< 🗇 🕨

Nonlocal effective theories

Jakovác Antal

BME Institute of Physics, Budapest, Hungary

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

∃►

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories
- Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories
- 2 Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Effective models at different energy/temperature scales

Applications

Conclusion

Effective models

Introduction

Effective models

- Guiding principles to build effective theories
- 2 Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Effective models at different energy/temperature scales

Applications

イロト イポト イヨト イヨト

Conclusion

Effective models

Energy regimes of QCD

 $QCD \Rightarrow$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

Effective models at different energy/temperature scales

Applications

Conclusion

Effective models

Energy regimes of QCD

 $QCD \Rightarrow$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

 at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI...)

(1999) [arXiv:hep-ph/9906340])

Effective models at different energy/temperature scales

Applications

Conclusion

Effective models

Energy regimes of QCD

 $QCD \Rightarrow$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

- at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI...)
- near T_c: liquid description?

(1999) [arXiv:hep-ph/9906340])

Effective models at different energy/temperature scales

Applications

Conclusion

Effective models

Energy regimes of QCD

 $QCD \Rightarrow$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

- at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI...)
- near T_c: liquid description?
- at low energy $QCD \equiv hadrons$

(S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]])

Effective models at different energy/temperature scales

Applications

Conclusion

Effective models

Energy regimes of QCD

 $QCD \Rightarrow$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

 at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI...)

• at low energy $QCD \equiv hadrons$

↓ description (physical picture) depends on the energy range

(S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]])

Introduction 000000	Effective models at different energy/temperature scales 000000000000000000000000000000000000	Applications 000000000000000	Conclusion
Effective models			
Physical p	bicture		

- Perturbation theory: basic model & small interactions
- basic model must depend on the energy range (or, in general, on the environment)
- "physical picture" \sim basic model

∜

To understand QCD we need effective models

Effective models at different energy/temperature scales

Applications

Conclusion

Guiding principles to build effective theories

Outlines

- Effective models
- Guiding principles to build effective theories
- 2 Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Introduction 0000000	Effective models at different energy/temperature scales	Applications 00000000000000	Conclusion
Guiding principles to b	uild effective theories		
Symmetrie	S		

Symmetries of the effective model \equiv symmetries of the fundamental model

eg. symmetries of (u,d,s) QCD: $U(3) \times U(3) \rightarrow U_B(1) \times U_A(1) \times SU_V(3) \times SU_A(3)$ \Rightarrow sigma models (nonlinear σ -model, chiral PT, linear σ -models, chiral σ -models, O(N)models etc.)

Introduction ○○○○○●○	Effective models at different energy/temperature scales	Applications 000000000000000	Conclusion
Guiding principles t	o build effective theories		
Spectrun	n		

basic excitation spectrum must be close to the real spectrum

- otherwise: to correct the spectrum we need strong interactions is needed it seems nonperturbative, but we just use the false excitations.
- parameters of the basic model must be fitted to experiments

Effective models at different energy/temperature scales

Applications Con

(日)、

Guiding principles to build effective theories

characterization of the spectrum

spectrum: energy levels belonging to certain Q numbers (eg. momentum). measure the spectrum: A operator with fixed quantum numbers: $\varrho_A(x) = \langle 0 | [A(x), A(0)] | 0 \rangle \Rightarrow \varrho_A(k)_{k_0>0} = \sum_n \alpha_{n,\mathbf{k}} \delta(k_0 - E_{n,\mathbf{k}})$ spectral function wrt. A.

• projects out energy levels with the given Q numbers

•
$$\alpha_{n,\mathbf{k}} = 2\pi |\langle 0|A|n,\mathbf{k}\rangle|^2$$

- normalization is not too important \Rightarrow reflects the measurement of the spectrum
- for $V \to \infty$ discrete levels + continuum (if m = 0 excitations \Rightarrow only continuum!)

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories

Effective models at different energy/temperature scales

- The perturbative regime
- The low energy/temperature regime
- Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Applications

Conclusion

The perturbative regime

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories

2 Effective models at different energy/temperature scales

- The perturbative regime
- The low energy/temperature regime
- Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

The perturbative regime

The basic model

- at large energy: QCD weakly interacting
- elementary excitations: free quarks and gluons \Rightarrow energy and momentum eigenstates with $E_{\mathbf{k}}^2 = \mathbf{k}^2 + m^2$ dispersion relation

Basic model

Non-interacting, free particles (infinite lifetime)

Weak interaction: expand expectation values with respect of the coupling constant \Rightarrow perturbation theory (PT)

direct PT: Feynman-diagrams

 divergences (UV and IR) ⇒ renormalization, resummation (self-energy, RG, OPE, thermal masses, dimensional reduction, screened PT, HTL, 2PI, etc.)

