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Motivation

Relativistic second order dissipative fluid dynamics is a very important
scientific achievement of the last decades, and has inspired many
subsequent authors to apply its methodology to lots of other possible
applications. See U. Heinz’s Talk. In short it furnishes equations which
are closed by imposing the relativity principle and the entropy principle
up to second order, with respect to equilibrium.
Most authors have refrained from exploiting subsequent orders because
that requires long and cumbersome representations.
However, the exploitation of subsequent orders with respect to
equilibrium is desirable, for the following two reasons
(i) a second order approach is necessary to link more closely he
relativistic case with the classical one
(ii) it is necessary to answer the following questions: By imposing our
conditions at a given order N, we obtain some equations for the
determination of the N-th order expressions of the constitutive functions
and these equations depends also on the lower order terms; so it might
happen that the existing condition of the solution imposes further
conditions on the lower order terms. And it may also happen that the
further conditions affect the equilibrium expressions which, however, are
already known.
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Basics & Formalism

The objective of relativistic dissipative fluid dynamics for one component fluid
is the determination of the 14 fields of

Nµ(xβ) net charge density — net charge flux vector

Tµν(xβ) stress — energy — momentum tensor

Tµν is assumed symmetric so that it has 10 independent components.

The 14 fields are determined from the field equations (fluid dynamical
equations)

∂µNµ = 0 net charge (e.g., baryon, strangeness, etc ) conservation

∂νTµν = 0 energy – momentum conservation

∂λFµνλ = Pµν balance law of fluxes

Fµνλ is completely symmetric tensor of fluxes and Pµν is its production
density such that

Fµνν = m2Nµ and Pνν = 0
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Basics & Formulation

We then have a set of 14 independent equations ( net charge conservation
(1); energy-momentum conservation (4); balance of fluxes (9))

However, the dynamic equations cannot serve as the field equations for the
thermodynamic fields Nµ and Tµν . Because the additional fields Fµνλ and
Pµν have appeared.

Restriction on the general form of the constitutive functions Fµνλ(Nα,Tαβ)
and Pµν(Nα,Tαβ) is imposed by

principle of relativity — field equations have the same form in all frames
=⇒ the constitutive functions be invariant under the change of frames

entropy principle —the entropy density–entropy flux vector Sµ(Nα,Tαβ)
is a constitutive quantity which obeys the inequality

∂µSµ = Ξ ≥ 0 for all thermodynamic process

requirement of hyperbolicity — ensures that Cauchy problems of our
field equations are well-posed and all wave speeds are finite =⇒ our set
of field equations should be symmetric hyperbolic
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The 14 Fields and Tensor decomposition

Net charge 4-current Nµ = nuµ

n ≡
p

NµNµ = uµNµ net charge density in fluid rest frame,

uµ ≡ Nµ

√
NνNν

the fluid 4-velocity,

uνuν = 1 =⇒ uµ has 3 independent components
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14 Fields and Tensor decomposition

Stress–energy–momentum tensor Tµν = εuµuν−(p+Π)∆µν+2q(µuν)+π〈µν〉

ε ≡ uµuνTµν energy density in fluid rest frame,

p ≡ p(ε , n) pressure in fluid rest frame,

Π bulk viscous pressure, (p + Π) ≡ −1
3

∆µνTµν

∆µν ≡ gµν − uµuν projection tensor onto 3-space, ∆µνuν = ∆µνuµ = 0

gµν ≡ diag(+1,−1,−1,−1) metric tensor

qµ ≡ ∆µ
αuβTαβ heat flux 4-current,

qµuµ = 0 =⇒ qµ has 3 independent components

π〈µν〉 ≡ T 〈µν〉 shear stress tensor

π〈µν〉uµ = π〈µν〉uν = 0, π
〈ν
ν〉 = 0 =⇒ π〈µν〉 has 5 independent components
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14 Fields and Tensor decomposition

Production densities tensor Pµν = PΠΠ
“

∆µν−3uµuν
”

+2Pqq(µuν)+Pππ〈µν〉

The functions PΠ, Pq , Pπ are related to the bulk viscosity, heat conductivity
and shear viscosity and thus may be determined from measurements of
these coefficients
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14 Fields and Tensor decomposition

Tensor of fluxes (up to 2nd order)

Fµνλ =
1
2
F0

1 g(µνuλ) +
1
2
F0

2

“
g(µνuλ) − 2uµuνuλ

”
+F1

1 Π
“

∆(µνuλ) − uµuνuλ
”

