Multi-gluon correlations in the Color Glass Condensate

T. Lappi

University of Jyväskylä, Finland

Stellenbosch EIC workshop

Outline

- The CGC, JIMWLK evolution
- Bulk particle production in dense-dense collisions; the glasma
- Dense-dense correlations
 - Power counting
 - Two particle correlations: the near-side ridge
- Dilute-dense collisions
 - Particle production: k_T-factorization
 - Correlations: the away-side peak
 - Finite-N_c effects from JIMWLK

References:

- Glasma: T.L. and L. McLerran, Nucl. Phys. A772 (2006) 200 [arXiv:hep-ph/0602189].
- Single inclusive: T.L., Phys.Lett. B703 (2011) 325 [arXiv:1105.5511 [hep-ph]].
- Ridge: K. Dusling, F. Gelis, T.L. and R. Venugopalan, Nucl. Phys. A836 (2010) 159 [arXiv:0911.2720 [hep-ph]].
- Ridge: T.L., S. Srednyak and R. Venugopalan, JHEP 01 (2010) 066 [arXiv:0911.2068 [hep-ph]].
- CMS ridge: A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T.L. and R. Venugopalan, Phys.Lett. B697 (2011) 21 [arXiv:1009.5295 [hep-ph]].
- Multigluon correlations in JIMWLK: A. Dumitru, J. Jalilian-Marian, T.L., B. Schenke and R. Venugopalan, Phys. Lett. B706 (2011) 219 [arXiv:1108.4764 [hep-ph]]

Small *x*: the hadron/nucleus wavefunction is characterized by **saturation scale** $Q_{\rm s} \gg \Lambda_{\rm QCD}$.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_{s} \gg \Lambda_{QCD}$.

- ${f p}_{
 m T} \sim {\it Q}_{
 m s}$: strong fields ${\it A}_{\mu} \sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - small α_s , but nonperturbative

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\rm s} \gg \Lambda_{\rm QCD}$.

- ${f p}_{
 m T} \sim {\it Q}_{
 m s}$: strong fields ${\it A}_{\mu} \sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large x = source ρ , **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_{s} \gg \Lambda_{QCD}$.

- ${f p}_{
 m T} \sim {\it Q}_{
 m s}$: strong fields ${\it A}_{\mu} \sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large x = source ρ, probability distribution W_y[ρ]
- Small x = classical gluon field A_{μ} + quantum flucts.

Glasma field configuration of two colliding sheets of CGC.

Gluon fields in AA collision

Gluon fields in AA collision

Gluon fields in AA collision

JIMWLK evolution

Need Wilson lines from probability distribution $W_{\gamma}[U]$.

Energy/rapidity dependence of $W_y[U]$ from JIMWLK RGE:

 $\partial_{\mathcal{Y}} W_{\mathcal{Y}}[U(\mathbf{x}_{\mathcal{T}})] = \mathcal{H} W_{\mathcal{Y}}[U(\mathbf{x}_{\mathcal{T}})]$

JIMWLK Hamiltonian:

$$\mathcal{H} \equiv \frac{1}{2} \int_{\mathbf{x}_{T} \mathbf{y}_{T} \mathbf{z}_{T}} \frac{\delta}{\delta \widetilde{\mathcal{A}}_{c}^{+}(\mathbf{y}_{T})} \mathbf{e}_{T}^{ba}(\mathbf{x}_{T}, \mathbf{z}_{T}) \cdot \mathbf{e}_{T}^{ca}(\mathbf{y}_{T}, \mathbf{z}_{T}) \frac{\delta}{\delta \widetilde{\mathcal{A}}_{b}^{+}(\mathbf{x}_{T})},$$
$$\mathbf{e}_{T}^{ba}(\mathbf{x}_{T}, \mathbf{z}_{T}) = \frac{g}{\sqrt{4\pi^{3}}} \frac{\mathbf{x}_{T} - \mathbf{z}_{T}}{(\mathbf{x}_{T} - \mathbf{z}_{T})^{2}} \left(1 - U^{\dagger}(\mathbf{x}_{T})U(\mathbf{z}_{T})\right)^{ba}$$

 $(\delta/\delta\widetilde{A}^+$ is Lie derivative on SU(3) group)

JIMWLK evolution

Need Wilson lines from probability distribution $W_{\gamma}[U]$.

