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description (physical picture)

depends on the energy range (S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]])

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 5/47



Introduction
ooe

Effective models

Physical picture

@ Perturbation theory: basic model & small interactions

@ basic model must depend on the energy range (or, in general,
on the environment)

@ “physical picture” ~ basic model

4

To understand QCD we need effective models
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Guiding principles to build effective theories

Symmetries

Symmetries of the effective model = symmetries of the
fundamental model

eg. symmetries of (u,d,s) QCD:
U(3) x U(3) — Ug(1) x Ua(1) x SUy(3) x SUa(3)
= sigma models
(nonlinear o-model, chiral PT, linear o-models, chiral o-models, O(N)
models etc.)
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Guiding principles to build effective theories

Spectrum

basic excitation spectrum must be close to the real spectrum

@ otherwise: to correct the spectrum we need strong
interactions is needed

it seems nonperturbative, but we just use the false excitations.

@ parameters of the basic model must be fitted to experiments
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Guiding principles to build effective theories

characterization of the spectrum

spectrum: energy levels belonging to certain Q numbers (eg.
momentum).
measure the spectrum: A operator with fixed quantum numbers:
0a(x) = (O[[A(x), A(0)]I0) = o2a(k)k>0 = >_ ankd(ko — Enk)
n

spectral function wrt. A.

@ projects out energy levels with the given Q numbers

o anx = 27| (0|A|n, k) |2

@ normalization is not too important = reflects the
measurement of the spectrum

o for V — oo discrete levels 4+ continuum
(if m = 0 excitations = only continuum!)
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The perturbative regime

The basic model

@ at large energy: QCD weakly interacting
@ elementary excitations: free quarks and gluons
= energy and momentum eigenstates with £ = k? + m?
dispersion relation

Basic model

Non-interacting, free particles (infinite lifetime)
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The perturbative regime

Perturbation theory

Weak interaction: expand expectation values with respect of the
coupling constant = perturbation theory (PT)

o direct PT: Feynman-diagrams
S S sy 2O

o divergences (UV and IR) = renormalization, resummation
(self-energy, RG, OPE, thermal masses, dimensional reduction,
screened PT, HTL, 2PI, etc.)
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The perturbative regime

Spectrum

Result of PT: states with the same quantum numbers mix

e.g. one-particle states mix with multi-particle states

N e

o 3

multi-particle states have no “mass-shell”
(2-particle state with k = 0 net momentum E = E, + Ex_, possible Vp).
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The perturbative regime

Typical spectrum

®* model, 2-loop renormalized
2P| resummation
(T =0,m, X =10)

(AJ, PRD76 (2007) 125004 [hep-ph/0612268])

@ T = 0: mass-shell shifts, multiparticle thresholds

@ T > 0: mass-shell shifts and acquires width, o > 0 everywhere
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The perturbative regime

Quasiparticles

@ supports quasiparticle approximation:

like fundamental particles, but with modified mass and finite
lifetime

@ BUT no consistent PT can be built on this basic model:
finite lifetime = decaying particle = violates
E-conservation, unitarity

@ we must keep all the energy levels = 2Pl approximation
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The perturbative regime

2P| approximation

(2P1 approximation: 2-particle irreducible)

Idea of 2PI

use the “exact” excitation spectrum for the quasiparticles

Consistent resummed PT: all energy levels are taken into account!
technically for scalar field theory we start from the form:
L= %¢G‘1¢~ + Lint
= G comes from self-consistent propagator equation (2PI)

(J. M. Cornwall,R. Jackiw and E. Toumbolis, Phys. Rev. D10, 2428 (1974).)
(J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

G*(p) = Gy '(p) — Z[G](p)
and in the self-energy calculation we use the G propagator.
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(J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

G*(p) = Gy '(p) — Z[G](p)
and in the self-energy calculation we use the G propagator.

basic model has a G~ non-local kernel!‘
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The perturbative regime

Consistency

@ renormalizability v

(H. van Hees, J. Knoll, PRD66 (2002) 025028)

(A. Jakovac, Zs. Szep PRD71 (2005) 105001 [hep-ph/0405226])

(A. Patkos, Zs. Szep, Nucl.Phys. A811 (2008) 329, [arXiv:0806.2554])
@ unitarity: no missing state v
o global symmetries v

@ local symmetries (gauge) X
(U. Reinosa, J. Serreau, Ann.Phys. 325 (2010) 969, [arXiv:0906.2881])
@ deep IR physics X

(AJ., P. Mati, arXiv:1112.3476 [hep-ph])

For representation of finite width we need non-local theory

@ 2Pl framework treats non-local theories consistently
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The low energy/temperature regime

QCD at low energy/temperature

@ Strongly interacting, nonperturbative from the point of view
of the quark-gluon picture

@ observation: "weakly" interacting bound states (hadrons)

Basic model

non-interacting hadrons

Taking into account all hadrons as stable particles
= hadron resonance gas model (HRG)
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The low energy/temperature regime

Basic model

HRG (hadron resonance gas) — masses from the experiments

1h,s

0.8

0.6

(m/m

0.4 pd e
asqtad —=—

0.2

200 400 600 800 1000

o i T [MeV]
140 160 180 200 220 240

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz)

(P. Huovinen and P. Petreczky, Nucl. Phys. A 837) ('S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077)

(26 (2010) [arXiv:0912.2541 [hep-ph]].)

basic model works reasonably well for thermodynamics!

