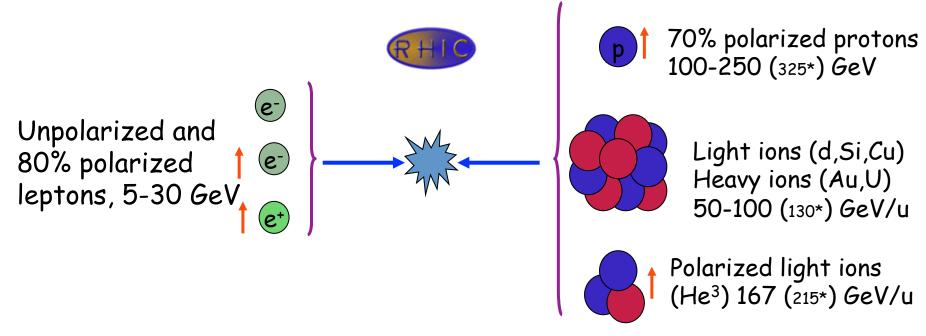
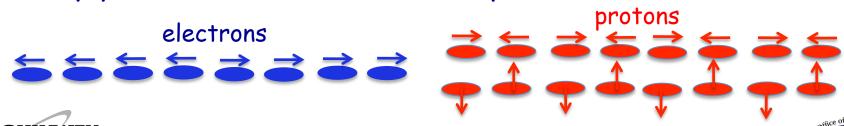


High-Energy High-Luminosity Electron-Ion Collider eRHIC

Vladimir N. Litvinenko for eRHIC team

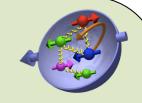
Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA
Stony Brook University, Stony Brook, NY, USA
Center for Accelerator Science and Education





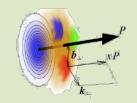
eRHIC: QCD Facility at BNL

Add electron accelerator to the existing \$2B RHIC


Center of mass energy range: 30-175 GeV Any polarization direction in lepton-hadrons collisions

Most Compelling Physics Questions

spin physics

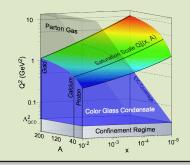

what is the polarization of gluons at small x where they are most abundant

what is the flavor decomposition of the polarized sea depending on x

determine quark and gluon contributions to the proton spin at last

imaging

what is the spatial distribution of quarks and gluons in nucleons/nuclei



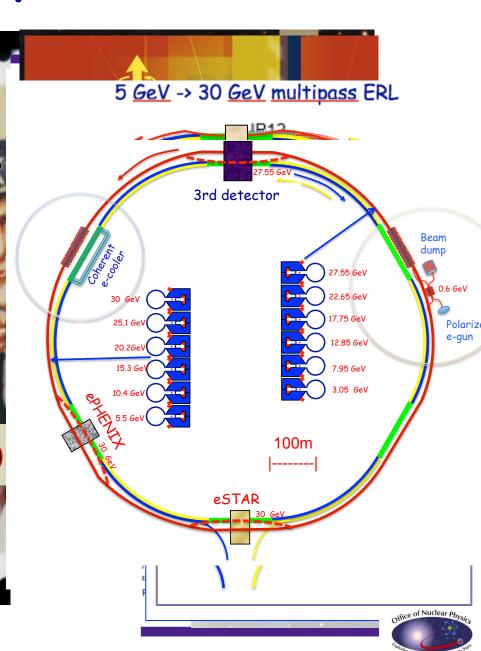
understand deep aspects of gauge theories revealed by k_T dep. distr'n

possible window to orbital angular momentum

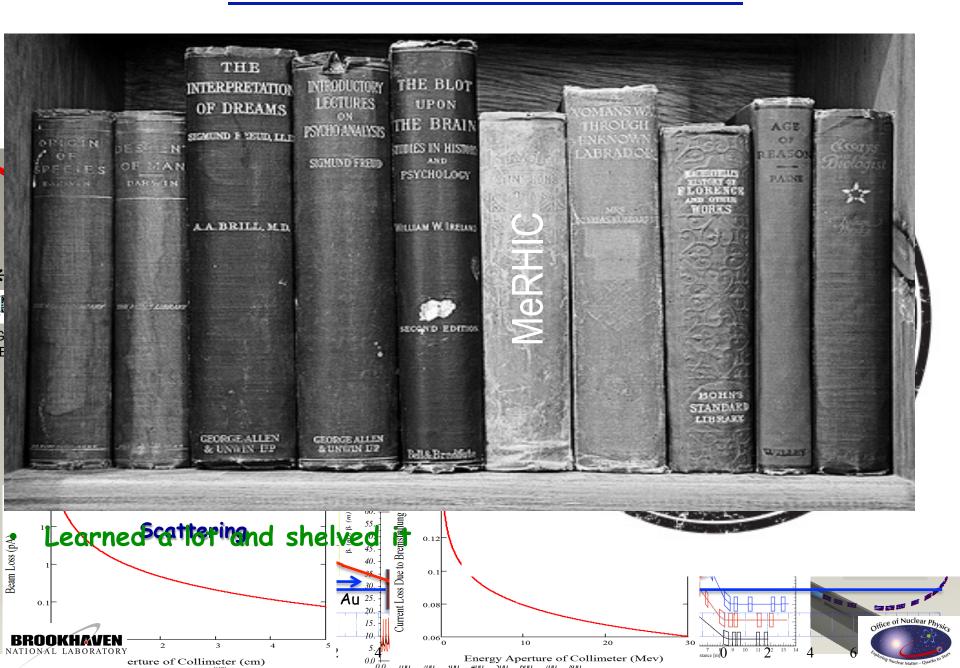
physics of strong color fields

quantitatively probe the universality of strong color fields in AA, pA, and eA

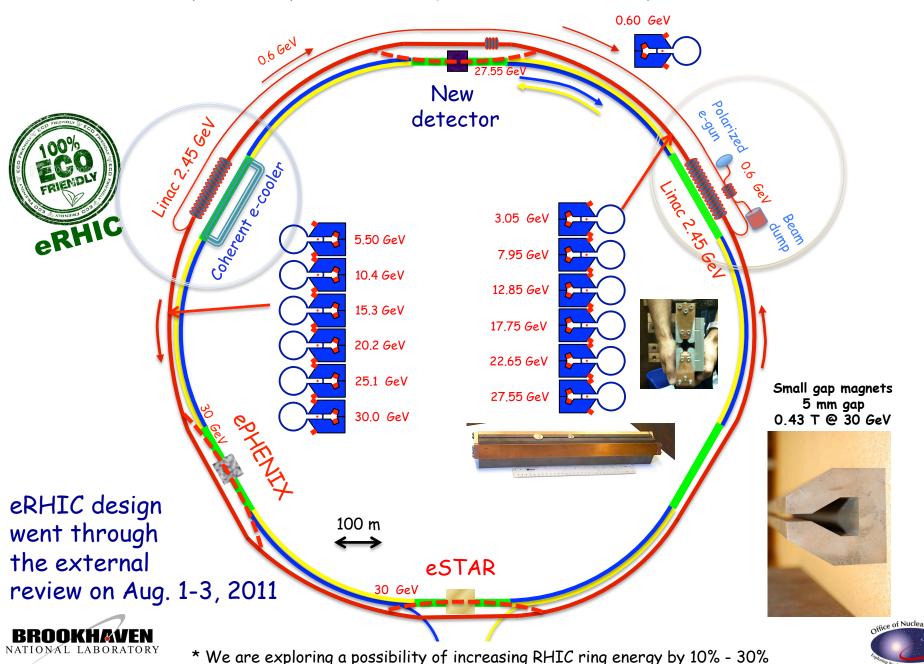
understand in detail the transition to the non-linear regime of strong gluon fields and the physics of saturation