Energy/rapidity dependence of $W_y[U]$ from JIMWLK RGE:

 $\partial_{\mathcal{Y}} W_{\mathcal{Y}}[U(\mathbf{x}_{\mathcal{T}})] = \mathcal{H} W_{\mathcal{Y}}[U(\mathbf{x}_{\mathcal{T}})]$

JIMWLK Hamiltonian:

$$\mathcal{H} \equiv \frac{1}{2} \int_{\mathbf{x}_{T} \mathbf{y}_{T} \mathbf{z}_{T}} \frac{\delta}{\delta \widetilde{\mathcal{A}}_{c}^{+}(\mathbf{y}_{T})} \mathbf{e}_{T}^{ba}(\mathbf{x}_{T}, \mathbf{z}_{T}) \cdot \mathbf{e}_{T}^{ca}(\mathbf{y}_{T}, \mathbf{z}_{T}) \frac{\delta}{\delta \widetilde{\mathcal{A}}_{b}^{+}(\mathbf{x}_{T})},$$
$$\mathbf{e}_{T}^{ba}(\mathbf{x}_{T}, \mathbf{z}_{T}) = \frac{g}{\sqrt{4\pi^{3}}} \frac{\mathbf{x}_{T} - \mathbf{z}_{T}}{(\mathbf{x}_{T} - \mathbf{z}_{T})^{2}} \left(1 - U^{\dagger}(\mathbf{x}_{T})U(\mathbf{z}_{T})\right)^{ba}$$

 $(\delta/\delta\widetilde{A}^+$ is Lie derivative on SU(3) group) Numerics using Langevin formulation

Mean field approximation: BK Balitsky-Kovchegov

Evolution equation for correlator

$$\partial_{y}\left[\frac{1}{N_{c}}\operatorname{Tr}\left\langle 1-U(\mathbf{x}_{T})U^{\dagger}(\mathbf{y}_{T})\right
angle
ight]$$

5/27

Gluon spectrum in the glasma

Most up to date calculation T.L., *Phys.Lett.* B703 (2011) 325 ; First calculation to actually use JIMWLK for gluon production in AA

Gluon spectrum in the glasma

Most up to date calculation T.L., *Phys.Lett.* B703 (2011) 325 ; First calculation to actually use JIMWLK for gluon production in AA

Unintegrated gluon distribution

$$C(\mathbf{k}_{T}) = rac{{k_{T}}^2}{N_{
m c}} \operatorname{Tr} \left\langle U(\mathbf{k}_{T}) U^{\dagger}(\mathbf{k}_{T})
ight
angle$$

becomes harder due to evolution.

6/27 《中》《문》《문》《문》 문 '의역은

Gluon spectrum in the glasma

Most up to date calculation T.L., *Phys.Lett.* B703 (2011) 325 ; First calculation to actually use JIMWLK for gluon production in AA

$$C(\mathbf{k}_{ au}) = rac{{k_{ au}}^2}{N_{
m c}} \, {
m Tr} \left< U(\mathbf{k}_{ au}) U^{\dagger}(\mathbf{k}_{ au})
ight>$$

becomes harder due to evolution.

Produced gluon spectrum: harder at higher \sqrt{s} (Here: midrapidity, $y \equiv \ln \sqrt{s/s_0}$)

6/27

Gluon multiplicity and mean p_T

Gluon multiplicity and mean p_T

Parametrically
$$\frac{dN_g}{dy d^2 \mathbf{x}_T} = c_N \frac{C_F}{2\pi^2 \alpha_s} Q_s^2 \qquad \langle p_T \rangle \sim Q_s$$

Note: in full CYM total gluon multiplicity, IR finite, no cutoff.