= How shall we represent a realistic spectrum of bound states?
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The low energy/temperature regime

Problems

@ Spectrum and symmetries: HRG introduces a lot of new
conserved quantities! (the partcile numbers for different
hadrons)

= changes the symmetries of the basic model
does it matter?

@ very short lifetime and “overlapping” hadronic states

how shall we treat them?

(J. Knoll, Yu.B. Ivanov and D.N. Voskresensky, Ann. of Phys. 293 (2001) 126)
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The low energy/temperature regime

Example

Example: 1 component free scalar model at high temperatures
L =IOKd where K = —02 — m?

spectral function o(k) = 2wsgn(ko)d(k? — m?)

energy density: ¢ = g—;T“ at high T

Take a 2-component representation!

oo (52) (3)

spectral function of ¢ = %ﬁ% is the same!

energy density: ¢ =2 x g—;T“ X wrong with factor of 2

Take a non-independent 2-component representation!

£=1(0) &) (E@ (g;) = 1(®y + Bo)K(01 + D)

spectral function of ¢ = %ﬂ% is the samel

energy density: ¢ = g—;T“ v
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The low energy/temperature regime

Fields with the same quantum numbers may represent
non-independent degrees of freedom!

Problematic also in QM, H gas

@ if all excited states was independent, the H gas would be
always ionized

(Landau, Lifsitz; Peierls: Surprises in theoretical physics)

@ ad hoc solution: highly excited states are too large, omit them

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 25 /47
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The low energy/temperature regime

Overlapping peaks

@ Scattering theory (Beth-Uhlenbeck formula): resonances give
contribution to the free energy = degrees of freedom
(Landau, Lifsitz V.)

@ well-separated peaks are independent
(R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)

@ non-well separated peaks contribute to the S-matrix with
complex amplitudes

= analytic: means relations between the amplitudes

(M. Svec, PRD64 (2001) 096003 [hep-ph/0009275])

Overlapping peaks of a spectral function represent
non-independent degrees of freedom!
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Treating resonances in field theory

Nonlocal Lagrangian

Strategy

Represent a spectral function at fixed Q numbers with a single
field.

(AJ. arXiv:1102.5629)

Similar to the 2P| resummation

L= %QD(X)IC(if))CD(X)

@ relation of IC kernel and ¢ spectral function:
GR(ko,k) :’C_l(ko+i€, k), o= —2Im Gg
dw  o(w, k) 1
ko,k)= | ————F— =
Grl(ko, k) /27rk07w+i€’ K= ReGp
spectrum completely determines phyisics!
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Treating resonances in field theory

Consistency

L= %Cb(x)lC(ia)cb(x)

unitarity fulfilled if o(w > 0) >0 v/
physically: we take into account all possible states

(J. Polonyi, A. Siwek, Phys. Rev. D81, 085040 (2010).)

causality: x space-like vector
([A(x),BO)) =0 & o(x)=0
Now ¢ is an input = causality

energy and momentum conservation: consequence of the
space and time translation symmetry v

Lorentz-invariance: if kernel is Lorentz-invariant v/

(similar to 2P| resummation case)
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Effective models at different energy/temperature scales
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Treating resonances in field theory

Consistency

We constructed a consistent (unitary, causal, E-conserving,
Lorentz-invariant) non-local effective theory with correct
symmetries!

= This theory should be used to represent the (finite width)
bound states.
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e Applications
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@ QCD near the critical temperature
@ Black body radiation of a strongly interacting system
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Thermodynamics

Energy density

Construction

@ time translation symmetry = energy density
(Noether-thm)

e finite temperature averaging (KMS relation)
@ renormalization

4
e = Too = /(5754 O(po) <pog§0 - /C> n(po)o(p)

Consequences
@ pressure, entropy, etc come from standard thermodynamics
@ nonlinear functional of ! (because p = K)

@ rescaling invariant o — Zp yields the same energy density
= only the energy levels count, not the way we measure
them!
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Thermodynamics

Number of degrees of freedom

More instructive characterization of the system:
Number of the bound states?

@ not evident in case of a general spectrum!