how do hard probes in eA interact with the medium

Brief history of eRHIC


• First eRHIC paper, 2000, 5.Peggs et al., ~300 pap @JACoW, ~3 Phys. Revs, ~60 NIMs....

- First White Peer on eRHIC/EIC, 2002
- 2003, eRHIC opears in DoE's "Facilities for the Future Sciences. A Twenty-Year Outlook"
- "eRHIC Zerot Corder Design Report" with cost estimate for Ring-Ring, 2004
- 2007 after stailed studies we found that linac-ring LR) has ~10-fold higher luminosity Libecame the main option
- 2008 first saging option of eRHIC
- In 2009 considered technical design, dynamics studies and Entresinate of MeRHIC with GeV ERL
- Present returned to the dosteffective (green) all in tunnel nighluminosity eRF C design with staging electron energy from the doctors



MeRHIC - 2007/2008

eRHIC: polarized electrons with $E_e \le 30$ GeV will collide with either polarized protons with $E_e \le 250^*$ GeV or heavy ions $E_A \le 100^*$ GeV/u

Main elements of the concept

- ◆ We chose ERL for electrons to reach high luminosity at high energy
- ♦ We assumed that we can cool hadron beam 10-fold in both longitudinal and transverse directions using coherent electron cooling
- ♦ We take advantage of small beam size in ERL and plan to use small magnets with gaps of 5 mm (and 10 mm at two lowest orbits)
- ◆ We had found a solution unique for Linac-ring colliders which would allow us to change energy of colliding hadrons from 50 GeV to 250 GeV
- lacktriangle We took advantage of recent advances in super-conducting quadrupole technology to design IR with β^* to 5 cm
- ◆ Following success of KEK-B with crab-crossing we accommodated this approach into new IR layout
- ♦ We assumed that we can generate up to 50 mA of polarized electrons
- ◆ These assumptions bring eRHIC top luminosity to 10³⁴ cm⁻² sec⁻¹
 - ♦ If polarized positrons are needed for the program, we suggest to build positron ring and use ERL for generating and accelerating positrons. Luminosity of this collisions will be much lower, i.e. at 10³² cm⁻² sec⁻¹ level and not all energies of hadrons could be used in the collisions

eRHIC beam parameters and luminosity

	e	р	² He ³	⁷⁹ Au ¹⁹⁷	92 <mark>U</mark> 238
Energy, GeV	20	250	167	100	100
CM energy, GeV		141	115	89	89
Number of bunches/distance between bunches	74 nsec	166	166	166	166
Bunch intensity (nucleons), 1011	0.24	2	1.3	0.79	0.83
Bunch charge, nC	3.8	32	10	5.2	5.2
Beam current, mA	50	420	140	67	67
Normalized emittance of hadrons , 95% , mm mrad		1.2	1.2	1.2	1.2
Normalized emittance of electrons, rms, mm mrad		32	48	80	80
Polarization, %	80	70	70	none	none
rms bunch length, cm	0.2	8.3	8.3	8.3	8.3
β*, cm for(e & hadrons)	5	5	5	5	5
Luminosity per nucleon, \times 10 ³⁴ cm ⁻² s ⁻¹		0.97	0.65	0.39	0.41

Hourglass effect is included

Luminosity falls as the cube of hadron energy E_h^3 because of space charge limit Luminosity is adjusted the same at energy of electrons from 5GeV to 20 GeV e-beam current and luminosity fall as E_e^{-4} at electron energy >20 GeV (Sync.Rad)

eRHIC Luminosity in e-p

Reaching high luminosity:

- high average electron current (50 mA = 3.5 nC * 14 MHz)
 - energy recovery linacs; SRF technology
 - high current polarized electron source
- cooling of the high energy hadron beams (Coherent Electron Cooling)
- β *=5 cm IR with crab-crossing

Polarized (and unpolarized) e (80%) -p (70%) luminosities in 10³³ cm⁻² sec⁻¹ units

Limiting factors:

- hadron $\Delta Q_{sp} \le 0.035$
- hadron $\xi \le 0.015$
- polarized e current ≤ 50 mA
- SR power loss ≤ 7 MW

	Protons				
	E, GeV	100	130	250	325
ons	5	0.62 (3.1)	1.4 (5)	9.7	15
Electrons	10	0.62 (3.1)	1.4 (5)	9.7	15
E B	20	0.62 (3.1)	1.4	9.7	15
	30	0.12	0.28	1.9	3