Scaled multiplicity increases with energy (Midrapidity, $y \equiv \ln \sqrt{s/s_0}$)

Gluon multiplicity and mean p_T

Parametrically

$$rac{\mathrm{d}N_g}{\mathrm{d}^2\mathbf{x}_{ au}} = c_N rac{C_{\mathsf{F}}}{2\pi^2lpha_{\mathsf{s}}} Q_{\mathsf{s}}^2 \qquad \langle p_{ au}
angle \sim G_{\mathsf{s}}$$

Note: in full CYM total gluon multiplicity, IR finite, no cutoff.

Scaled multiplicity increases with energy (Midrapidity, $y \equiv \ln \sqrt{s/s_0}$)

Harder gluon spectrum \implies higher $\langle p_T \rangle / Q_s$ as scaling regime sets in. (Still very large lattice cutoff effects.)

"Classical" and "quantum" correlations

"Classical" and "quantum" correlations

Power counting:

- "A": ρ ~ 1/g
- ▶ "p": ρ ~ g

Dense-dense power counting

Basic power counting: $\frac{dN}{d^3p} \sim \frac{1}{\alpha_s}$ Fixed sources: correlations loop/quantum effects, suppressed by α_s

E.g. Poisson
$$\overbrace{\langle N^2 \rangle}^{1/\alpha_s^2+\cdots} - \overbrace{\langle N \rangle}^{1/\alpha_s^2+\cdots} = \overbrace{\langle N \rangle}^{1/\alpha_s+\cdots}$$

Dense-dense power counting

Basic power counting: $\frac{dN}{d^3p} \sim \frac{1}{\alpha_s}$ Fixed sources: correlations loop/quantum effects, suppressed by α_s

E.g. Poisson
$$\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle$$

But in CGC must average over color charge ρ :

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{1}}\cdots\frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{n}}\right\rangle_{\mathrm{conn.}} = \left[\int_{[\rho]} \underbrace{W[\rho_{1}(y)]W[\rho_{2}(y)]}_{[\rho_{2}(y)]} \frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{1}}\cdots\frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{n}}\right]_{\mathrm{conn.}} \sim \frac{1}{\alpha_{\mathrm{s}}^{n}}$$

tions factorize into evolution

E.g. neg. bin
$$\overbrace{\langle N^2 \rangle}^{1/\alpha_s^2} - \overbrace{\langle N \rangle}^{1/\alpha_s^2} = \frac{1}{k} \overbrace{\langle N \rangle}^{1/\alpha_s^2} + \overbrace{\langle N \rangle}^{1/\alpha_s}$$

Dense-dense power counting

Basic power counting: $\frac{dN}{d^3p} \sim \frac{1}{\alpha_s}$ Fixed sources: correlations loop/quantum effects, suppressed by α_s

E.g. Poisson
$$\langle N^2 \rangle = \langle N \rangle^2 = \langle N \rangle^2$$

But in CGC must average over color charge ρ :

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{1}}\cdots\frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{n}}\right\rangle_{\mathrm{conn.}}=\left[\int_{[\rho]}\underbrace{W[\rho_{1}(y)]W[\rho_{2}(y)]}_{[\rho]}\frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{1}}\cdots\frac{\mathrm{d}N}{\mathrm{d}^{3}\boldsymbol{p}_{n}}\right]_{\mathrm{conn.}}\sim\frac{1}{\alpha_{\mathrm{s}}^{n}}$$

LLog corrections factorize into evolution of ρ distribution

E.g. neg. bin
$$\overbrace{\langle N^2 \rangle}^{1/\alpha_s^2} - \overbrace{\langle N \rangle}^{1/\alpha_s^2} = \frac{1}{k} \overbrace{\langle N \rangle}^{1/\alpha_s^2} + \overbrace{\langle N \rangle}^{1/\alpha_s}$$

Dominant correlations come from sources

Quantum correlations, enhanced by $\ln 1/x \sim 1/\alpha_s$

 \implies appear as "classical" in effective theory.

