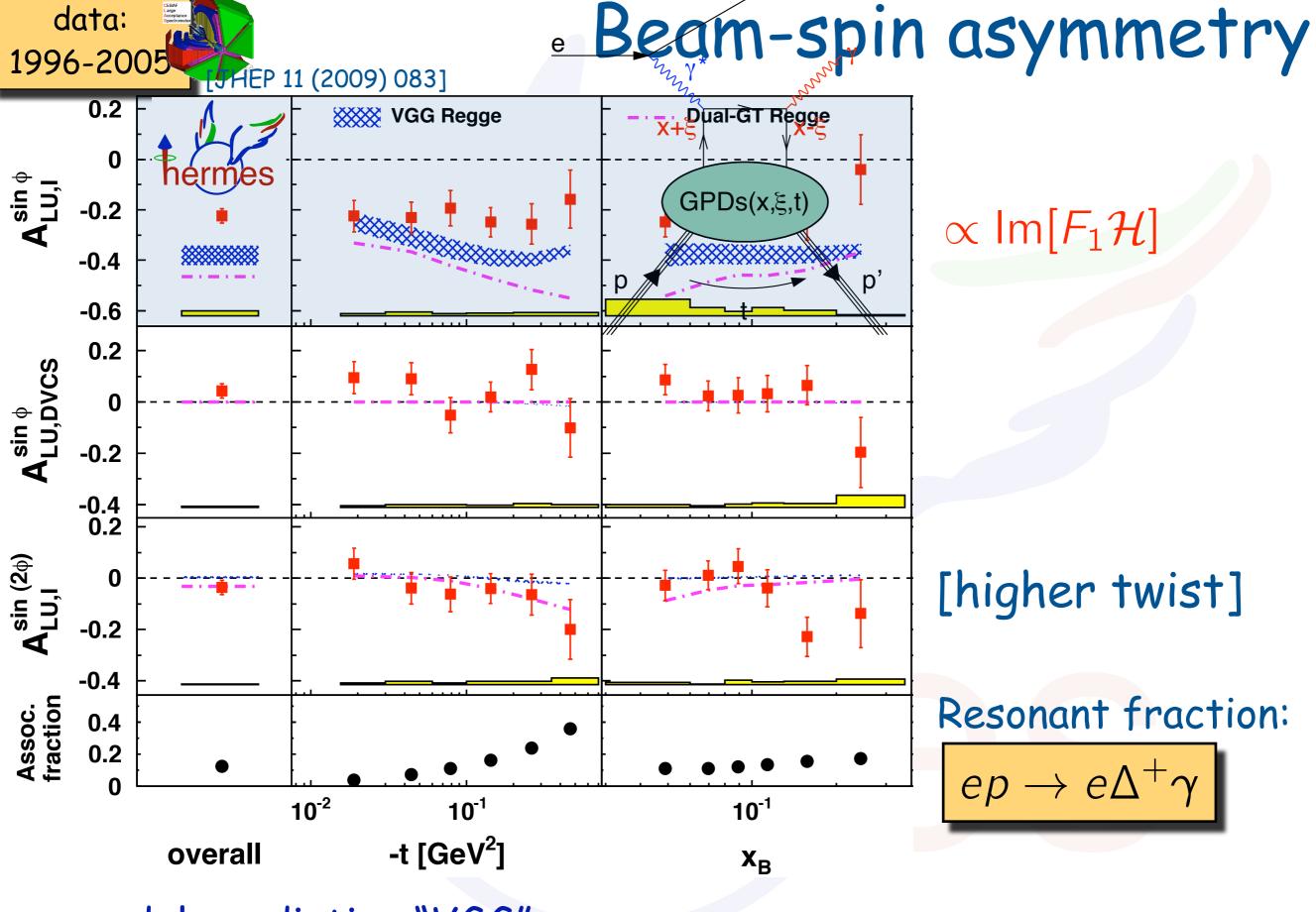
Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry:

