QCD plasma instability and thermalization

Kari Rummukainen

University of Helsinki and Helsinki Institute of Physics

Work done in collaboration with Dietrich Bödeker, University of Bielefeld

Stellenbosch, 30.1.2012

Stages of heavy ion collision:

- 1 TeV/A, $\gamma \sim 1000$
- $\tau < 0$: initial state: Color Glass Condensate (CGC), with characteristic momentum scale: saturation scale $Q_s \gtrsim \text{few GeV}$

- $\tau \sim 0.1 \text{ fm}$: "melting" of CGC; exitations with $p \sim Q_s$ – anisotropic & non-thermal initial distribution!
- *τ*≲1 fm: Very rapid isotropization & thermalization (observed at RHIC) (topic of this talk!)
- $1 \lesssim \tau \lesssim 10 \, {\rm fm}$: Expansion of \sim thermal quark-gluon plasma (QGP)
- $\tau \sim 10 \, {\rm fm}$: hadronisation

Heavy-Ion collisions & hard modes

- $\tau \lesssim 1/Q_s$: In initial stages of HIC the "plasma" consists of hard $(p_{hard} \sim Q_s)$ modes.
- τ ≫ 1/Q_s: As the system expands, the hard mode distribution becomes *dilute* (perturbative),

$$n_{
m hard} \ll p_{
m hard}^3/g^2,$$

and it becomes squeezed along *z*-direction (free streaming).

[Baier, Mueller, Schiff, Son]

• Dilute & $Q_s \gg \Lambda_{\rm QCD} \rightarrow$ hard modes behave like on-shell classical particles.

Rapid thermalization

What turns the very non-thermal hard mode distribution to \sim thermal (isotropic) so quickly?

- Bottom-up thermalization: hard-hard collisions [Baier, Mueller, Schiff, Son, ...]
 - Achieve isotropization in $au \sim lpha_{s}^{-13/5}/Q_{s}$: 2–4 fm?
- Plasma instabilities:
 - Well-known in electrodynamics (non-trivial current distributions)
 - Can happen in QCD too: non-isotropic hard mode distribution
 - ightarrow exponential growth of soft modes ($p \ll Q_s$), plasma instability
 - \rightarrow strong back reaction to hard modes
 - \rightarrow thermalization

[Mrówczyński; Mrówczyński, Strickland; Arnold, Lenaghan, Moore; Romatschke, Strickland; ...]

Parametrically (in g) faster than collisions above

Weibel instability

 In electromagnetic plasmas, anisotropic distribution of current carrier distribution (electrons) which leads to Weibel (filamentary) instability:

- ⇒ Exponential growth of soft magnetic fields; $p_{soft} \ll p_{electron}$. In QED the growth rate can be solved analytically as a function of the anisotropy.
- ⇒ When magnetic field amplitude is large, $gA_{soft} \sim k_{electron}$, field bends electrons strongly → isotropization, thermalization?
 - Should play a role in heavy ion collisions too? [Mrówczyński; Arnold, Lenaghan, Moore; Strickland]

Weibel instability in HICs

• QED \rightarrow QCD:

electrons \rightarrow hard gluons soft electromagnetic field \rightarrow soft gluons

- Small-amplitude soft fields ($f_{\rm soft} \ll g^2$): the growth rate can be solved analytically; essentially QED (non-abelian commutators can be neglected)
- \Rightarrow exponential growth of soft fields, with characteristic $k_{
 m soft} \sim k^*$
 - What happens when magnitude of the soft fields reach the "non-abelian limit" $gA_{\rm soft} \sim k^*$ (or $f_{\rm soft} \sim g^2$)?
 - Continued growth until gA_{soft} ~ p_{hard} (as in QED), leading to efficient isotropization?
 - Just stops? Not so efficient
 - Something else?
 - Continued growth may be possible if the fields 'Abelianise', i.e. only one colour component grows. [Arnold, Lenaghan, Moore]
 - Special lattice simulations needed.

How to study the system?