Introduction 0000000	Effective models at different energy/temperature scales	Applications 000000000000000	Conclusion
The perturbative regim	8		
Spectrum			

Result of PT: states with the same quantum numbers mix e.g. one-particle states mix with multi-particle states

multi-particle states have no "mass-shell"

(2-particle state with $\mathbf{k} = 0$ net momentum $E = E_{\mathbf{p}} + E_{\mathbf{k}-\mathbf{p}}$ possible $\forall \mathbf{p}$).

Effective models at different energy/temperature scales

Applications

Conclusion

The perturbative regime

Typical spectrum

 Φ^4 model, 2-loop renormalized 2PI resummation ($T = 0, m, \lambda = 10$) (AJ, PRD76 (2007) 125004 [hep-ph/0612268])

- T = 0: mass-shell shifts, multiparticle thresholds
- T > 0: mass-shell shifts and acquires width, $\rho > 0$ everywhere

Applications

Conclusion

The perturbative regime

Quasiparticles

- supports quasiparticle approximation: like fundamental particles, but with modified mass and finite lifetime
- BUT no consistent PT can be built on this basic model: finite lifetime ⇒ decaying particle ⇒ violates E-conservation, unitarity
- we must keep all the energy levels \Rightarrow 2PI approximation

Effective models at different energy/temperature scales

Applications

(日) (同) (日) (日)

Conclusion

The perturbative regime

2PI approximation

(2PI approximation: 2-particle irreducible)

Idea of 2PI

use the "exact" excitation spectrum for the quasiparticles

Consistent resummed PT: all energy levels are taken into account! technically for scalar field theory we start from the form:

 $\mathcal{L} = \frac{1}{2} \Phi G^{-1} \Phi + \mathcal{L}_{int}$

 \Rightarrow G comes from self-consistent propagator equation (2PI)

(J. M. Cornwall, R. Jackiw and E. Toumbolis, Phys. Rev. D10, 2428 (1974).) (J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

 $G^{-1}(p) = G_0^{-1}(p) - \Sigma[G](p)$

and in the self-energy calculation we use the G propagator.

Effective models at different energy/temperature scales

Applications

Conclusion

The perturbative regime

2PI approximation

(2PI approximation: 2-particle irreducible)

Idea of 2PI

use the "exact" excitation spectrum for the quasiparticles

Consistent resummed PT: all energy levels are taken into account! technically for scalar field theory we start from the form:

 $\mathcal{L} = rac{1}{2} \Phi G^{-1} \Phi + \mathcal{L}_{int}$

 \Rightarrow G comes from self-consistent propagator equation (2PI)

(J. M. Cornwall, R. Jackiw and E. Toumbolis, Phys. Rev. D10, 2428 (1974).) (J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

 $G^{-1}(p) = G_0^{-1}(p) - \Sigma[G](p)$

and in the self-energy calculation we use the G propagator.

basic model has a G^{-1} non-local kernel!

Effective models at different energy/temperature scales

Applications

Conclusion

The perturbative regime

Consistency

renormalizability

(H. van Hees, J. Knoll, PRD66 (2002) 025028)
(A. Jakovac, Zs. Szep PRD71 (2005) 105001 [hep-ph/0405226])
(A. Patkos, Zs. Szep, Nucl.Phys. A811 (2008) 329, [arXiv:0806.2554])

- unitarity: no missing state ✓
- global symmetries ✓

• local symmetries (gauge) 🗡

(U. Reinosa, J. Serreau, Ann.Phys. 325 (2010) 969, [arXiv:0906.2881])

deep IR physics ×

(AJ., P. Mati, arXiv:1112.3476 [hep-ph])

Lessons

I For representation of finite width we need non-local theory

2 PI framework treats non-local theories consistently

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

Effective models at different energy/temperature scales

Applications

Conclusion

The low energy/temperature regime

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories
- 2 Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Effective models at different energy/temperature scales

Applications 00000000000000 Conclusion

The low energy/temperature regime

QCD at low energy/temperature

- Strongly interacting, nonperturbative from the point of view of the quark-gluon picture
- observation: "weakly" interacting bound states (hadrons)

Basic model

non-interacting hadrons

Taking into account all hadrons as stable particles

 \Rightarrow hadron resonance gas model (HRG)

HRG (hadron resonance gas) - masses from the experiments

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz) (S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077)

basic model works reasonably well for thermodynamics!