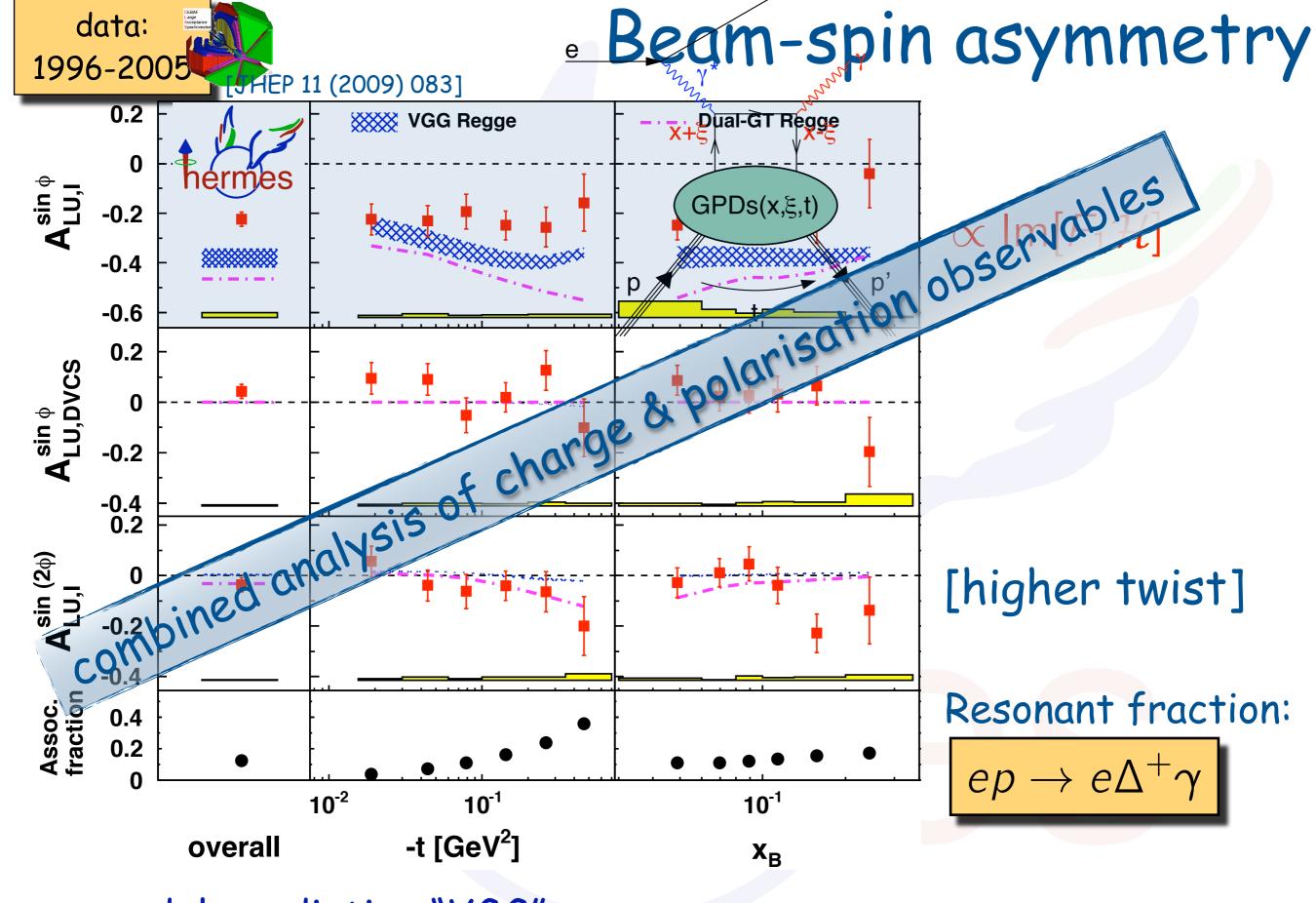
GPD H

Double-spin asymmetry:

GPD H

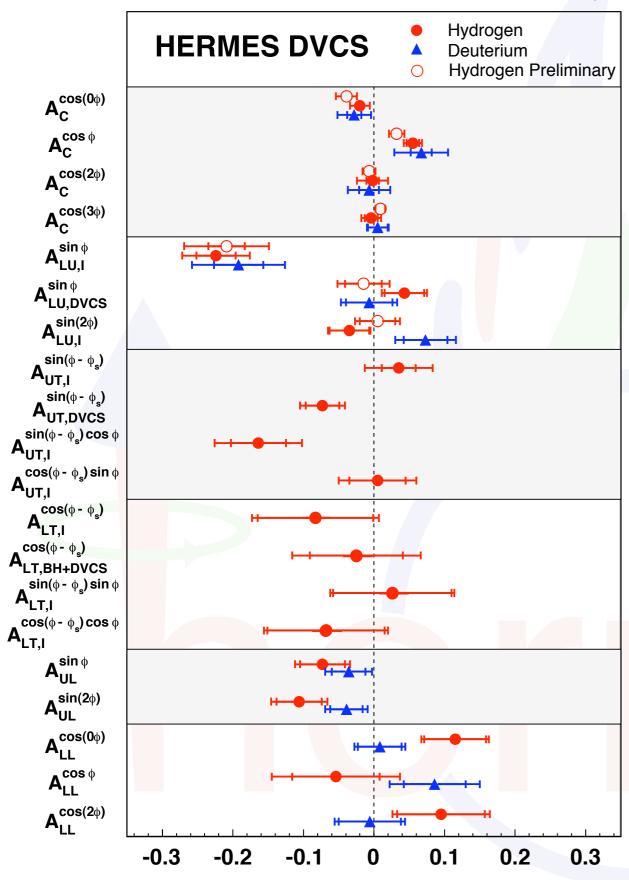


model prediction "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401



model prediction "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401

A wealth of azimuthal amplitudes



Amplitude Value

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

Transverse target spin asymmetries:

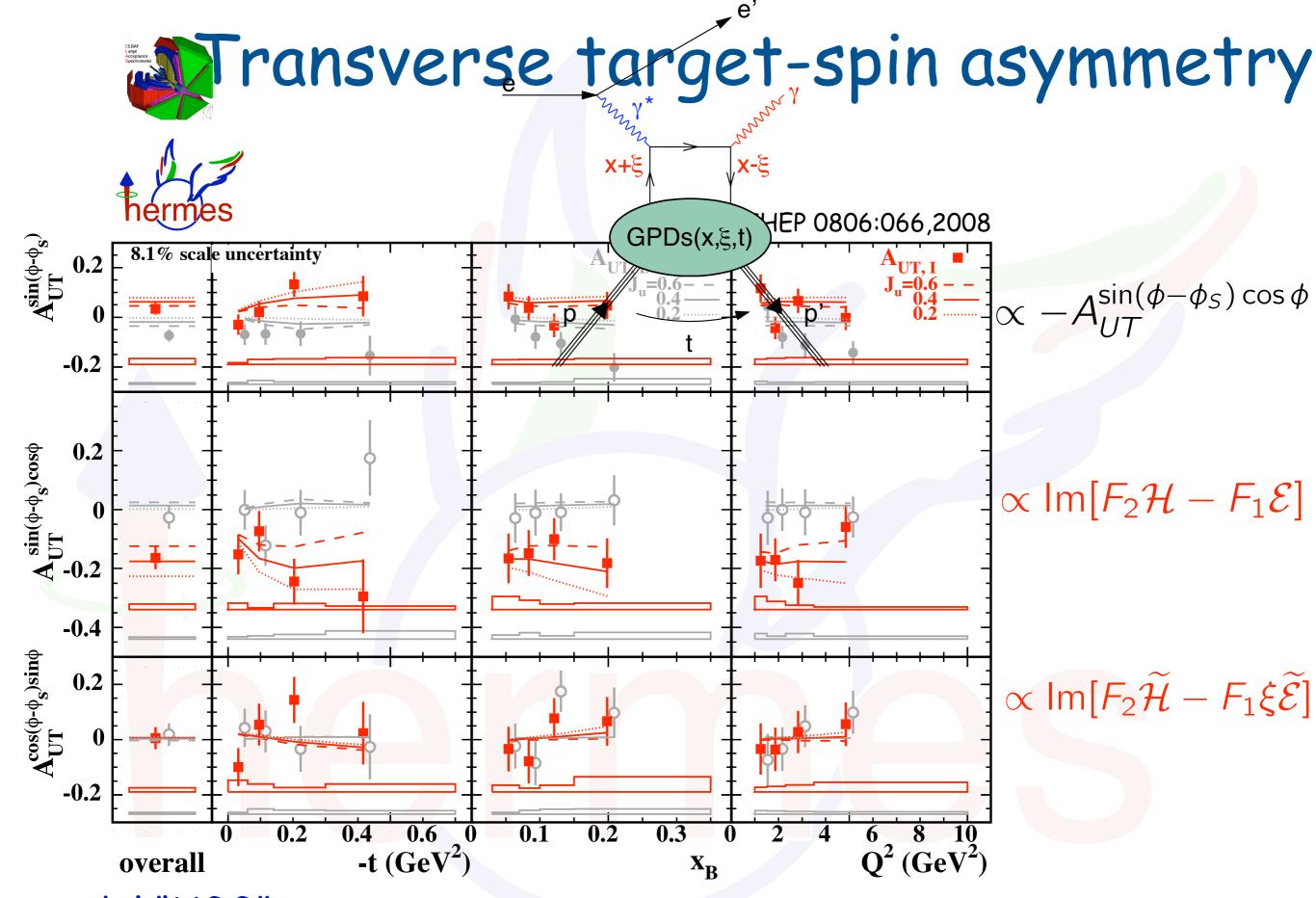
GPD E from proton target

Longitudinal target spin asymmetry:

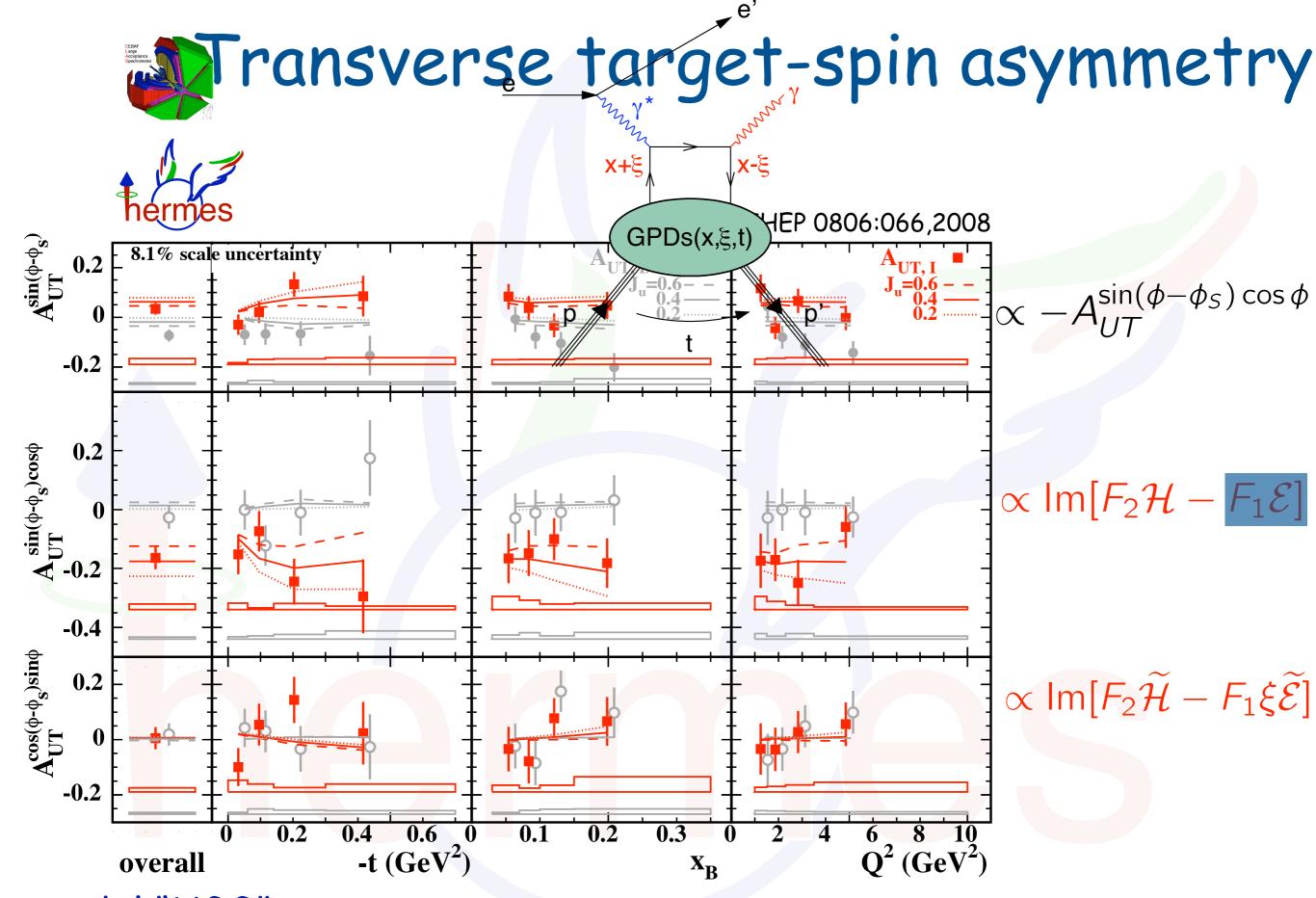
GPD H

Double-spin asymmetry:

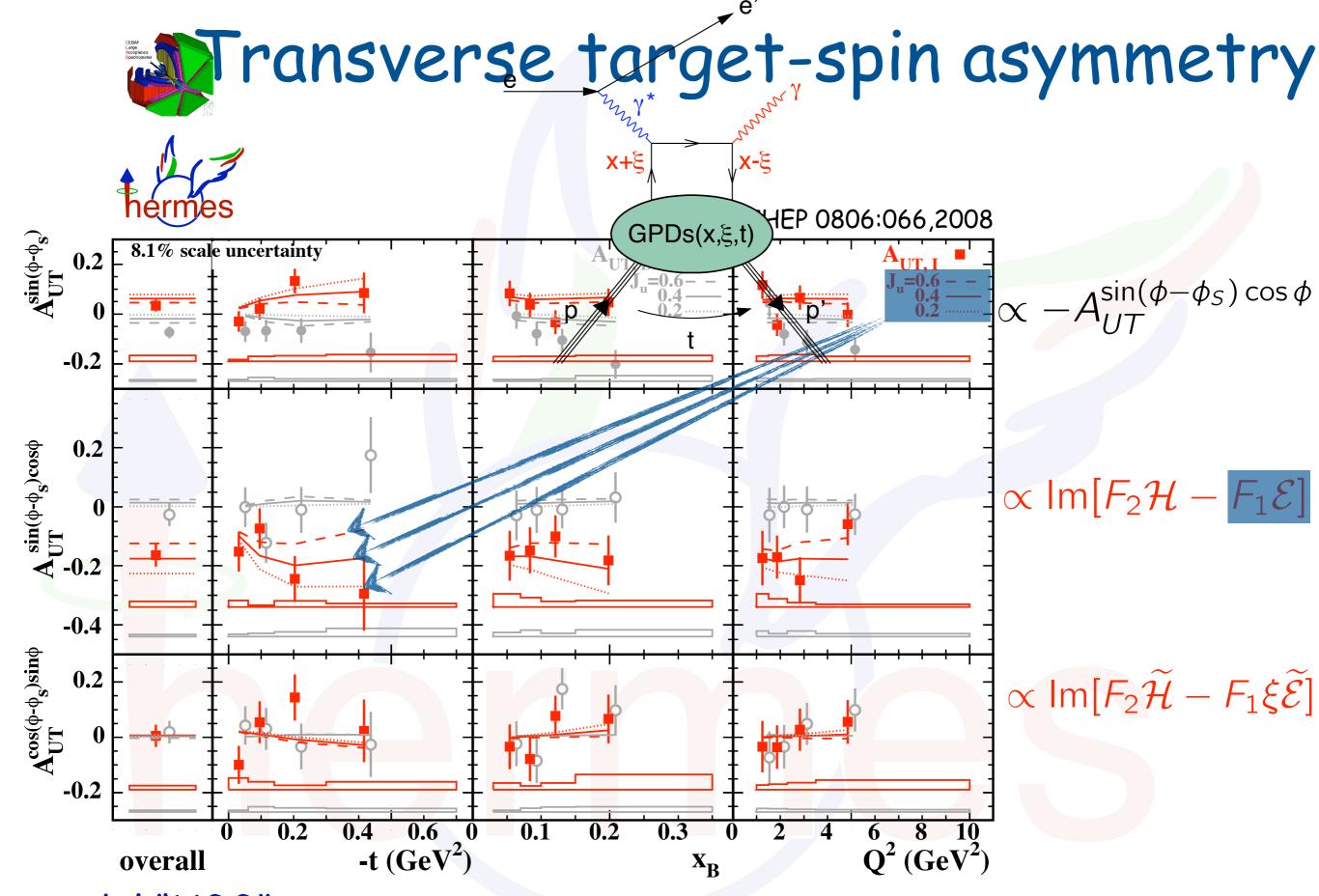
GPD H



model "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401



model "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401



model "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401

HERMES detector (2006/07) detection of recoiling proton FIELD CLAMPS TRIGGER HODOSCOPE H1 m **DRIFT CHAMBERS 270 mrad** 2 -PRESHOWER (H2) 140 mrad **DRIFT CHAMBERS** PROP. **LUMINOSITY** MONITOR_{27.5} GeV MC_1-3 HODOSCOPE H0 BC 1/2 **BC 3/4 TRD** STEEL PLATE **RICH** 270 mrad

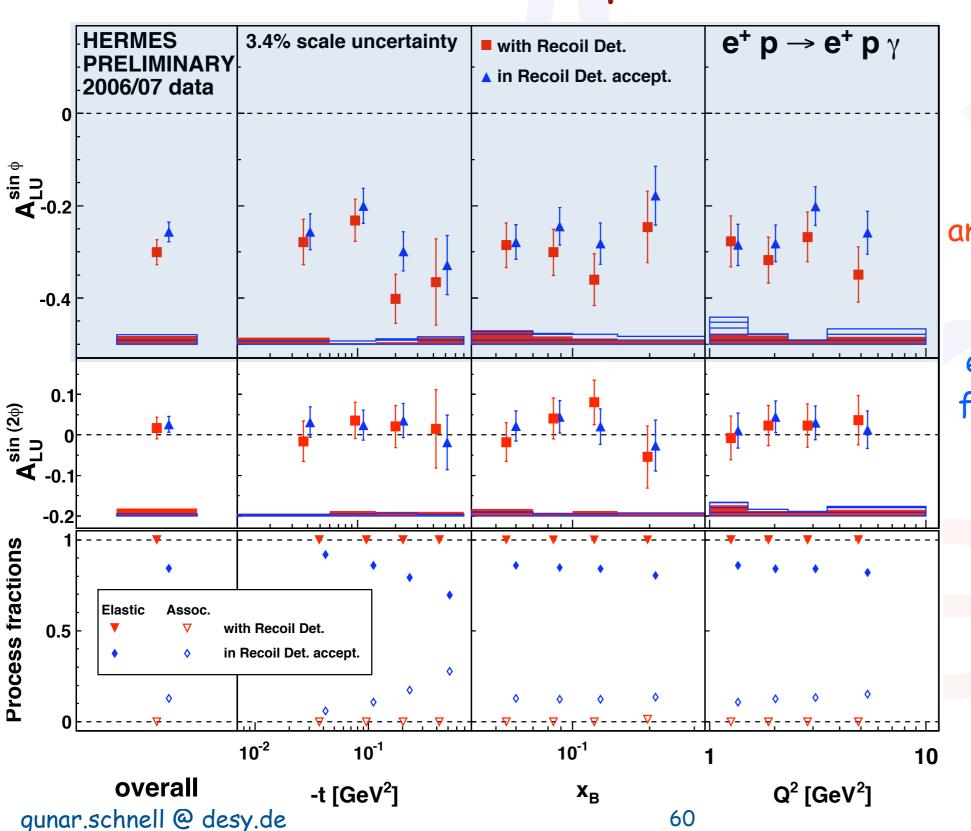
0

10 m

MAGNET

DVCS with recoil detector

first DVCS data with recoil-proton detection



basically pure DVCS/BH sample

indication of larger amplitudes for pure sample

extraction of amplitudes for associated production underway

Exclusive n

add references for meson papers?