- Soft fields: non-perturbative, large occupation numbers ($f_{
 m soft} \gg g^2$): \sim classical evolution
- $\bullet\,$ Hard modes: dilute, weakly coupled \sim classical particles
- A) Classical pure gauge field evolution [Romatschke,Venugopalan; Berges,Scheffler,Sexty]
- B) System with hard "classical" particles + soft non-perturbative gauge fields ("HTL" theory)
 - B1) Real particles

 \Rightarrow

[Dumitru,Nara,Strickland]

B2) Particle distribution functions, "W" -fields [Arnold,Moore,Yaffe; Rebhan,Romatschke,Strickland;

Bödeker,KR]

Fixed anisotropic background distribution + fluctuations (*W*)

- "Classical gauge":
 - All scales need to fit: large lattices
 - No overcounting
 - ► Feedback hard↔soft, full isotropization possible
 - Total energy conserved
- "Particles" :
 - Separation of scales
 - ► Feedback hard↔soft
 - Total energy
 - overcounting?
- "W-fields":
 - Static anisotropic background + dynamic fluctuations
 - \Rightarrow Full isotropization not possible
 - Separation of scales
 - Technically "clean"

Hard Thermal Loop effective theory

Hard modes behave as on-shell particles moving in soft background fields, with a distribution function

$$f_{\mathrm{hard}}(x,\vec{p}) = \bar{f}(\vec{p}) + \lambda^a f^a(x,\vec{p}) + \dots$$

where the singlet $\overline{f}(\vec{p})$ is constant in space and time, and is anisotropic.

Yang-Mills-Vlasov equations of motion:

$$(D_{\mu}F^{\mu
u})^{a} = J^{a,
u}_{
m hard} = g \int_{ec p} v^{
u}f^{a}$$

 $(v \cdot Df)^{a} + gv^{\mu}F^{a}_{\mu i} rac{\partial \overline{f}}{\partial p^{i}} = 0$

where $v = (1, \vec{p}/p)$. Defining *W*-function

$$W^{a}(x,ec{v})\equiv 4\pi g\int\limits_{0}^{\infty}rac{dpp^{2}}{(2\pi)^{3}}f^{a}(x,ec{p})$$

we can integrate EQM over |p|, obtaining ...

Hard Thermal Loop effective theory

Yang-Mills-Vlasov EQM:

$$(D_{\mu}F^{\mu\nu})^{a} = \int \frac{d\Omega_{\vec{v}}}{4\pi}v^{\nu}W^{a}$$
$$(v \cdot DW)^{a} = m_{0}^{2}v^{\mu}F_{\mu i}^{a}U^{i}(\vec{v})$$

where $U^{i}(\vec{v})$ characterises the anisotropic \bar{f} :

$$m_0^2 U^i(\vec{v}) = -4\pi g^2 \int_0^\infty \frac{dpp^2}{(2\pi)^3} \frac{\partial \vec{f}(p\vec{v})}{\partial p^i}$$

For isotropic \overline{f} we have $U = \vec{v}$, and $m_0 = m_{\text{Debye}}$. m_0 is the only dimensionful parameter.

Lattice simulations

- The hard mode distribution is modelled with $W^a(x, \vec{v})$ fields. These are expensive: live on $R^3 \times S^2$:
- \vec{v} dependence modelled in 2 ways:
 - expansion in spherical harmonics
 [Bödeker, Moore, K.R.; Arnold, Moore, Yaffe; Bödeker, K.R.]
 - sample discrete directions [Rebhan,Romatschke,Strickland]

- We use spherical harmonic "W-fields", SU(2) gauge group
- We use similar techniques than Arnold, Moore, Yaffe, but with
 - ► 5 different values for the anisotropy, both weaker and much stronger than AMY
 - Large lattices (up to 240^3), with a large number of auxiliary *W*-fields (up to $L_{\text{max}} = 48$, i.e. 14250 auxiliary fields in addition to A_{μ}^{a}).

On the lattice:

• We expand W, \overline{f} in spherical harmonics:

$$egin{array}{rcl} \mathcal{W}^a(x,ec v) &=& \mathcal{W}^a_{\ell m}Y_{\ell m}(ec v), \ egin{array}{rcl} ar f(ec p) &=& ar f^a_{\ell m}(p)Y_{\ell m}(ec v), \end{array}$$

where $\ell = 0 \dots L_{\max}$.