Full numerical calculation

Numerical result in MV model T.L., Srednyak, Venugopalan, JHEP 01 (2010) 066, Note: pre-CMS ridge.

Full numerical calculation

Numerical result in MV model T.L., Srednyak, Venugopalan, JHEP 01 (2010) 066, Note: pre-CMS ridge.

$$C_{2}(\mathbf{p},\mathbf{q}) \equiv \left\langle \frac{\mathrm{d}^{2}N_{2}}{\mathrm{d}y_{p}\,\mathrm{d}^{2}\mathbf{p}_{T}\,\mathrm{d}y_{q}\,\mathrm{d}^{2}\mathbf{q}_{T}} \right\rangle \qquad (\text{# of independent regions})$$
$$\kappa_{2}(\mathbf{p}_{T},\mathbf{q}_{T}) = \overbrace{S_{\perp}Q_{s}^{2}}^{2} \times \left(\frac{C_{2}(\mathbf{p},\mathbf{q})}{\left\langle \frac{\mathrm{d}N}{\mathrm{d}y_{p}\,\mathrm{d}^{2}\mathbf{q}_{T}} \right\rangle \left\langle \frac{\mathrm{d}N}{\mathrm{d}y_{q}\,\mathrm{d}^{2}\mathbf{q}_{T}} \right\rangle} - 1 \right)$$

Here plotted vs.
$$|\mathbf{p}_T - \mathbf{q}_T|, |\mathbf{p}_T + \mathbf{q}_T|$$

- κ₂ ~ 1
- Angular structures at

•
$$\mathbf{p}_T \approx \mathbf{q}_T \implies \text{ridge}$$

• $\mathbf{p}_T \approx -\mathbf{q}_T \implies \text{awa}$

► $\mathbf{p}_T \approx -\mathbf{q}_T \implies$ away side

 256^2 lattice, N_y = 50, Q_s = 1 GeV, m = 0.1 GeV **K**2 3 2.5 2 3 2.5 2 1.5 1.5 1 1 0.5 0.5 0 2 |p_-q_|/Q_s 4 5 6 0 3 2 1 |p_T+q_T|/Q_s

Where does the near side correlation come from?

k_T-factorized approximation, K. Dusling, F. Gelis, T.L. and R. Venugopalan, Nucl. Phys. A836 (2010) 159

$$C(\mathbf{p},\mathbf{q}) \sim \int_{\mathbf{k}_{T}} \left\{ \Phi_{B}^{2}(\mathbf{k}_{T}) \Phi_{A}(\mathbf{p}_{T}-\mathbf{k}_{T}) \left[\Phi_{A}(\mathbf{q}_{T}+\mathbf{k}_{T}) + \Phi_{A}(\mathbf{q}_{T}-\mathbf{k}_{T}) \right] \right\}$$

$$+ (\mathbf{k}_{\mathcal{T}} \leftrightarrow -\mathbf{k}_{\mathcal{T}}) + (\mathbf{A} \leftrightarrow \mathbf{B}) \bigg\}$$

(Gaussian approx: only 2-pt. f'n.)

- |p_T + k_T| and |q_T ± k_T| like to be ~ Q_s
 ⇒ Correlation enhanced when p_T||q_T
- Here assume Δy ≪ 1/α_s, boost invariant approximation for rapidity structure.

(Going beyond this: work in progress)

Interpretation

Ridge \approx double parton scattering

+ intrinsic \mathbf{k}_{T} .

 Φ is classical field mode \implies can be one, two, *n* gluons \implies naturally has multigluon correlations

CMS ridge

CMS ridge qualitatively understood from CGC

Dumitru, Dusling, Jalilian-Marian, Gelis, T.L., Venugopalan, Phys.Lett. B697 (2011) 21

- Dependence on p_T : rise, then fall for $p_T \gg Q_s$
- Dependence on multiplicity: strongest for central, with largest average Qs

In AA: Azimuthal structure enhanced by flow; origin of correlation combination of geometry and gluon fields.