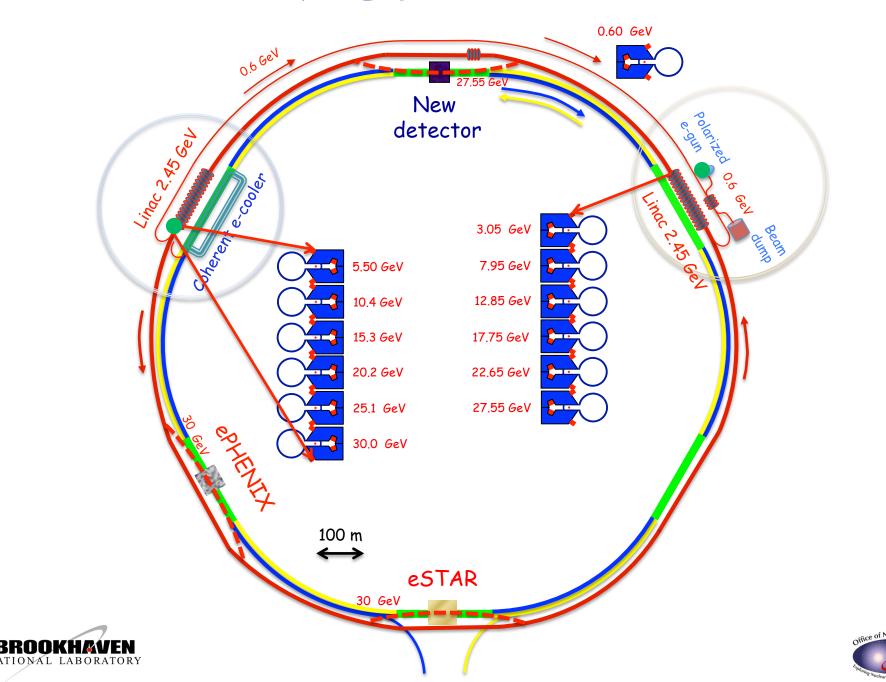
eRHIC Luminosity in e-A

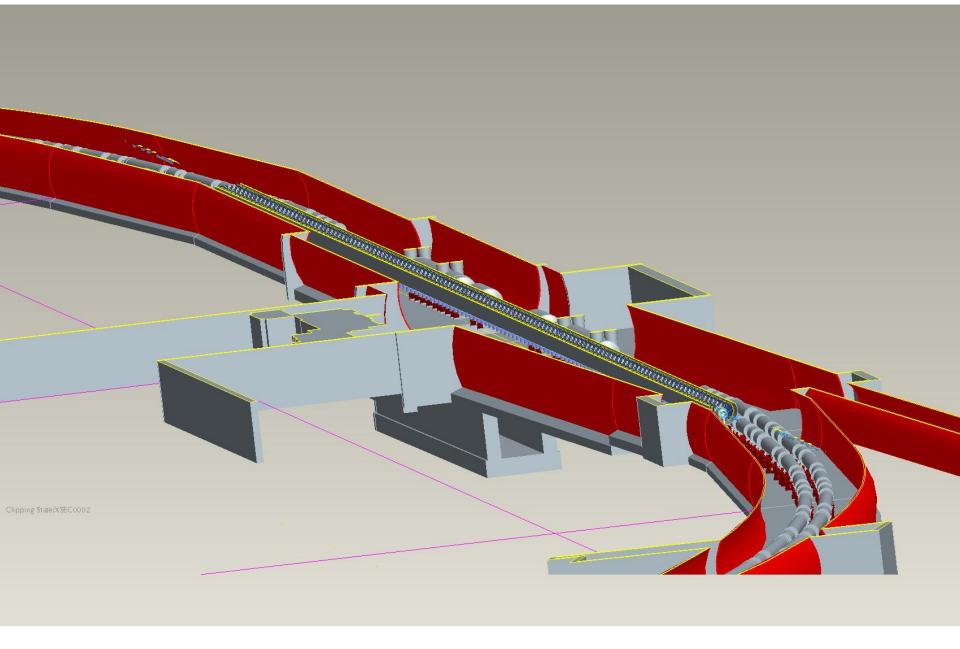
Reaching high luminosity:

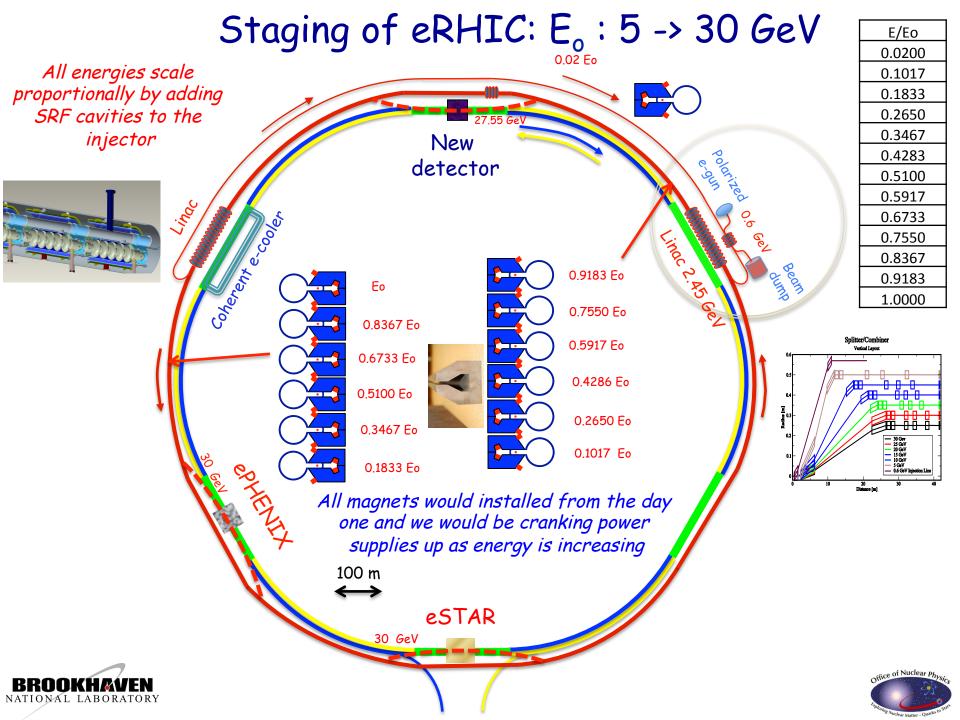
- · high average electron current
 - energy recovery linacs; SRF technology
 - high current polarized electron source
- cooling of the high energy hadron beams (Coherent Electron Cooling)
- β*=5 cm IR with crab-crossing

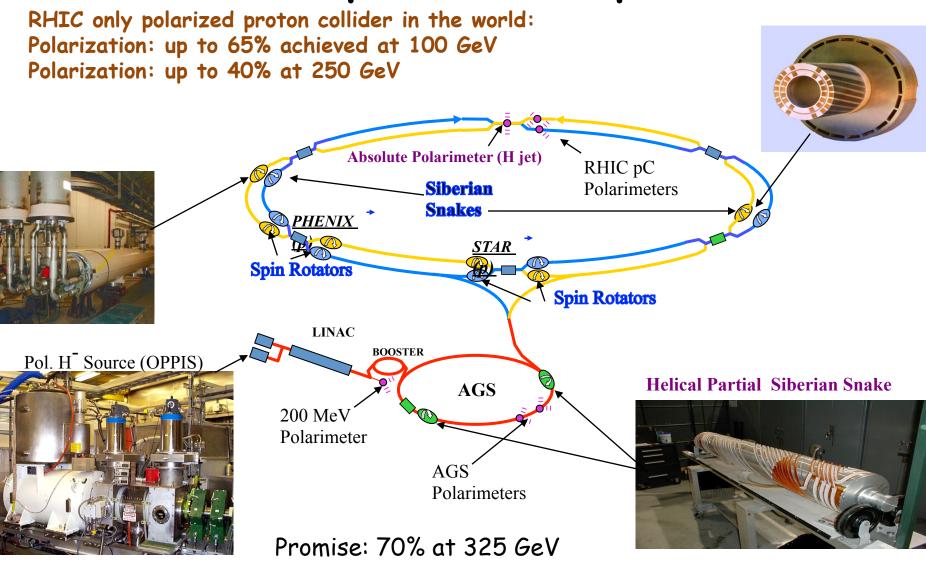
e-A luminosities in 10³³ cm⁻² sec⁻¹ units

Limiting factors:

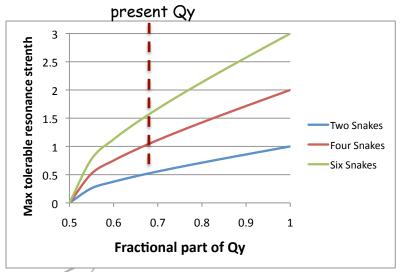

- hadron $\Delta Q_{sp} \le 0.035$
- hadron $\xi \le 0.015$
- -SR power loss ≤ 7 MW


	Au ions				
	E, GeV	50	75	100	130
on on the	5	2.5	8.3	11.4	18
ctr	10	2.5	8.3	11.4	18
Electrons	20	0.49	1.7	3.9	8.6
	30	0.1	0.34	0.77	1.7


e-beam in ERL



eRHIC: polarized protons



Polarized protons -> 70%

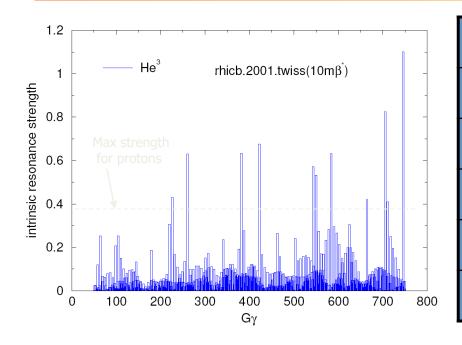
	Polarization	
OPPIS source	~80%	
AGS extraction	~65-70%	
RHIC, 250 GeV	~45-50%	
Polarization loss happens after 100 GeV		

For isolated spin resonance (Courant-Lee). The Snake efficiency may depend also on their locations

Improvements in Run 11:

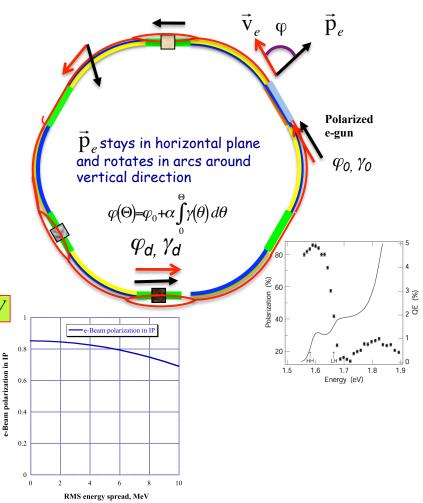
- AGS: jump quads improved considerably the slope of the polarization dependence on the bunch intensity
- -RHIC: betatron tunes placed further away from the 0.7 higher-order spin resonance and the vertical realignment of all magnets led to better polarization transmission on the ramp

Possible future developments:


- Working point near integer (allowed by recent success of 10 Hz orbit feedback):
 - •Fewer high-order spin resonances
 - Reduced strength of those resonances
- Increased number of the Snakes

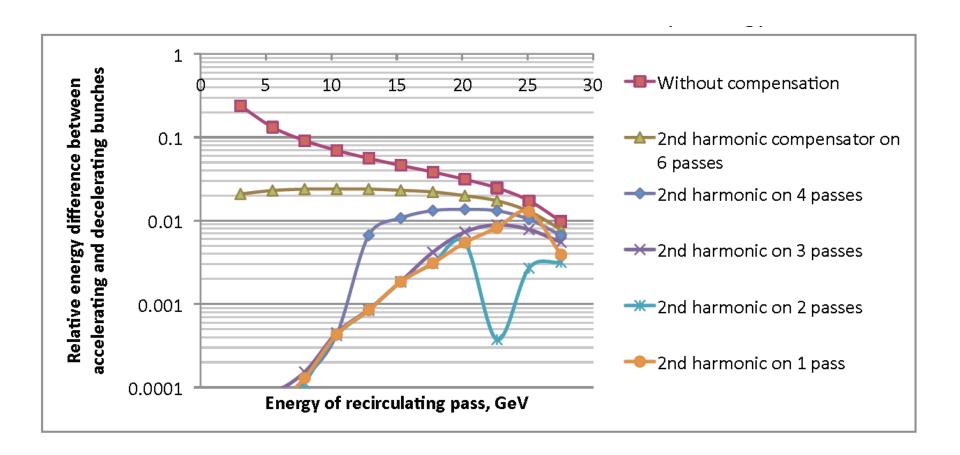
Polarized 3He+2 for eRHIC

- Larger G factor than for protons
- RHIC Siberian snakes and spin rotators can be used for the spin control, with less orbit excursions than with protons.
- More spin resonances. Stronger resonance strength.
- Spin dynamics at the acceleration in the injector chain and in RHIC has to be studied.

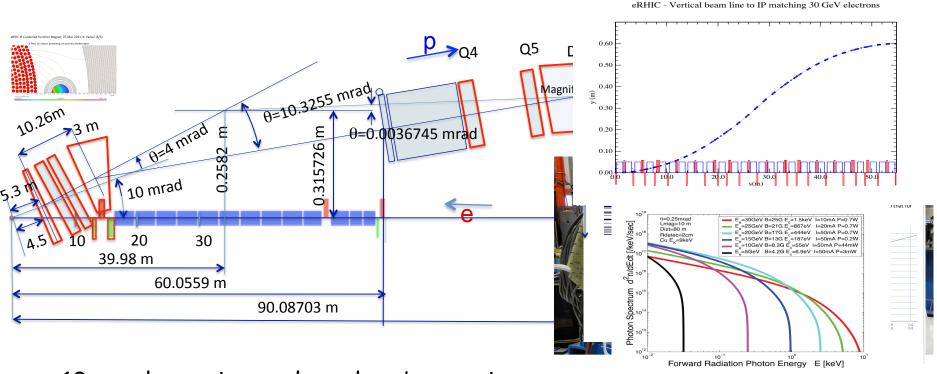

	³ He ⁺²	p
m, GeV	2.808	0.938
G=(g-2)/2	-4.18	1.79
E/n, GeV	16.2-166.7	24.3 - 325
γ	17.3 - 177	25.9 - 346
Gγ	72.5 - 744.9	46.5 - 477.7

Electron polarization in eRHIC

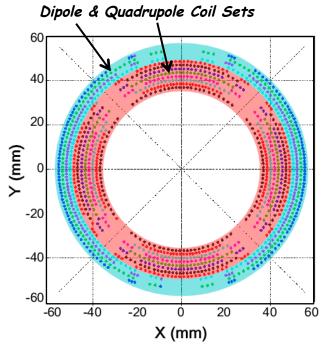
- Only longitudinal polarization is needed in the IPs
- High quality longitudinally polarized e-beam will be generated by DC guns with strained-layer super-lattice GaAs-photocathode
- Direction of polarization will be switch by changing helicity of laser photons in and arbitrary bunch-by-bunch pattern
- We continue relying on our original idea (@VL 2003)
 to rotate spin integer number of 180-degrees
 between the gun and the IP
- With six passes in ERL the required condition will be satisfied at electron energies: $E_e = N \cdot 0.07216 \, GeV$
- It means that tuning energy in steps of 72 MeV (0.24% of the top energy of 30 GeV) will provide for such condition
- Energy spread of electrons should kept below 6 MeV to have e-beam polarization in IP above 80%