⇒ How shall we represent a realistic spectrum of bound states?

Introduction 0000000	Effective models at different energy/temperature scales	Applications 000000000000000	Conclusion
The low energy/temper	rature regime		
Problems			

• Spectrum and symmetries: HRG introduces a lot of new conserved quantities! (the partcile numbers for different hadrons)

 \Rightarrow changes the symmetries of the basic model

does it matter?

 very short lifetime and "overlapping" hadronic states how shall we treat them?

(J. Knoll, Yu.B. Ivanov and D.N. Voskresensky, Ann. of Phys. 293 (2001) 126)

Introduction 0000000	Effective models at different energy/temperature scales	Applications 000000000000000	Conclusion
The low energy/te	mperature regime		
Example			

Example: 1 component free scalar model at high temperatures $\mathcal{L} = \frac{1}{2} \Phi \mathcal{K} \Phi$ where $\mathcal{K} = -\partial^2 - m^2$ spectral function $\rho(k) = 2\pi \operatorname{sgn}(k_0)\delta(k^2 - m^2)$ energy density: $\varepsilon = \frac{\pi^2}{20}T^4$ at high T

Take a 2-component representation! $\mathcal{L} = \frac{1}{2} \begin{pmatrix} \Phi_1 & \Phi_2 \end{pmatrix} \begin{pmatrix} \mathcal{K} & 0 \\ 0 & \mathcal{K} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$ spectral function of $\Phi = \frac{\Phi_1 + \Phi_2}{\sqrt{2}}$ is the same! energy density: $\varepsilon = 2 \times \frac{\pi^2}{20} T^4$ X: wrong with factor of 2

Take a non-independent 2-component representation! $\mathcal{L} = \frac{1}{2} \left(\Phi_1 \; \Phi_2 \right) \, \begin{pmatrix} \mathcal{K} \; \mathcal{K} \\ \mathcal{K} \; \mathcal{K} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = \frac{1}{2} (\Phi_1 + \Phi_2) \mathcal{K} (\Phi_1 + \Phi_2)$ spectral function of $\Phi = \frac{\Phi_1 + \Phi_2}{\sqrt{2}}$ is the same! energy density: $\varepsilon = \frac{\pi^2}{30} T^4 \checkmark$ 副 🖌 🗶 🖻 🖌 🖉 🗎 🗎

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

Introduction 0000000	Effective models at different energy/temperature scales	Applications	Conclusion	
The low energy/temperature regime				

Lesson

Fields with the same quantum numbers may represent non-independent degrees of freedom!

Problematic also in QM, H gas

• if all excited states was independent, the H gas would be always ionized

(Landau, Lifsitz; Peierls: Surprises in theoretical physics)

• ad hoc solution: highly excited states are too large, omit them

Introduction 0000000	Effective models at different energy/temperature scales	Applications 00000000000000	Conclusion	
The low energy/temperature regime				
Overlappin	g peaks			

- Scattering theory (Beth-Uhlenbeck formula): resonances give contribution to the free energy ⇒ degrees of freedom
 (Landau, Lifsitz V.)
- well-separated peaks are independent

(R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)

- non-well separated peaks contribute to the S-matrix with complex amplitudes
 - \Rightarrow analytic: means relations between the amplitudes
 - (M. Svec, PRD64 (2001) 096003 [hep-ph/0009275])

Lesson

Overlapping peaks of a spectral function represent non-independent degrees of freedom!

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

(4 同) (4 日) (4 日)

Effective models at different energy/temperature scales

Applications

Conclusion

Treating resonances in field theory

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories

2 Effective models at different energy/temperature scales

- The perturbative regime
- The low energy/temperature regime
- Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Effective models at different energy/temperature scales

Applications

イロト 不得 トイヨト イヨト

Conclusion

Treating resonances in field theory

Nonlocal Lagrangian

Strategy

Represent a spectral function at fixed Q numbers with a single field.