Dilute-dense: Forward dihadron correlations in dAu

Two particle collision vs. $\Delta \varphi$: away-side peak goes away

STAR, [arXiv: 1102.0931]

14/27

000

Calculating 2-particle correlation in forward pA

- Quark from p (large x) from pdf
- Radiate gluon
- Propagate eikonally in color field of target $A \implies$ Wilson lines U

$$\begin{split} \frac{\mathrm{d}\sigma^{qA \to qgX}}{\mathrm{d}^{3}k_{1} \ \mathrm{d}^{3}k_{2}} &\propto \int_{\mathbf{x}_{T}, \bar{\mathbf{x}}_{T}, \mathbf{y}_{T}, \bar{\mathbf{y}}_{T}} e^{-i\mathbf{k}_{T_{1}} \cdot (\mathbf{x}_{T} - \bar{\mathbf{x}}_{T})} \ e^{-i\mathbf{k}_{T_{2}} \cdot (\mathbf{y}_{T} - \bar{\mathbf{y}}_{T})} \ \mathcal{F}(\bar{\mathbf{x}}_{T} - \bar{\mathbf{y}}_{T}, \mathbf{x}_{T} - \mathbf{y}_{T}) \\ &\left\langle \hat{Q}(\mathbf{y}_{T}, \bar{\mathbf{y}}_{T}, \bar{\mathbf{x}}_{T}, \mathbf{x}_{T}) \ \hat{D}(\mathbf{x}_{T}, \bar{\mathbf{x}}_{T}) - \hat{D}(\mathbf{y}_{T}, \mathbf{x}_{T}) \hat{D}(\mathbf{x}_{T}, \bar{\mathbf{z}}_{T}) - \hat{D}(\mathbf{z}_{T}, \bar{\mathbf{x}}_{T}) \hat{D}(\bar{\mathbf{x}}_{T}, \bar{\mathbf{y}}_{T}) \\ &+ \frac{C_{F}}{N_{c}} \hat{D}(\mathbf{z}_{T}, \bar{\mathbf{z}}_{T}) + \frac{1}{N_{c}^{2}} \left(\hat{D}(\mathbf{y}_{T}, \bar{\mathbf{z}}_{T}) + \hat{D}(\mathbf{z}_{T}, \bar{\mathbf{y}}_{T}) - \hat{D}(\mathbf{y}_{T}, \bar{\mathbf{y}}_{T}) \right) \right\rangle_{\mathrm{treat}} \end{split}$$

 $(\mathbf{z}_T = z\mathbf{x}_T + (1-z)\mathbf{y}_T, \, \bar{\mathbf{z}}_T = z\bar{\mathbf{x}}_T + (1-z)\bar{\mathbf{y}}_T.)$

Need target expectation values of Wilson line operators

$$\hat{D}(\mathbf{x}_{T} - \mathbf{y}_{T}) \equiv \frac{1}{N_{c}} \operatorname{Tr} U(\mathbf{x}_{T}) U^{\dagger}(\mathbf{y}_{T})$$
$$\hat{Q}(\mathbf{x}_{T}, \mathbf{y}_{T}, \mathbf{u}_{T}, \mathbf{v}_{T}) \equiv \frac{1}{N_{c}} \operatorname{Tr} U(\mathbf{x}_{T}) U^{\dagger}(\mathbf{y}_{T}) U(\mathbf{u}_{T}) U^{\dagger}(\mathbf{v}_{T})$$

Approximations for 4-point function $\langle \hat{Q} \rangle$

Motivation for approximations

Getting the dipole $\langle \hat{D}(\mathbf{x}_{T}, \mathbf{y}_{T}) \rangle$ is easy from BK; an approximation using only $\langle \hat{D}(\mathbf{x}_{T}, \mathbf{y}_{T}) \rangle$ is much easier for practical work.