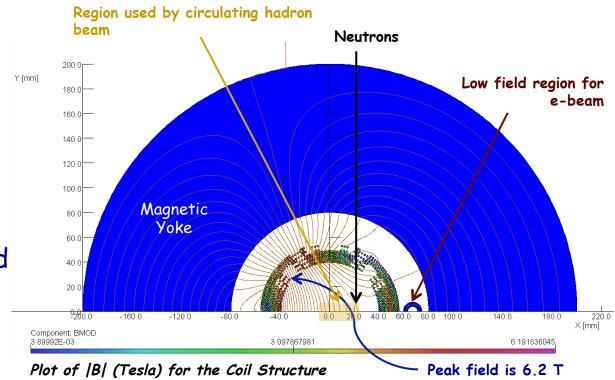
*The GaAs-GaAsP cathode achieved a maximum polarization of 92±6% with a quantum efficiency of 0.5% Highly polarized electrons from ..strained-layer super-lattice photocathodes, T. Nishitani et al., J. OF APPL. PHYSICS 97, 094907 (2005)


Loss budget for 6 pass scheme

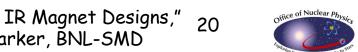
eRHIC high-luminosity IR with β *=5 cm



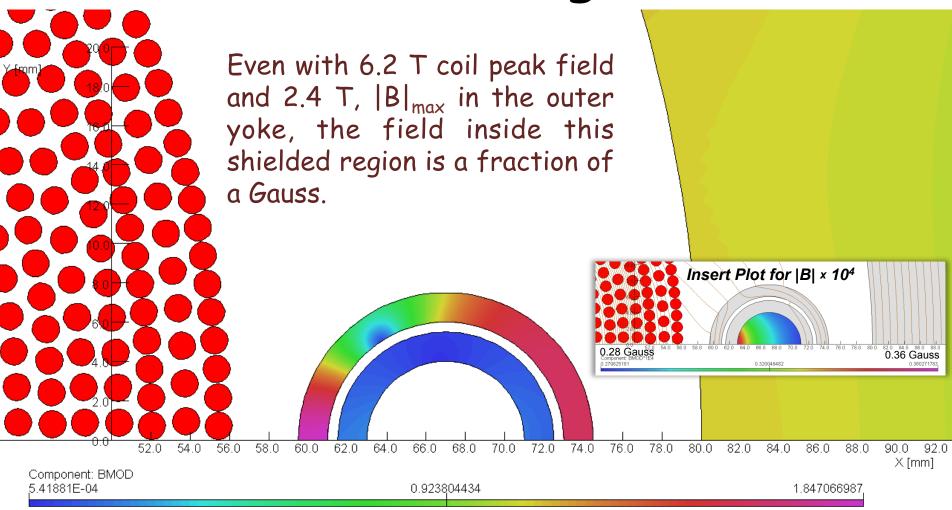
- 10 mrad crossing angle and crab-crossing
- High gradient (200 T/m) large aperture Nb₃Sn focusing magnets
- Arranged free-field electron pass through the hadron triplet magnets
- Integration with the detector: efficient separation and registration of low angle collision products
- Gentle bending of the electrons to avoid SR impact in the detector

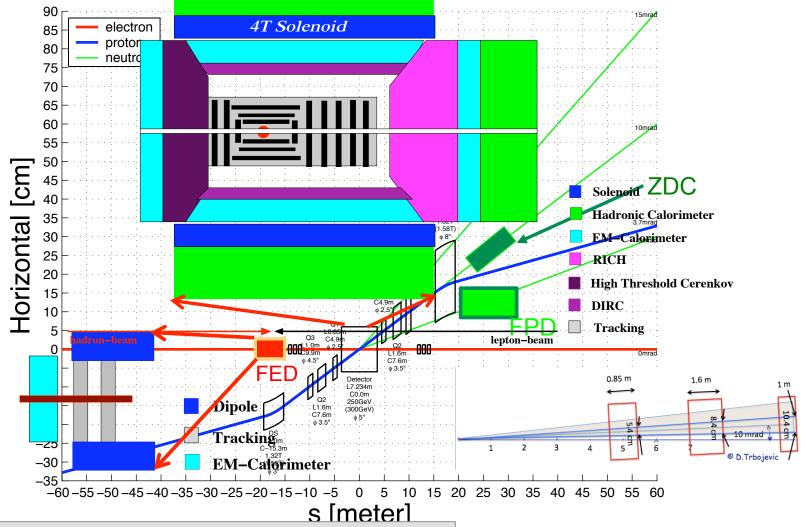


Design Details for First IR Magnet

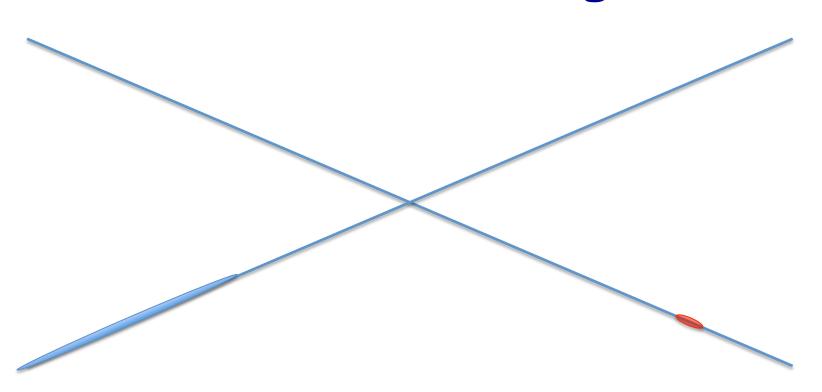


 $B_0 = 2.701 \text{ T}$ Gradient = -85.74 T/m and $L_{mag} = 1.95 \text{ m}$

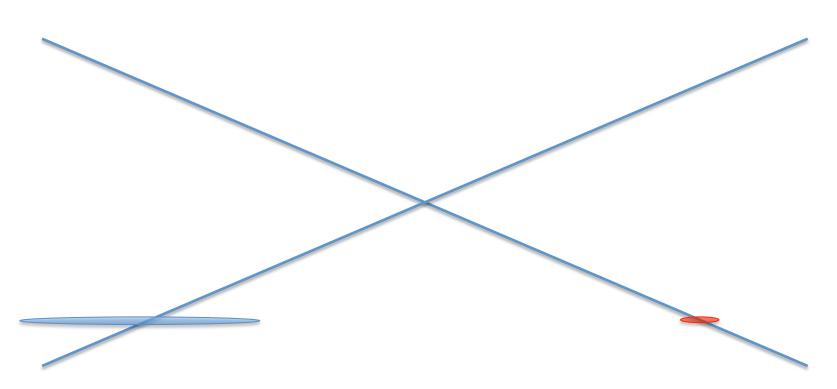

- Magnet structure is aligned with e-beam.
- Magnet offset is optimized for neutrons, circulating beam and early analysis for off-momentum charged particle measurement.