+ F1
2

“
∆(µνqλ) − 5u(µuνqλ)

”
+F1

3π
(〈µν〉uλ)

+F2
1 Π2

“
∆(µνuλ) − uµuνuλ

”
+ F2

2

“
−qνqν∆(µνuλ) − 3u(µqνqλ)

”
−F2

3 qαqα
“

∆(µνuλ) − uµuνuλ
”

+ F2
4

“
3uµπ2〈νλ〉 − π2〈αα〉uµuνuλ

”
+F2

5π
2〈αα〉

“
∆(µνuλ) − uµuνuλ

”
+ F2

6

“
q(µπ〈νλ〉) − 2u(µuνπ〈λ)ν〉qν

”
+F2

7

“
∆(µνπ〈λ)α〉)qα − 5uµuνπ〈λ)α〉qα

”
+ F2

8 Πu(µπ〈νλ〉)

+F2
9 Π
“

∆(µνqλ) − 5q(µuνuλ)
”

Zeroth order (Equilibrium) + First order + Second order
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14 Fields and Tensor decomposition

Entropy 4-current (up to 3rd order)

Sµ = S0
1 uµ

+S1
1 Πuµ + S1

2 qµ

+
“
S2

1 Π2 − S2
2 qαqα + S2

3π
2〈αα〉

”
uµ

+S2
4 Πqµ + S2

5π
〈µα〉qα

+
“
S3

1 Π3 − S3
2 Πqαqα + S3

3 Ππ2〈αα〉 + S3
4 qαqβπ〈αβ〉 + S3

5π
3〈αα〉

”
uµ

+
“
S3

6 Π2 − S3
7 qαqα + S3

8π
2〈αα〉

”
qµ + S3

9 Ππ〈µα〉qα + S3
10π

2〈µα〉qα

Zeroth order (Equilibrium) + First order + Second order +Third order
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Notation

Parentheses around some indices denote symmetrization, while angular
brackets around two indices denote skew-symmetrization

a(µν) ≡ 1
2

“
aµν + aνµ

”
a〈µν〉 ≡

“
∆(µ
α ∆

ν)
β −

1
3

∆µν∆αβ

”
aαβ

The space-time derivative will be split into time and spatial components as
follows

∂µ ≡ uµD +∇µ

with D ≡ uα∂α convective (comoving) time derivative
and ∇µ ≡ ∆µν∂ν spatial gradient

ȧ... ≡ Da... = uµ∂µa... convective (comoving) time derivative of a...

θ = ∇µuµ = ∂µuµ expansion scalar (divergence of 4-velocity)
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Equilibrium

Equilibrium is defined as a process in which production densities vanish
and/or the entropy production vanishes

PµνEq. = 0
ΞEq. = 0

ff
=⇒ ΠEq. = 0 , qµEq = 0 , π

〈µν〉
Eq = 0

FµνλEq =
1
2
F0

1 g(µνuλ) +
1
2
F0

2

“
g(µνuλ) − 2uµuνuλ

”
SµEq. = s(ε, n)uµ

The energy-momentum tensor reduces to

TµνEq. = εuµuν − p∆µν

In the ideal “perfect” fluid limit one has 5 independent fields
(p(n, e)(2), uµ(3)) and 5 field equations
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14-Fields Theory of Relativistic Dissipative Fluid Dynamics :

In dissipative(non-ideal) fluid dynamics one needs 9 additional equations for
the dissipative fluxes. The 14 fields p(n , ε), Π, uα, qα, π〈αβ〉 are governed by
the following fields equations

∂µNµ = 0

∆αµ∂νTµν = 0

uµ∂νTµν = 0

uµuν∂λFµνλ = −PΠΠ

∆µ
αuν∂λFανλ = Pqqµ“

∆(µ
α ∆

ν)
β −

1
3

∆µν∆αβ

”
∂λFαβλ = Pππ〈µν〉

For all thermodynamic processes the entropy principle holds

∂µSµ = Ξ ≥ 0
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Dissipative fluxes: Zeroth order: Equilibrium

Π = ΠEq. = 0

qα = qαEq. = 0

π〈αβ〉 = π
〈αβ〉
Eq. = 0
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Dissipative fluxes: First order