- We use $A_0 = 0$ gauge
- The dynamical lattice fields are $U_i \in SU(2)$, E_i^a , $W_{\ell m}^a$
- m₀ dimensionful; lattice spacing given by am₀.
- 4 lattice "cutoff" artifacts:
 - finite lattice spacing $a \rightarrow 0$
 - finite volume $L^3 \rightarrow \infty^3$
 - finite $L_{\max} \to \infty$
 - finite timestep $\delta t \rightarrow 0$

Anisotropic hard mode distributions

We parametrise the anisotropic hard mode distributions by expanding in spherical harmonics:

$$ar{f} = \sum_{\ell=0}^{L_{\mathrm{asym}}} f_{\ell 0} Y_{\ell 0},$$

with $L_{asym} = 2...28$. For each L_{asym} we try to maximally localise the distribution along *xy*-plane:

Growth rate in U(1) (weak field)

- Growth rate as a function of k
- Much wider range of diverging wave vectors at large asymmetry (large L_{max})

Growth rate in U(1) (weak field)

- Growth rate as a function of k
- Much wider range of diverging wave vectors at large asymmetry (large Lmax)
- Max growth rate varies from $\sim 0.15 \dots 0.8/m_0$
- Location of maximal growth $k^* \sim m_0$.

L_{\max} dependence (U(1) or weak field)

- Abelianisation and continued exponential growth at $k \sim k^*$ [Arnold,Lenaghan,Moore]
 - Not seen in QCD; QED OK

- Solution Abelianisation and continued exponential growth at $k \sim k^*$ [Arnold,Lenaghan,Moore]
 - ► Not seen in QCD; QED OK
- Exponential growth stops, diffusion to UV with slow linear growth (no thermalization)
 - Weak to moderate anisotropy [Arnold, Moore, Yaffe]

- Abelianisation and continued exponential growth at $k \sim k^*$ [Arnold,Lenaghan,Moore]
 - ► Not seen in QCD; QED OK
- Exponential growth stops, diffusion to UV with slow linear growth (no thermalization)
 - Weak to moderate anisotropy [Arnold, Moore, Yaffe]
- Growth of A_{k*} stops, rapid avalanche to UV with ~ exponential growth of energy
 - We observe this at strong anisotropy
 - ► almost full saturation of lattice modes ⇒ direct thermalization?

Generic growth of energy:

Generic growth of energy:

Results: growth of energy with small anisotropy

- Little growth seen beyond the weak field region at $L_{\rm max} = 2, 4$
- lattice UV modes far from saturated
- very small lattice spacing dependence
- agrees with Arnold, Moore, Yaffe ($L_{\rm max}=6$)

Results: growth of energy with large anisotropy

- Continued exponential growth in strong field region at $L_{\rm max} = 14,28$
- stops when lattice UV modes saturate: a dependence
- How far does it continue when $a \rightarrow 0$?

Results: growth of the saturation scale

Magnetic field energy density $(\frac{1}{2}B^2)$ when the exponential growth stops:

- Both for $L_{asym} = 14,28$ the scale grows with a power of lattice spacing *a*
- \Rightarrow Growth regulated by a
- ⇒ Exponential avalanche to far UV in the continuum limit
- \Rightarrow Thermalization?

The final spectrum is \sim thermal $(f_k \propto 1/k)$

Small anisotropy remains IR dominated

- Exponential growth stops without full UV saturation.
- $\bullet~{\rm Slow}\sim{\rm linear}~{\rm growth}$

Growth of individual modes

Why UV modes grow so rapidly? *Shape of the spectrum:*

- Spectrum looks like $A_k \sim e^{-\alpha k}$ in the "Strong field" domain. At $k \gg k^*$, growth caused by non-linear (commutator) terms in EQM $\Rightarrow \partial_i A \sim \partial_0 A \sim g A^2$ $\Rightarrow k A_k \sim \partial_0 A_k \sim g \int_{k'} A_{k'} A_{k-k'} \approx g(A_{k/2})^2$ $\Rightarrow A_k \sim e^{-\alpha k(t_f-t)}$, where $t < t_f$ and $\alpha = O(1)$.
- Exponential shape, growth rate $\propto k_{\cdot} \sim \mathsf{OK}_{\cdot}$

What powers the non-linear exponential growth?

- Exponential flow of energy from hard modes to soft fields \Rightarrow some kind of instability must still be active.
- Not like the linear (Weibel) instability! Different characteristics, mechanism unknown.
- Gauge fixing artifacts? Checked with gauge-invariant measurements (e.g. cooling).