@ consistency (for independent particles, or for one Breit-Wigner
form)

@ consistent with usual physical picture (Williams-Weizsacker)

Tdpo 1 [ 0K
Naor = S (Po - K) o(p).
0

Consequences
e for Q( ) Z 25( ,') = Ngor = n!
mdependent of the normalization

@ number of DoF is a dynamical quantity.
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Thermodynamics

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

11

1
09
08

0
0 05 1 15 2 25 3
E
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Thermodynamics

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

11
09 number of DoF
0.8
0.7
a 0.6 T T T T
0s 2 m;=1
04
03 ‘ ‘ my=2
or ‘ \ s
1 L :
0 05 1 15 2 25 3 -
E 3
z 1 ———
30
» 05 |
20
@ 15 0 I I I I
10 0 01 02 03 04 05
5 r
0 v
o 08 1Sz es s independence: separation is larger then width
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Thermodynamics

Applications
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Independece of bound states from thermodynamics

et

0.7 ‘ m=1m=2
o6 258 “Feg - @ [ =0: 2 Dirac-delta (', =T, =0)
oo o I =0.2: finite width peaks
04 /1.ddta I M = T2 = 0.2: if we had only one
031/ particle!
02 = reduction of the number of
o1t /.~ sty degrees of freedom is observable in
ol oo thermodynamics, too
0 05 1 15 2 25 3
T m2
Lowest curve: multiparticle threshold o(p) = (/1 - —
p

@ negligible contribution to thermodynamics!

@ overlapping Breit-Wigners

= destructive interference
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e Applications

@ QCD near the critical temperature

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 37 /47



Applications
0®0000

QCD near the critical temperature

experimental evidence: liquid-like matter (“almost perfect liquid”)

. 1 :
@ more precisely: U ne3 ~ o small (on 7 internal scale)
S ™

= very far from an ideal gas
@ kinetic theory: T~ Er small
S

= very short lifetime excitations are needed (!7)
(cf. jet suppression)

=- nonperturbative regime both from hadronic and
quark-gluon side

how to treat it?
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QCD near the critical temperature

|. method: exactly solvable model

N =4 SYM theory with large N and A = g?N,

e CFT = AdS/CFT duality = 5D AdS gravitation
= computable

@ indeed liquid: n/s = 1/4r if A = oo
(P. Kovtun, D.T. Son, A.O. Starinets JHEP 0310, (2003) 064.)

(A. Buchel, R.C. Myers, M.F. Paulos, A. Sinha, Phys.Lett.B669:364-370,2008.)
BUT: N =4 SYM # QCD (symmetries, particle content)
@ similar when we apply ®3 model instead QCD

@ Hope: some universality is in the background, and so the
details are not important
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Applications
QCD near the critical temperature

[eJele] lele]

Universality?

How specific is QCD?

Generic fluid:

2
.y n L77 Hadronic Gas?
o fluidity measure ST is WatereP,
n u
@ smallest to supercritical fluids c
=
Lesson: =
_l't
@ QCD not extraordinary 05 SQGP?
o behaviour near Tc R
U 0 Vmc AdS/CFT?
.. . 05 1 15 2 25
supercritical fluids?
P T/Te

(J. Liao, V. Koch, Phys. Rev. C81, 014902 (2010))
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QCD near the critical temperature

[I. method: nonlocal model

can we build a quadratic model which describes liquid?

L= %GD(X)IC(i@)CD(X) K <o

@ in the spectrum must be no sharp peaks = they would
lead to large free mean path, gas-like behaviour

@ excitations are not particle-like “non-particles”, “non-shell
particles”, “unparticles”
(N.P. Landsman, Annals Phys. 186 (1988) 141)

(H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). [hep-ph/0703260].)
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QCD near the critical temperature

Viscosity for broad spectral functions

One can calculate n/s for a generic spectral function
(AJ., PRD81 (2010) 045020 [arXiv:0911.3248])
generic structure:
n f ﬂgz rescaling <Q2>
s [ho+In[fi (0),In{0)’
sum rule: [p=1
o large peak in ¢ = even larger peak in > = 17/s large
@ shallow o = 0 even shallower = 7/s small

robust result: broad spectral function describes liquid!

is it the universality in the background...?

n S
I bound = >
@ lower boun < = NLTS

N number of species, L “interaction length”
no universal lower bound!
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@ Black body radiation of a strongly interacting system
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Applications

Black body radiation of a strongly interacting system

Particle yields

In the plasma: distribution function e=#f = what is the
outgoing particle current?

quasiparticles in the plasma # vacuum particles

dressing ( “hadronization™”): assume some conserved quantity:
energy and momentum! (works also with other assumptions)

observed energy spectrum:

(oo}

d oK
wpnobs(wp) = /%;: <P06p0 - IC) Q(Po,P)n(Po)
0

if 0 peaked near w, = at small energies the peak region
dominates

at large energies peak suppressed by n(pgy) exponentially
= small pp regime dominates = off-shell effects
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Applications
Black body radiation of a strongly interacting system

Példa

in case of a Breit-Wigner spectrum (I' = 0.1E)

10 Prediction
1k ] @ exponential behaviour at small
a energies
< 01 ¢ .
B @ power-law at large energies
001 : (details depend on the form of the
spectral function at small energies)
0.001

0051152253354455
E
...work in progress. ..

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 45 / 47



Conclusion

Outlines

@ Conclusion

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 46 / 47



Conclusion

Conclusions

@ description of quasiparticles is consistent only with taking into
account the complete spectrum
e gives nonlocal theory
e unitary, causal, E-conserving
e number of exciations is dynamical question
= independence of excitations, change in the number of
excitations is possible to describe

@ applications

e quasiparticles in PT: 2Pl method

e description of bound states

e description of liquids, transport coefficients

e black body radiation, off-shell effects: lower-law at large

energies
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