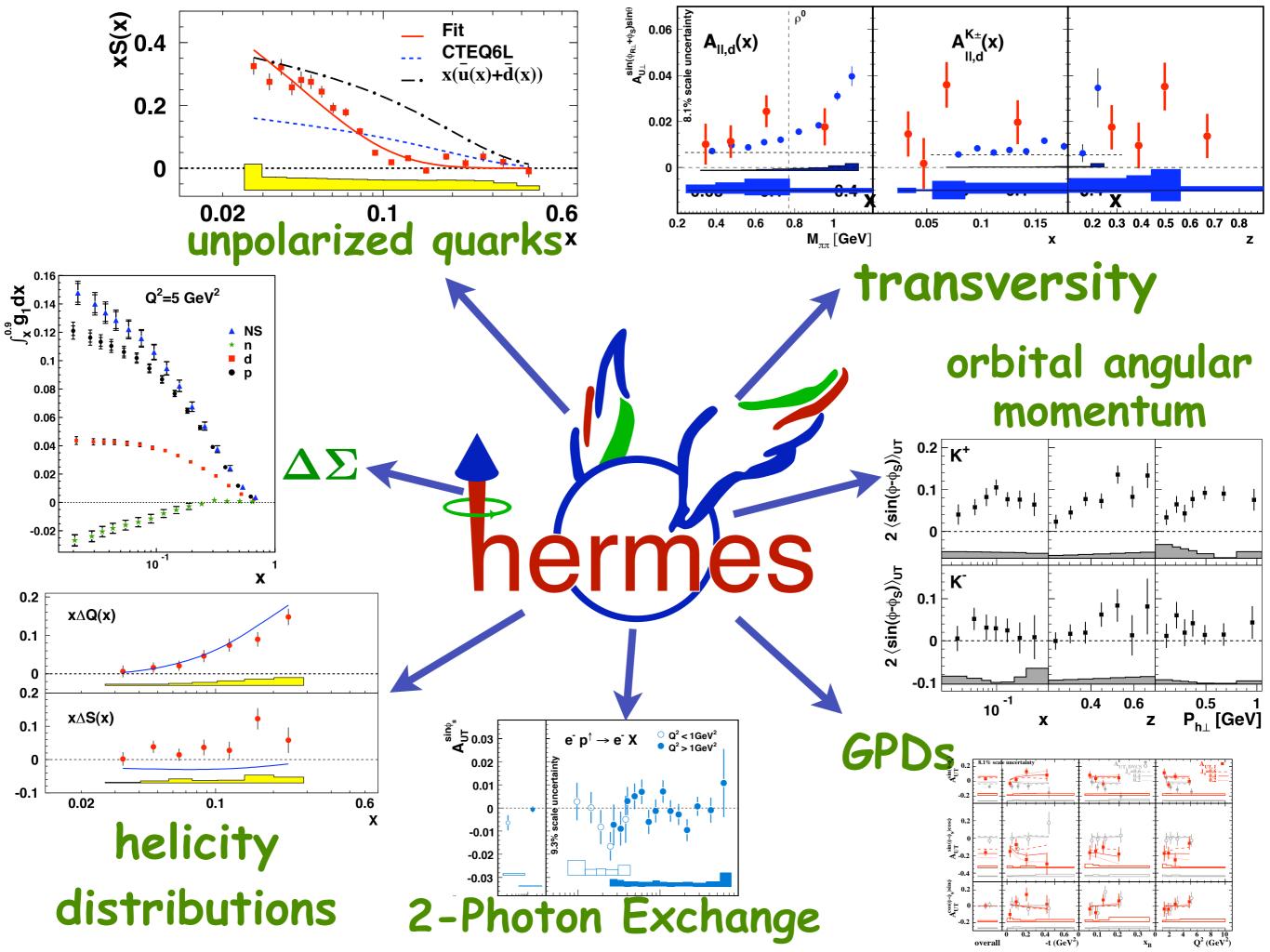
production

Exclusive n

add references for meson papers?

production

... next time!



QCD-N'12 Bilbao - Oct. 22nd-26th, 2012

QCD-N'12 Bilbao - Oct. 22nd-26th, 2012