Reduced Field Region for e-

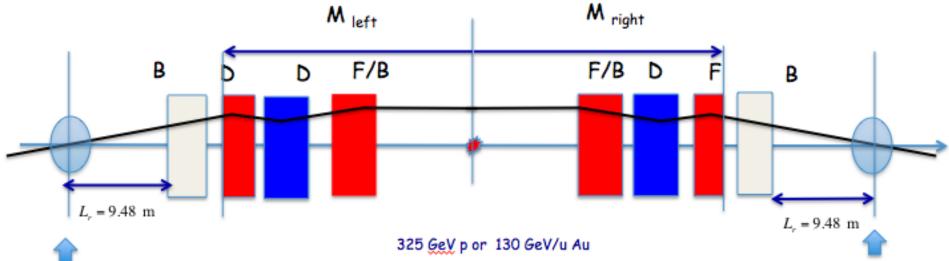
Plot of |B| (Tesla) for the Yoke and Two Layer Shield Structure


A detector integrated into IR

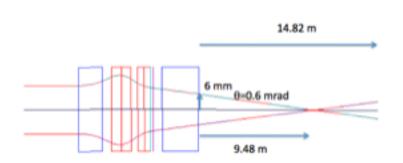
- □ Dipoles needed to have good forward momentum resolution
 ➤ Solenoid no magnetic field @ r ~ 0
- \square DIRC, RICH hadron identification $\rightarrow \pi$, K, p
- □ high-threshold Cerenkov → fast trigger for scattered lepton
- □ radiation length very critical → low lepton energies

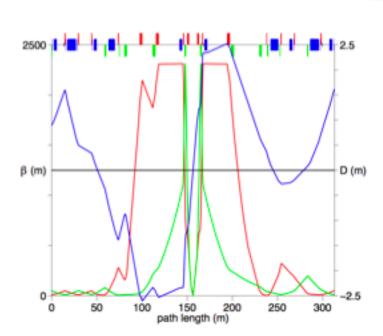

"No crabbing"

"Ideal crabbing"

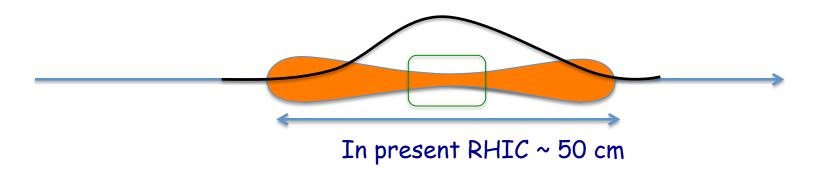


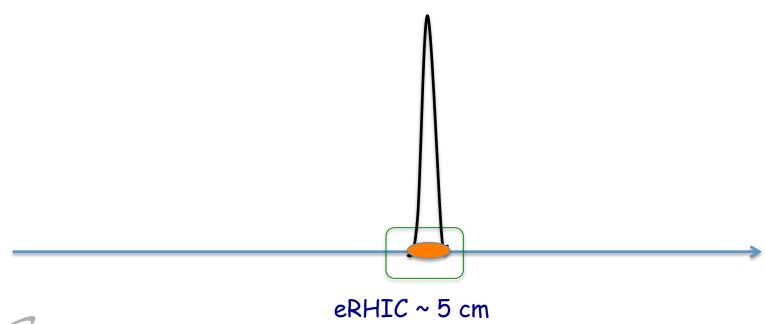
Invented at BNL, pioneered at KEK's B-factory




RHIC lattice

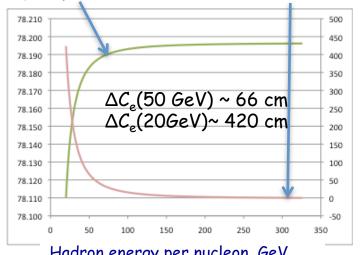
$$V_{\perp}[MV] \approx 15.5 \cdot \frac{E_p[GeV]}{325} \lambda_{rf}[m]$$

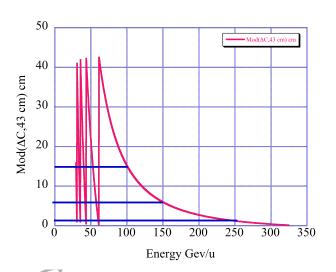

R₁₂=16.7m



High luminosity (small β^*), Hourglass & Vertex cuts

All requires very short hadron bunches





Electron-hadron frequency matching & Lumi sharing

Proton revolution Frequency in RHIC, kHz Required electron pass lengthening, cm

Hadron energy per nucleon, GeV

- In eRHIC electrons are ultra-relativistic ($\gamma_e \ge 10^4$) but they are colliding with barely relativistic ($\gamma_h \sim 10^2$)
- It means that rep-rate of the hadron changes with there energy and in ring-ring scenario it would require to change the circumference of the ring
- In ERL-based eRHIC case the condition is easier to satisfy - we can switch harmonic ratio between the hadron beam hadron beam rep-rate and SRF frequency, i.e. skipping a bucket
- We plan to select few top energies (e.g. 325, 250, 150 & 100 GeV/u) and have the pass length adjusted using two straight section bypasses. Maximum pathlength change required in this case 8 Day 15 cm and can be accommodated in one Batchaightic
- It is important to note that this condition would not satisfy centered collisions in more than the IR- i.g passing time through the center of other IR could be of by as much as $f_{rf} = f_{b_p}$ of the center of other $f_{rf_p} = f_{b_p}$ be
- It is not a problem? 8980-9020 operate in luminosity sharing mode, only ONE IR will have Depends on the design any moment is not required for Collision at any moment in us, we can share eRHIC circumference length luminosity between in real time in any desirable ratio

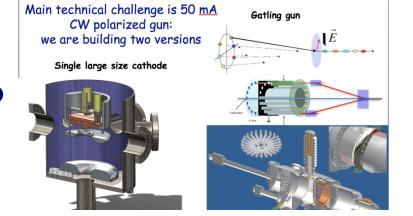
(i.e. 0.87 : 0.12; 0.01 is possible) From this:
$$f_{rev_e} = \frac{1}{h_e} f_{rev_p} = \frac{1}{h_e} f_{rev_p}$$

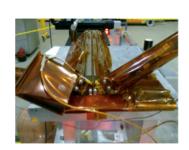
One can change the relation between revolution frequencies using h