(AJ. arXiv:1102.5629)

Similar to the 2PI resummation

$$\mathcal{L} = \frac{1}{2} \Phi(x) \mathcal{K}(i\partial) \Phi(x)$$

• relation of \mathcal{K} kernel and ϱ spectral function: $G_R(k_0, \mathbf{k}) = \mathcal{K}^{-1}(k_0 + i\varepsilon, \mathbf{k}), \qquad \varrho = -2 \operatorname{Im} G_R$ $G_R(k_0, \mathbf{k}) = \int \frac{d\omega}{2\pi} \frac{\varrho(\omega, \mathbf{k})}{k_0 - \omega + i\varepsilon}, \qquad \mathcal{K} = \operatorname{Re} G_R^{-1}$

spectrum completely determines phyisics!

Consistency

$$\mathcal{L} = \frac{1}{2} \Phi(x) \mathcal{K}(i\partial) \Phi(x)$$

• unitarity fulfilled if $\varrho(\omega > 0) \ge 0$ \checkmark physically: we take into account all possible states

(J. Polonyi, A. Siwek, Phys. Rev. D81, 085040 (2010).)

- causality: x space-like vector $\langle [A(x), B(0)] \rangle = 0 \iff \varrho(x) = 0$ Now ϱ is an input \Rightarrow causality \checkmark
- energy and momentum conservation: consequence of the space and time translation symmetry \checkmark
- Lorentz-invariance: if kernel is Lorentz-invariant ✓

(similar to 2PI resummation case)

Consistency

We constructed a consistent (unitary, causal, E-conserving, Lorentz-invariant) non-local effective theory with correct symmetries!

 \Rightarrow This theory should be used to represent the (finite width) bound states.

Outlines

- Effective models
- Guiding principles to build effective theories
- - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Effective models at different energy/temperature scales

Applications •••••

Thermodynamics

Outlines

- Effective models
- Guiding principles to build effective theories
- - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

Thermodynamics

- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Introduction 0000000	Effective models at different energy/temperature scales	Applications 000000000000000000000000000000000000	Conclusion
Thermodynamics			
_			

Construction

Energy density

- time translation symmetry \Rightarrow energy density (Noether-thm)
- finite temperature averaging (KMS relation)
- renormalization

$$\varepsilon = T_{00} = \int \frac{d^4 p}{(2\pi)^4} \Theta(p_0) \left(p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K} \right) n(p_0) \varrho(p)$$

Consequences

- pressure, entropy, etc come from standard thermodynamics
- nonlinear functional of $\varrho!$ (because $\varrho \Rightarrow \mathcal{K}$)
- rescaling invariant $\varrho \to Z \varrho$ yields the same energy density \Rightarrow only the energy levels count, not the way we measure

them!

Introd	
0000	000

Applications

Conclusion

Thermodynamics

Number of degrees of freedom

More instructive characterization of the system: Number of the bound states?

- not evident in case of a general spectrum!
- consistency (for independent particles, or for one Breit-Wigner form)
- consistent with usual physical picture (Williams-Weizsacker)

$$N_{dof} = \int_{0}^{\infty} \frac{dp_0}{2\pi} \frac{1}{p_0} \left(p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K} \right) \varrho(p).$$

Consequences

- for $\rho(\omega) = \sum_{i=1}^{n} Z_i \delta(\omega E_i) \implies N_{dof} = n!$ independent of the normalization
- number of DoF is a dynamical quantity.

Effective models at different energy/temperature scales

Applications

Conclusion

Thermodynamics

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

Applications

Conclusion

Thermodynamics

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

Effective models at different energy/temperature scales

Applications

Conclusion

Thermodynamics

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

Applications

Conclusion

Thermodynamics

Independece of bound states from thermodynamics

0

$$m_1 = 1, m_2 = 2$$

•
$$\Gamma = 0$$
: 2 Dirac-delta ($\Gamma_1 = \Gamma_2 = 0$)

•
$$\Gamma = 0.2$$
: finite width peaks
 $\Gamma_1 = \Gamma_2 = 0.2$: if we had only one particle!