Results: isotropization

Large initial fields

- The growth is suppressed if the initial amplitude of soft fields is too large!
- Initial condition: random $E_i(k)$ with amplitude

 $E_i(k) \sim C e^{-k^2/(2m_0)^2}$

- Vary C \Longrightarrow
- Linear growth with very weak initial fields generate favourable conditions for further (non-linear) growth!
- Energy slowly "cascades" to UV [Arnold, Moore]
- Needs further study

• Finite a effects:

- small at small anisotropy
- large at large anisotropy (UV avalanche)

avalanche) Finite volume effects:

• Finite *a* effects:

• $L \gtrsim 5\lambda^*$, where $\lambda^* = 2\pi/k^*$

- Finite *a* effects:
 - small at small anisotropy
 - large at large anisotropy (UV avalanche)
- Finite volume effects:
 - $L{\gtrsim}5\lambda^*$, where $\lambda^*=2\pi/k^*$
- Finite *L*_{max} effects:
 - ▶ in control when L_{max} large enough

- Finite a effects:
 - small at small anisotropy
 - large at large anisotropy (UV avalanche)
- Finite volume effects:
 - $L{\gtrsim}5\lambda^*$, where $\lambda^*=2\pi/k^*$
- Finite L_{\max} effects:
 - ▶ in control when L_{max} large enough
- Finite timestep effects:
 - ▶ negligible with δt = 0.05a and 0.1a

• Finite *a* effects:

- small at small anisotropy
- large at large anisotropy (UV avalanche)
- Finite volume effects:
 - $L{\gtrsim}5\lambda^*$, where $\lambda^*=2\pi/k^*$
- Finite L_{\max} effects:
 - ▶ in control when L_{max} large enough
- Finite timestep effects:
 - ▶ negligible with δt = 0.05a and 0.1a
- Statistics of one:
 - only 1 or 2 runs for each parameter set
 - \blacktriangleright OK, because statistical variation \ll physical variation

Conclusions

- We observe a fast growth in UV part of the soft fields if the asymmetry of the hard mode distribution is large enough.
- Growth fastest to \hat{z} -direction: "soft" modes fill up the \hat{z} deficit in hard modes?
- Rate itself is sufficient for rapid thermalization. For large anisotropy

rate $\sim m_0 \rightarrow m_{Debye} \Rightarrow$ growth rate less than 1/fm.

- Warrants further study!
- Open problems:
 - Right initial field configuration?
 - Expanding system tends to slow down the onset of growth further [Romatschke, Venugopalan; Strickland, Nara, Rebhan]

UV runoff in compact U(1)

- compact lattice U(1) becomes non-linear when we hit the lattice limit $A_k \sim a^{-4}k^{-2}$. Causes runoff to UV too!
- Check signature by directly simulating compact U(1):
- Fourier spectrum: $f_{k,\max} \gg 1$

UV runoff in compact U(1)

- compact lattice U(1) becomes non-linear when we hit the lattice limit $A_k \sim a^{-4}k^{-2}$. Causes runoff to UV too!
- Check signature by directly simulating compact U(1):
- Fourier spectrum: $f_{k,\max} \gg 1$
- *f*_{k,max} diverges when *a* → 0. Very different behaviour wrt. non-Abelian theory!

Results: where is the energy?

- Initial equipartition due to white noise initial state; i.e. each lattice mode equally populated
- weak field growth: energy in modes with k ~ k*
- strong field growth: energy runs to UV
- apporoaches lattice equipartition

Results: where is the energy?

Mon May 8 14:52:36 2006

- Initial equipartition due to white noise initial state; i.e. each lattice mode equally populated
- weak field growth: energy in modes with k ~ k*
- strong field growth: energy runs to UV
- apporoaches lattice equipartition
- UV divergent, depends on lattice spacing

Results: checking the gauge fixing

 Gauge fixing always suspect with large fields and/or IR modes due to Gribov copies.

• Compare gauge fixed $\langle k^2 \rangle = \int dk \ k^2 f_k$ with gauge invariant $\langle k^2 \rangle = \langle [D_i F_{ij}]^2 \rangle / \langle F_{ij}^2 \rangle$

works well!

