

Nucleon landscape

Nucleon is a many body dynamical system of quarks and gluons

Changing x we probe different aspects of nucleon wave function

How partons move and how they are distributed in space is one of the future directions of development of nuclear physics

Technically such information is encoded into Generalised Parton Distributions

See talks by Markus Deihl and Matthias Burkadt

and Transverse Momentum Dependent distributions

Plot courtesy of Christian Weiss

Fundamental knowledge from 3D distributions

Cosmic Microwave Background is the source of information on history of our universe, inflation, distribution of matter, dark matter etc

3 Dimensional partonic picture gives us insights on the dynamics of the confined system of quarks and gluons.

It also gives information on fundamental properties of the nucleon

Spin is one of these properties

Hadron tomography

Conventional inclusive processes are sensitive to longitudinal momentum fraction of hadron momenta, they give no information on spatial or momentum 3D distribution of partons

Good knowledge of Parton
Distribution
Functions (PDFs)
is acquired at HERA
See talk by Voica Radescu

However large-x behavior has still large uncertainties Data from Jlab 12 will be important

Alexei Prokudin

Our goal is to understand 3 dimensional distributions of partons, How they move, there they are located inside a nucleon

Wigner distribution (1933) is a possibility

$$W(\mathbf{p}, \mathbf{r}) = \int d^3 \eta \, e^{i \, \mathbf{p} \eta} \psi^*(\mathbf{r} + \eta/\mathbf{2}) \psi(\mathbf{r} - \eta/\mathbf{2})$$

It gives both position and momenta

Our goal is to understand 3 dimensional distributions of partons, How they move, there they are located inside a nucleon

Wigner (1933) distribution is a possibility

$$W(\mathbf{p}, \mathbf{r}) = \int d^3 \eta \, e^{i \, \mathbf{p} \eta} \psi^*(\mathbf{r} + \eta/\mathbf{2}) \psi(\mathbf{r} - \eta/\mathbf{2})$$

It gives both position and momenta

Can it be measured?

Our goal is to understand 3 dimensional distributions of partons, How they move, where they are located inside of a nucleon

Wigner (1933) distribution is a possibility

$$W(\mathbf{p}, \mathbf{r}) = \int d^3 \eta \, e^{i \, \mathbf{p} \eta} \psi^*(\mathbf{r} + \eta/\mathbf{2}) \psi(\mathbf{r} - \eta/\mathbf{2})$$

It gives both position and momenta

Can it be measured?

$$\Delta p \Delta r \ge \hbar/2$$

No simultaneous knowledge on position and momenta

Transverse Momentum Dependent distributions

SIDIS

$$l + P \rightarrow l' + h + X$$

If produced hadron has low transverse momentum

$$P_{hT} \sim \Lambda_{QCD} << Q$$

it will be sensitive to quark transverse momentum $\,k_\perp\,$

TMD factorization

Ji, Ma, Yuan (2002)

$$\Phi_{ij}(x,\mathbf{k}_{\perp}) = \int \frac{d\xi^{-}}{(2\pi)} \frac{d^{2}\xi_{\perp}}{(2\pi)^{2}} e^{ixP^{+}\xi^{-} - i\mathbf{k}_{\perp}\xi_{\perp}} \langle P, S_{P}|\bar{\psi}_{j}(0)\mathcal{U}(\mathbf{0},\xi)\psi_{i}(\xi)|P, S_{P}\rangle$$

Transverse Momentum Dependent distributions

$$\Phi_{ij}(x, \mathbf{k}_{\perp}) = \int \frac{d\xi^{-}}{(2\pi)} \frac{d^{2}\xi_{\perp}}{(2\pi)^{2}} e^{ixP^{+}\xi^{-} - i\mathbf{k}_{\perp}\xi_{\perp}} \langle P, S_{P} | \bar{\psi}_{j}(0) \mathcal{U}(\mathbf{0}, \boldsymbol{\xi}) \psi_{i}(\boldsymbol{\xi}) | P, S_{P} \rangle |_{\xi^{+} = 0}$$

Factorization theorems

- Related: Factorization Theorems:
 - Semi-Inclusive deep inelastic scattering. √
 - Drell-Yan.√
 - e+/e annihilation.
 - $-p+p \longrightarrow h_1+h_2+X$

TMD factorization

$$\Lambda_{\rm QCD}^2 < P_{\rm h\perp}^2 \ll Q^2$$

Sensitive to parton transverse motion.

Ji, Ma, Yuan, Collins, Metz, Rogers, Mulders, etc

- Related: Factorization Theorems:
 - Semi-Inclusive deep inelastic scattering. ✓
 - Drell-Yan.√
 - e⁺/e⁻ annihilation. √
 - $p + p \longrightarrow h_1 + h_2 + X$

Collinear factorization

$$\Lambda_{\rm QCD}^2 \ll P_{\rm h\perp}^2, Q^2$$

Sensitive to multy parton correlations.