In phenomenology of 2-particle correlations, (Marquet 2007, Tuchin 2009, Albacete & Marquet 2010) only used "naive large N_c" approximation:

$$\begin{split} \left\langle \hat{Q}(\mathbf{x}_{T}, \mathbf{y}_{T}, \mathbf{u}_{T}, \mathbf{v}_{T}) \right\rangle \underset{N_{c} \to \infty}{\approx} \frac{1}{2} \left\langle \hat{D}(\mathbf{x}_{T}, \mathbf{y}_{T}) \right\rangle \left\langle \hat{D}(\mathbf{u}_{T}, \mathbf{v}_{T}) \right\rangle \\ + \left\langle \hat{D}(\mathbf{x}_{T}, \mathbf{v}_{T}) \right\rangle \left\langle \hat{D}(\mathbf{u}_{T}, \mathbf{y}_{T}) \right\rangle \end{split}$$

• We also compare to "Gaussian" approximation, where $\langle \hat{Q}(\mathbf{x}_{T}, \mathbf{y}_{T}, \mathbf{u}_{T}, \mathbf{v}_{T}) \rangle$ is related to $\langle \hat{D}(\mathbf{x}_{T}, \mathbf{y}_{T}) \rangle$ assuming Gaussian correlators for Wilson lines.

"Gaussian truncation" of Kuokkanen, Rummukainen, Weigert, see also lancu, Triantafyllopoulos

Choose two coordinate configurations

A. Dumitru, J. Jalilian-Marian, T.L., B. Schenke and R. Venugopalan, Phys. Lett. B706 (2011) 219

General expression: several Fourier-transforms Simplify and study 2 special configurations for

$$\hat{Q}(\mathbf{x}_{T}, \mathbf{y}_{T}, \mathbf{u}_{T}, \mathbf{v}_{T}) = \frac{1}{N_{\rm c}} \operatorname{Tr} U(\mathbf{x}_{T}) U^{\dagger}(\mathbf{y}_{T}) U(\mathbf{u}_{T}) U^{\dagger}(\mathbf{v}_{T})$$

"Line": $\mathbf{u}_T = \mathbf{x}_T$; $\mathbf{v}_T = \mathbf{y}_T$ "Square" "Naive large N_c " $Q_{\parallel}^{\text{naive}}(r) = D(r)^2$ " \mathbf{v} "

Gaussian

$$\begin{split} Q_{|}(r) &\approx \frac{N_{c}+1}{2} \left(D(r) \right)^{2 \frac{N_{c}+2}{N_{c}+1}} \\ &- \frac{N_{c}-1}{2} \left(D(r) \right)^{2 \frac{N_{c}-1}{N_{c}-1}} \end{split}$$

"Naive large N_c " $Q_{\Box}^{\text{naive}}(r) = D(r)^2$

Gaussian:

$$\begin{aligned} Q_{\Box}(r) &\approx (D(r))^2 \left[\frac{N_{\rm c}+1}{2} \left(\frac{D(r)}{D(\sqrt{2}r)} \right)^{\frac{2}{N_{\rm c}+1}} \\ &- \frac{N_{\rm c}-1}{2} \left(\frac{D(\sqrt{2}r)}{D(r)} \right)^{\frac{2}{N_{\rm c}-1}} \right]. \end{aligned}$$

17/27

Gaussian is good

Initial condition y = 0 satisfies Gaussian approximation by construction. But result stays very close at later rapidities.

Line

Square

Naive large N_c is not good

Line

Square

Even characteristic length/momentum scale differs by factor \sim 2.

6pt function

• Actually cross section has not $\langle \hat{Q} \rangle$, but $\langle \hat{Q} \hat{D} \rangle$.

As expected, the "naive large N_c " approximation for the 6pt function is as bad as for the 4pt function.

Line

Square

6pt function: "best known" approximation

- Actually cross section has not $\langle \hat{Q} \rangle$, but $\langle \hat{Q} \hat{D} \rangle$.
- Gaussian (MV) calculation for this not known (tedious)
- But: we know Kuokkanen et al that $\langle \hat{D}\hat{D} \rangle \approx \langle \hat{D} \rangle \langle \hat{D} \rangle$ works pretty well
- Compare JIMWLK with "best known" ~Gaussian approx. $\langle \hat{Q}\hat{D}\rangle \approx \langle \hat{Q}\rangle \langle \hat{D}\rangle$

6pt: "best known" ~Gaussian works pretty well

At least for small r, which counts for $p_T \gtrsim Q_s$

Line

Evolution speeds

Evolution speed: define characteristic momentum scale Q_s for each correlator. (Inverse of characteristic length scale.)