Π(1) = ΠE = −ζ∇αuα

qα (1) = qαE = κT ∆αµ
“∇αT

T
− u̇α

”
π〈αβ〉 (1) = π

〈αβ〉
E = 2η∆αµ∆βν∇〈αuβ〉

Relativistic versions of the laws of Navier-Stokes and Fourier
first derived by Eckart, Landau-Lifshitz.
ζ is the bulk viscosity, κ is the thermal conductivity, η is the shear viscosity

simple algebraic expressions of dissipative fluxes

but leads to acausal and unstable equations of motion
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Dissipative fluxes: Second order

Müller-Israel-Stewart (MIS) equations: Fµνλ linear (first-order) in dissipative
fluxes and Sµ quadratic (second-order) in dissipative fluxes
Resulting equations causal and hyperbolic

Π(2) = ΠMIS = −ζ
h
2S2

1 Π̇ + S2
4∇αqα

i
−ζ
h
Π(Ṡ2

1 + S2
1∇αuα) + qα(∇αS2

4 − S2
4 u̇α)

i
qµ (2) = qµMIS = κT ∆αµ

h
2S2

2 q̇α + S2
4∇αΠ + S2

5∇βπ〈αβ〉
i

+κT ∆αµ
h
qα(Ṡ2

2 + S2
2∇νuν) + Π(∇αS2

4 − S2
4 u̇α)

+π〈αβ〉(∇βS2
5 − S2

5 u̇β)
i

π〈µν〉 (2) = π
〈µν〉
MIS = 2η∆αµ∆βν

h
2S2

3 π̇〈αβ〉 + S2
5∇〈αqβ〉

i
+2η∆αµ∆βν

h
π〈αβ〉(Ṡ2

3 + S2
3∇λuλ)

+q〈α(∇β〉S2
5 − S2

5 u̇β〉)
i
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Dissipative fluxes

The terms in red are neglected in the original MIS formulation. Terms of
the general form Π∂νuµ, Π∂λn, Π∂λε, qα∂νuµ, qα∂λn, qα∂λε, π〈αβ〉∂νuµ,
π〈αβ〉∂λn, π〈αβ〉∂λε have been considered non-linear and thus ignored.
These terms have been shown to be important in heavy ion collisions.
They will be even more important at low energies and high densities.

Derivations of the equations from kinetic theory reveals terms that are
not explicit from phenomenological considerations (e.g., vorticity terms)
To be published
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Entropy from Kinetic Theory

We derive the third order entropy 4-current as well the non-classical
coefficients by going beyond Israel-Stewart entropy 4-current expression in
kinetic theory. The kinetic expression for entropy, can be written as

Sµ = −
Z

dwpµψ[f (x , p)] ,

where

ψ[f (x , p)] = f (x , p)
n

ln[A−1
0 f (x , p)]− 1

o
,

and f (x , p) is the out of the equilibrium distribution function. Expanding ψ(f )
around ψ(f eq) up to third order we get,

ψ(f ) = ψ(f eq) + ψ′(f eq)(f − f eq) +
1
2
ψ′′(f eq)(f − f eq)2

+
1
6
ψ′′′(f eq)(f − f eq)3 + .. ,
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Entropy from kinetic theory

Sµ(1) =
qµ

T
,

Sµ(2) =
1
2
βuµ

h
S2

1 Π2 − S2
2 qαqα + S2

3π
ναπνα

i
+ β

h
S2

4 qµΠ + S2
5 qαπµα

i
,

Sµ(3) =
1
6
βuµ

n
S3

1 Π3 + S3
2 Πqαqα + S3

3 Ππναπνα + S3
4 qνqαπνα + S3

5πναπ
ν
βπ

αβ
o

−1
6
βqµ

n
S3

6 Π2 + S3
7 qαqα − S3

8π
ναπνα

o
− βS3

9 Πqαπµα

+
1
2
βS3

10qαπναπµν ,
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Conclusions

There are three mechanisms for entropy production. One is related to
the dynamic preassure, one due to heat flux and one due to shear stress.

For the entropy production to be non-negative the coefficients related to
bulk viscosity, shear viscosity and heat flux some inequality relations.

This work increases the appreciation for previous work - because the
conditions imposed in the previous work are satisfied also up to higher
orders in expansion around thermodynamic equilibrium.

The many identities we encounter in deriving the equations implies that
perhaps it is possible to find an explicit and exact solution for the
conditions

The equations presented here are the same whether ones used
divergence methodology or kinetic theory.
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