Qui, Sterman, Efremov, Teryaev, Kanazava, Koike, etc

TMD and Collinear factorizations

Both factorizations are consistent in the overlap region

Collins, Mulders, Ji, Qui, Yuan, Bacchetta, Kang, Boer, Koike, Vogelsang, Yuan etc

Relation of multyparton correlations and moments of TMDs

$$\int d^2k_T \frac{k_T^2}{M} \, f_{1T}^\perp(x,k_T^2) + UVCT(\mu^2) = T_F(x,x,\mu^2) \qquad f_{1T}^{\perp(1)} \equiv \int d^2k_T \frac{p_T^2}{2M^2} \, f_{1T}^\perp(x,k_T^2)$$
 Sivers function

TMDs

8 functions in total (at leading Twist)

Each represents different aspects of partonic structure

Each function is to be studied

Mulders, Tangerman (1995), Boer, Mulders (1998)

Sivers function

Let's consider unpolarised quarks inside transversely polarised nucleon

DISTRIBUTION

$$f(x, \mathbf{k}_T, S) = f_1(x, \mathbf{k}_T^2) - \frac{[\mathbf{k}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{k}_T^2)$$

Usual unpolarised distribution

This one is called SIVERS function Correlation of transverse motion and transverse spin

Sivers (1990)

Sivers function

$$f(x, \mathbf{k}_T, S) = f_1(x, \mathbf{k}_T^2) - \frac{[\mathbf{k}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{k}_T^2)$$

This function gives access to 3D imaging

Spin-orbit correlation

Physics of gauge links is represented

Requires Orbital Angular Momentum

EIC report, Boer, Diehl, Milner, Venugopalan, Vogelsang et al, 2011; Duke workshop report: Anselmino et al Eur.Phys.J.A47:35,2011

Access to 3D imaging

$$f(x, \mathbf{k}_T, S) = f_1(x, \mathbf{k}_T^2) - \frac{[\mathbf{k}_T \times \hat{P}] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{k}_T^2)$$

Sivers function from experimental data HERMES and COMPASS

Anselmino et al 2005

Dipole deformation

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_x}}{M}$$

Suppose the spin is along Y direction: $S_T = (0,1)$

Deformation in momentum space is: $k_x \cdot f(k_x^2 + k_y^2)$

This is called "dipole" deformation.

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_x}}{M}$$

We calculate now average shift: $\langle k_x \rangle$

$$\langle k_x \rangle = \int d^2k_T \frac{\mathbf{k_T^2}}{2M} f_{1T}^{\perp}(x, \mathbf{k_T^2}) \equiv f_{1T}^{\perp(1)}(x)M$$

Average momentum shift is equal to the **first moment** of Sivers function

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_x}}{M}$$

The same statement in figures:

No polarisation:

Polarisation: $S_y \Rightarrow \langle k_x \rangle$

Alexei Prokudin

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The same statement in figures:

This is what we know from exerimental data already:

Alexei Prokudin

How do we measure Sivers function?

$$A_{UT}^{\sin(\Phi_h - \Phi_S)} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

$$\sigma^{\uparrow} - \sigma^{\downarrow} = -f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q} \sin(\phi_h - \phi_S)$$

Unpolarised electron beam Transversely polarised proton

$$A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}$$

See talk by Gunar Schnell

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The slice is at:

$$x = 0.1$$

Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

Picture is still quite uncertain

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The slice is at:

$$x = 0.1$$

Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

In future we will obtain much clearer picture

Physics of gauge links

Colored objects are surrounded by gluons, profound consequence of gauge invariance.

Sivers function has opposite sign when gluon couple after quark scatters (SIDIS) or before quark annihilates (Drell-Yan)

Brodsky, Hwang, Schmidt Belitsky, Ji, Yuan Collins Boer, Mulders, Pijlman, etc

One of the main goals is to verify this relation. It goes beyond "just" check of TMD factorization. Motivates Drell-Yan experiments

AnDY, COMPASS, JPARC, PAX etc Barone et al., Anselmino et al., Yuan, Vogelsang, Schlegel et al., Kang, Qiu, Metz, Zhou

TMD theoretical challenges

- Evolution and soft gluon resummation
- Global study at Next-to-Leading order
- Relation to Orbital Angular Momentum

Many more other questions

- What is the kt distributions of partons gaussian, powerlike, sign changing?
- What is the difference of kt distributions of quarks and sea quarks?
- How to explore higher twist TMDs?
- How to explore distribution and fragmentation TMDs in a satisfactory way?
- etc

Collins-Soper-Sterman factorization can be used

$$\frac{\partial \ln \tilde{F}(x, b_{\perp}, \mu, \zeta)}{\partial \ln \zeta} = \tilde{K}(b_{\perp}, \mu)$$

$$\frac{d\tilde{K}(b_{\perp},\mu)}{d\ln\mu} = -\gamma_K(\mu)$$

$$\frac{d\tilde{F}(x,b_{\perp},\mu,\zeta)}{d\ln\mu} = \gamma_F(\mu,\zeta)$$

CS kernel in coordinate space

TMD:

Collins 2011

Rogers, Aybat 2011

Twist-3:

Kang, Xiao, Yuan 2011

Koike, Vogelsang 2011

TMDs change with energy and resolution scale

Relevant to EIC

Can we see signs of evolution in the experimental data?