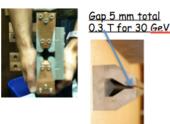
Main Accelerator Challenges

In red -increase/reduction beyond the state of the art

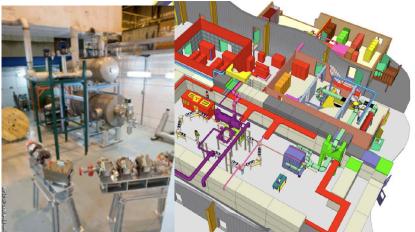
eRHIC at BNL				
Polarized electron gun - 10x increase				
Coherent Electron Cooling - New concept				
Multi-pass SRF ERL 5x increase in current 30x increase in energy				
Crab crossing New for hadrons				
Polarized ³ He production				
Understanding of beam-beam affects New type of collider				
β*=5 cm 5x reduction				
Multi-pass SRF ERL 3-4x in # of passes				
Feedback for kink instability suppression Novel concept				






eRHIC R&D highlights

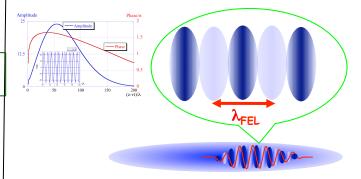
- Polarized gun for e-p program LDRD at BNL + MIT
- Development of compact magnets -LDRD at BNL, ongoing
- SRF R&D ERL ongoing
- Beam-beam effects, beam disruption, kink instability suppression, etc.
- Polarized He³ source
- Coherent Electron Cooling including PoP - plan to pursue



Coherent Electron Cooling (CeC)

At a half of plasma oscillation

$$q_{\lambda_{FEL}} \approx \int_{0}^{\lambda_{FEL}} \rho(z) \cos(k_{FEL}z) dz$$
$$\rho_{k} = kq(\varphi_{1}); \ n_{k} = \frac{\rho_{k}}{2\pi\beta\varepsilon_{1}}$$


Dispersion

$$c\Delta t = -D \cdot \frac{\gamma - \gamma_o}{\gamma_o}; \ D_{free} = \frac{L}{\gamma^2}; \ D_{chicane} = l_{chicane} \cdot \theta^2 \dots$$

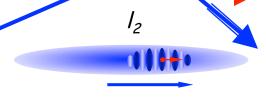
Dispersion section (for hadrons)

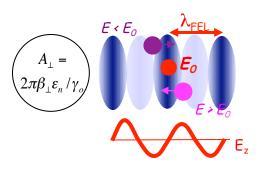
High gain FEL (for electrons)

Amplifier of the e-beam modulation in an FEL with gain $G_{\text{FEL}} \sim 10^2 - 10^3$

$$\lambda_{fel} = \lambda_w \left(1 + \left\langle \vec{a}_w^2 \right\rangle \right) / 2\gamma_o^2$$
$$\vec{a}_w = e\vec{A}_w / mc^2$$

 $L_{Go} = \frac{\Lambda_w}{4\pi \alpha \sqrt{3}}$


PRL 102, 114801 (2009)


Coherent Electron Cooling

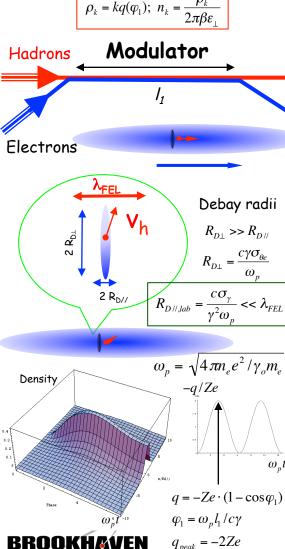
Vladimir N. Litvinenko1,* and Yaroslav S. Derbenev ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA (Received 24 September 2008; published 16 March 2009)

$\Delta E_h = -e \cdot \mathbf{E}_o \cdot l_2 \cdot \sin \left(k_{FEL} D \frac{E - E_o}{E} \right).$ $\left(\frac{\sin \varphi_2}{\varphi_2}\right) \cdot \left(\sin \frac{\varphi_1}{2}\right)^2 \cdot Z \cdot X; \quad \mathbf{E}_o = 2G_o e \gamma_o / \beta \varepsilon_{\perp n}$

Kicker

$$k_{FEL} = 2\pi / \lambda_{FEL}; \ k_{cm} = k_{FEL} / 2\gamma_o$$

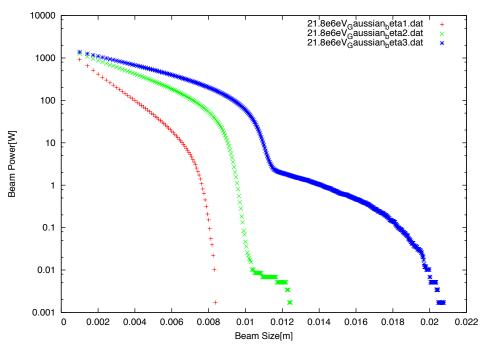
$$n_{amp} = G_o \cdot n_k \cos(k_{cm} z)$$


$$\Delta \varphi = 4\pi e n \Rightarrow \varphi = -\varphi_0 \cdot \cos(k_{cm}z)$$

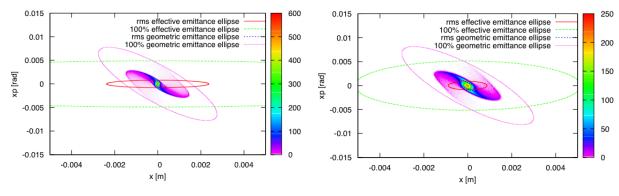
$$\vec{\mathbf{E}} = -\vec{\nabla}\varphi = -\hat{z}\mathbf{E}_o \cdot X\sin(k_{cm}z)$$

$$\mathbf{E}_o = 2G_o \gamma_o \frac{e}{\beta \varepsilon_{\perp n}}$$


 $30X = q/e \cong Z(1 - \cos \varphi_1)$



Coherent Electron Cooling demonstration experiment at RHIC IR2


Goal - cool a single 40 GeV/u Au ion bunch in RHIC

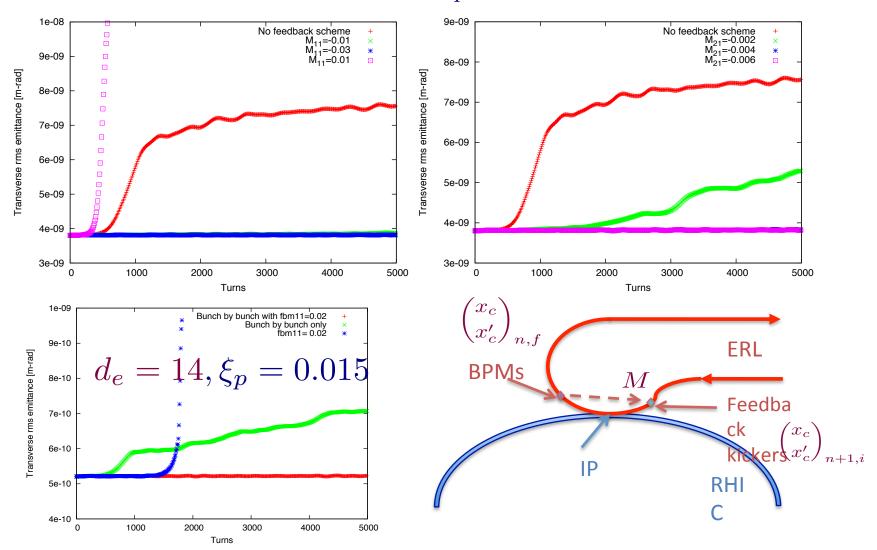
Mismatch, tuning of e beta*

The experiment also can demonstrate the effect of mismatch due to the beambeam interaction and its relation with the electron design optics.