Evolution speed is

$$\lambda \equiv \frac{\mathrm{d} \ln Q_{\mathrm{s}}^2}{\mathrm{d} y}$$

Result: the higher point functions evolve "faster"

(This is a transient effect specific to MV initial condition; goes away for high rapidity.)

2-particle correlation, the actual spectrum

With H. Mäntysaari, work in progress

To get the actual cross section, e.g.

$$\frac{\mathsf{d}\sigma^{pA\to\pi^0\pi^0X}}{\mathsf{d}^3k_1\;\mathsf{d}^3k_2}$$

from
$$\frac{d\sigma^{qA \to qgX}}{d^{3}k_{1} d^{3}k_{2}} = \int_{\mathbf{x}_{T}, \bar{\mathbf{x}}_{T}, \mathbf{y}_{T}, \bar{\mathbf{y}}_{T}} e^{-i\mathbf{k}_{T1} \cdot (\mathbf{x}_{T} - \bar{\mathbf{x}}_{T})} e^{-i\mathbf{k}_{T2} \cdot (\mathbf{y}_{T} - \bar{\mathbf{y}}_{T})} \underbrace{\mathcal{L}(\hat{\mathbf{x}}_{T} - \bar{\mathbf{y}}_{T}, \mathbf{x}_{T} - \mathbf{y}_{T})}_{\text{LC wavef.}} \underbrace{\hat{\mathcal{L}}(\hat{\mathbf{Q}}\hat{D} + \hat{D}\hat{D} + \dots)}_{\text{Wilson line operators}}$$

one needs

- 1. Calculate Fourier-transform integrals
 - ► Easy in the approx. of Marquet, Albacete ⇒ only need FT of dipole.
 - Complicated 6-dimensional oscillatory integral in general case
- 2. Convolute with fragmentation functions
- 3. Model angular smearing from fragmentation
- Steps 1 and 2 in progress, still looking for a good way to do 3.
- Here: preliminary results at parton level, i.e. only for step 1.

Angular correlation, peak width at parton level

Correlation vs. $\Delta \varphi$, area under curve normalized to 1 to show angular structure.

Including the "best known" approximation for the 6-pt function **broadens the peak** compared to the approximation of Marquet.

Normalization, at parton level

Including the "best known" approximation for the 6-pt function **increases the** ($\Delta \varphi$ -independent) correlation by a factor of ~100% (p_T -dependent) compared to the approximation of Marquet.

Visualization of correlations in JIMWLK

Correlation between origin (0, 0) and (x, y)

$$\frac{1}{N_{\rm c}} \operatorname{Re} \operatorname{Tr} U^{\dagger}(0,0) U(x,y)$$

 \implies correlation length decreases for increasing energy. ^{26/27}

Conclusion

General features of CGC framework

- Gluon saturation at small $x \implies$ semihard bulk is one scale problem, Q_s
- Energy, rapidity dependence from JIMWLK/BK RGE
- Used for:
 - Single inclusive particle production
 - Correlations

CYM vs. \mathbf{k}_{T} -factorization

Blaizot, T.L., Mehtar-Tani 2010

pA: k_T-factorization works

AA: no k_T -factorization

Not directly observable

Do not measure gluon spectrum with $\mathbf{p}_T \lesssim 1 \text{GeV}$! Centrality, rapidity, energy dependence from $N \sim S_{\perp} Q_s^2$

Suggested interpretation Levin, 2010 : Sudakov suppression factor.

Backup: existence of high multiplicity events

Multiplicity distribution in pp-collisions, Tribedy, Venugopalan, Nucl. Phys. A 850 (2011) 136