Aybat, AP, Rogers 2011

COMPASS data is at

$$\langle Q^2 \rangle \simeq 3.6 \; (GeV^2)$$

HERMES data is at

$$\langle Q^2 \rangle \simeq 2.4 \; (GeV^2)$$

Can we explain the experimental data?

Convention method is to apply DGLAP evolution only

Aybat, AP, Rogers 2011

COMPASS dashed line

$$\langle Q^2 \rangle \simeq 3.6 \; (GeV^2)$$

HERMES solid line

$$\langle Q^2 \rangle \simeq 2.4 \; (GeV^2)$$

Can we explain the experimental data? Full TMD evolution is needed!

Aybat, AP, Rogers 2011

COMPASS dashed line

$$\langle Q^2 \rangle \simeq 3.6 \; (GeV^2)$$

HERMES solid line

$$\langle Q^2 \rangle \simeq 2.4 \; (GeV^2)$$

This is the first implementation of TMD evolution for observables

Functions change with energy

Phenomenological analysis with evolution is now possible

Kinematics

Kinematics
$$Q^2 \simeq sxy$$

Jlab 12 and future Electron Ion Collider are complimentary

Kinematics

Kinematics $Q^2 \simeq sxy$

Jlab 12 and future Electron Ion Collider are complimentary

Jlab and EIC are going to provide fine 4D binning of the data.

Exact knowledge of evolution is crucial

Future improvement

What do we expect at JLab?

One example
TMD from Jlab
future data:
JLab 12 on 3HE target.

Very big improvement in terms of our knoweledge

Future improvement

What do we expect at EIC?

One example TMD from EIC future data

Very big improvement in terms of our knoweledge

Possible relations of TMDs and OAM

Bacchetta, Radici 2011 argue that

Inspired by model Relations, not full QCD

$$f_{1T}^{\perp(0)}(x) \simeq I(x)E(x,0,0)$$

So called "lensing" function Burkardt, Metz, etc

Making direct connection to total OAM from Ji's sum rule:

$$J_q = \frac{1}{2} \int_0^1 dx x (H_q(x, 0, 0) + E_q(x, 0, 0))$$

$$J_u = 0.266, J_d = -0.012$$
 at $Q^2 = 1(GeV^2)$

Asumptions based on model calculations of course, but might be interesting.

Gluons distributions

- Gluon TMDs
- Linearly polarized gluons can be accessed in various channels
- Opportunities of studies at EIC, LHeC
- $h_1^{\perp,g}$ may contribute to Higgs production, resolve its parity

Boer, Brodsky, Mulders, Pisano 2011 Qiu, Vogelsang, Schlegel 2011 Boer, den Dunnen, Pisano, Schlegel, Vogelsang 2011

 Tri-gluon correlations, Qiu-Sterman matrix elements, complete classification

Koike, Tanaka

TMD SSA in open charm

Godbole, Misra, Mukherjee, Rawoot 2011

TMD experimental challenges

- 4D binning of observables $x,z,Q^2,P_{h\perp}$
- Different targets: proton, neutron, deuteron
- Different final state hadrons π, K open charm

All this helps to do correct flavour decomposition and correct analysis.

CONCLUSIONS

- Studies of 3D distributions represent big part of future of nuclear physics
- EIC is an ideal place to explore GPDs and TMDs
- Theory and phenomenology have made a lot of progress in recent years
- We are going to see more progress in future

CONCLUSIONS

- Studies of 3D distributions represent big part of future of nuclear physics
- EIC is an ideal place to explore GPDs and TMDs
- Theory and phenomenology have made a lot of progress in recent years
- We are going to see more progress in future
- We are looking forward to EIC!

QCD EVOLUTION 2012

http://www.jlab.org/conferences/qcd2012/

May 14 - 17, 2012 Jefferson Lab Newport News, Virginia, USA

Organizing committee:

Alexei Prokudin, Chair Anatoly Radyushkin Ian Balitsky Leonard Gamberg Harut Avakian

QCD EVOLUTION 2012

http://www.jlab.org/conferences/qcd2012/

May 14 - 17, 2012 Jefferson Lab, Newport News, Virginia, USA

Alexei Prokudin

HUGS 2012

http://www.jlab.org/hugs/

Summer school: 27th Annual Hampton University Graduate Studies Program. Covers theoretical and experimental aspects of nuclear physics.

Jefferson Lab, Newport News, Virginia June 4 - June 22, 2012

Fellowships are available and will cover tuition, fees, room and board

The deadline for application submittal is April 2, 2012

HUGS 2012

Alexei Prokudin