rms effective emittance ellipse 100% effective emittance ellipse 140 0.01 rms geometric emittance ellipse 00% geometric emittance ellipse 120 0.005 100 xp [rad] 0 80 60 -0.005 40 -0.01 20 -0.015 -0.004-0.0020 0.002 0.004 x [m]

Beta*=3m (H**rven**

NATIONAL LABORATORY


Beta*=1m

Beta*=0.5m

The Feedback Scheme

Beam-Beam Parameters: $d_e=5.7, \xi_p=0.015$

Y.Hao, V.N.Litvinenko, V.Ptitsyn

Beam dynamics

Studied:

- ◆ Electron beam energy losses and energy spread caused by the interaction with the beam environment (cavities, resistive walls, pipe roughness)
- ◆ Incoherent and coherent synchrotron radiation related effects: energy losses, transverse and longitudinal emittance increase of the electron beam
- ◆ Electron beam patterns; ion accumulation
- ◆ Electron beam break-up, single beam and multi-pass
- ◆ Electron beam-ion and intra-beam scattering effects
- ◆ Electron beam disruption
- ◆ Frequency matching......

Still under discussion:

- · How small can be the electron beam pipe gap?
- De-bunching and reduction of the energy spread of the electron beam at the dump.
- Length of the electron bunches and the need for harmonic cavities
- Detailed beam dynamics with CeC
- Effect of crab cavities on beam dynamics...

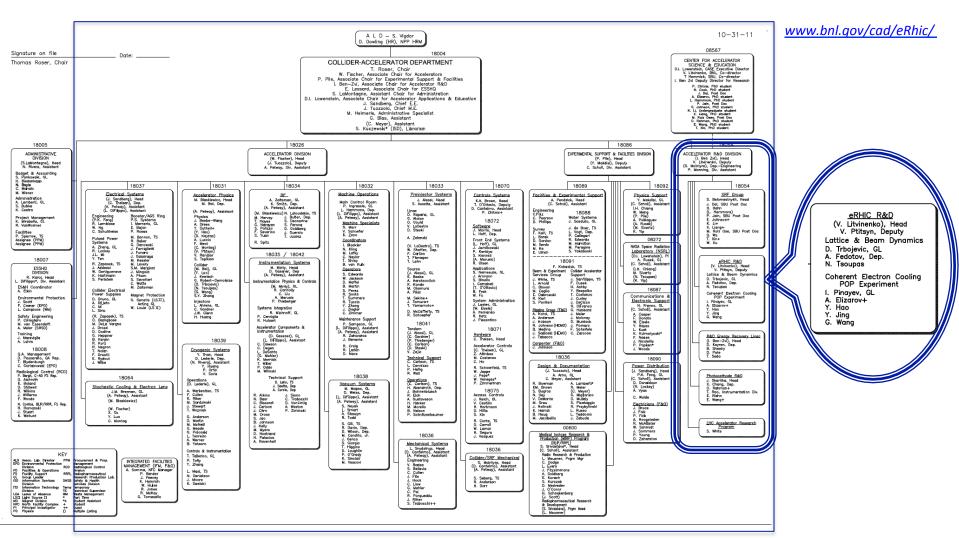
August 2011 Review

- 1) Frank Zimmermann (CERN)
- 2) Jean Delayen (ODU)
- 3) George Ganetis (BNL)
- 4) Hsiao-chaun Hseuh, (BNL)
- 5) Valery Lebedev (FNAL)
- 6) Matt Poelker (Jlab)
- 7) Eduard Pozdeyev (MSU/NSCL)
- 8) Peter Wanderer (BNL)
- From the report:
- The committee is very impressed by the ingenious design of eRHIC. The
 design includes a number of outstanding and novel elements.
- The committee is highly satisfied with the material presented, covering most of the relevant subjects. The committee did not see any significant holes in the concept.
- Plus about 40 recommendations

Milestones & Goals

· Main milestones

 Finish eRHIC cost estimate 	Spring of 2012
 External review of the estimate 	Summer of 2012
- Address concerns of the reviews	End of 2012
- Complete start-to-end eRHIC ERL simulations	2013
 Complete beam-beam simulations 	2014
 Complete magnet prototyping 	2015
 Demonstrate coherent e-cooling 	2016-17


Summary

- eRHIC design progresses well
 - Accelerator design is completed
 - And went through the External review
 - Cost estimate is underway
 - Follow-up on the committee recommendations is in progress
- Physics of the collider is well understood
 - No show-stoppers were found
 - Many processed can be studied or simulated from first principles
- Number of novel concepts require extensive R&D
- Next 3-5 years will be critical for completing R&D and be ready for full eRHIC design

Materials are from eRHIC R&D group and EIC task force

+ S.Belomestnykh, M. Blaskiewicz, R. Calaga , X.Chang , D.Gassner , L.Hammons, H.Hahn , P. He , W.Jackson , E. Johnson, J.Kewisch,

G.McIntyre, M.Minty, A.Pikin, E.Pozdeyev, T.Rosery. Than, Q.Wu, W.Xu, A.Hutton, M.Poelker, G.Krafft, R.Rimmer

Inputs on Physics from BNL EIC task force lead by E.-C. Aschenauer, T. Ulrich http://www.eic.bnl.gov/taskforce.html, A.Cadwell, A.Deshpande,

R. Ent, T. Horn, H. Kowalsky, M. Lamont, T.W. Ludlam, R. Milner, B. Surrow, S.Vigdor, R. Venugopalan, W.Vogelsang,

Credits: E. Aschenauer, J. Beebe-Wang, S. Belomestnykh, I. Ben-Zvi, R. Calaga, X. Chang, A. Fedotov, H. Hahn, L. Hammons, Y. Hao, P. He, A. Jain, E. Johnson, D. Kayran, J. Kewisch, V. N. Litvinenko, G. Mahler, W. Meng, B. Parker, A. I. Pikin, I. Payev, V. Ptitsyn, T. Rao, T. Roser, B. Sheehy, J. Skaritka, R. Than, D. Trbojevic, N. Tsoupas, J. Tuozzolo, G. Wang, Q. Wu, Wencan Xu

· Backup slides