 \Rightarrow reduction of the number of degrees of freedom is observable in thermodynamics, too

Lowest curve: multiparticle threshold $\varrho(p) = \sqrt{1 - \frac{m^2}{p^2}}$

- negligible contribution to thermodynamics!
- overlapping Breit-Wigners \Rightarrow destructive interference

Effective models at different energy/temperature scales

Applications

Conclusion

QCD near the critical temperature

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories
- 2 Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

4 Conclusion

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

Introduction 0000000	Effective models at different energy/temperature scales	Applications	Conclusion
QCD near the critical to	emperature		

experimental evidence: liquid-like matter ("almost perfect liquid")

• more precisely: $\frac{\eta}{s} \sim \eta \ell^3 \sim \frac{1}{4\pi}$ small (on ℓ internal scale)

 \Rightarrow very far from an ideal gas

• kinetic theory: $\frac{\eta}{c} \sim E\tau$ small

 \Rightarrow very short lifetime excitations are needed (!?)

(cf. jet suppression)

 \Rightarrow nonperturbative regime both from hadronic and quark-gluon side

how to treat it?

Effective models at different energy/temperature scales

Applications

• • • • • • • • • • • •

Conclusion

QCD near the critical temperature

I. method: exactly solvable model

 $\mathcal{N}=4$ SYM theory with large \textit{N}_{c} and $\lambda=g^{2}\textit{N}_{c}$

- indeed liquid: $\eta/s = 1/4\pi$ if $\lambda \to \infty$

(P. Kovtun, D.T. Son, A.O. Starinets JHEP 0310, (2003) 064.)

(A. Buchel, R.C. Myers, M.F. Paulos, A. Sinha, Phys.Lett.B669:364-370,2008.)

BUT: $\mathcal{N} = 4$ SYM \neq QCD (symmetries, particle content)

- similar when we apply Φ^3 model instead QCD
- Hope: some universality is in the background, and so the details are not important

Introduction 0000000	Effective models at different energy/temperature scales	Applications	Conclusion	
QCD near the critical temperature				
Universalit	y?			

How specific is QCD?

Generic fluid:

- fluidity measure $\frac{\eta}{s} \rightarrow \frac{L_{\eta}}{L_{r}}$
- smallest to supercritical fluids

Lesson:

- QCD not extraordinary
- behaviour near T_C \downarrow supercritical fluids?

(J. Liao, V. Koch, Phys. Rev. C81, 014902 (2010))

can we build a quadratic model which describes liquid?

$$\mathcal{L} = \frac{1}{2} \Phi(x) \mathcal{K}(i\partial) \Phi(x) \qquad \mathcal{K} \Leftrightarrow \varrho$$

- in the spectrum must be no sharp peaks ⇒ they would lead to large free mean path, gas-like behaviour
- excitations are not particle-like "non-particles", "non-shell particles", "unparticles"

```
(N.P. Landsman, Annals Phys. 186 (1988) 141)
```

(H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). [hep-ph/0703260].)

Effective models at different energy/temperature scales

Applications

ヘロト 人間 ト 人 田 ト 人 田 ト

Conclusion

QCD near the critical temperature

Viscosity for broad spectral functions

One can calculate η/s for a generic spectral function

(AJ., PRD81 (2010) 045020 [arXiv:0911.3248])

generic structure:

$$\frac{\eta}{s} \sim \frac{\int f_1 \varrho^2}{\int f_2 \varrho + \ln \int f_3 \varrho} \xrightarrow{\text{rescaling}} \frac{\langle \varrho^2 \rangle}{\langle \varrho \rangle, \ln \langle \varrho \rangle}.$$

sum rule: $\int \varrho = 1$

- large peak in $\rho \Rightarrow$ even larger peak in $\rho^2 \Rightarrow \eta/s$ large
- shallow $\varrho \implies \varrho^2$ even shallower $\implies \eta/s$ small

robust result: broad spectral function describes liquid!

is it the universality in the background...?

• lower bound $\frac{\eta}{s} \ge \frac{s}{NLT^4}$ N number of species, L "interaction length" no universal lower bound!

Effective models at different energy/temperature scales

Applications

Black body radiation of a strongly interacting system

- Effective models
- Guiding principles to build effective theories
- - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

In the plasma: distribution function $e^{-\beta E} \Rightarrow$ what is the outgoing particle current?

- \bullet quasiparticles in the plasma \neq vacuum particles
- dressing ("hadronization"): assume some conserved quantity: energy and momentum! (works also with other assumptions)
- observed energy spectrum:

$$\omega_{p} n_{obs}(\omega_{p}) = \int_{0}^{\infty} \frac{dp_{0}}{2\pi} \left(p_{0} \frac{\partial \mathcal{K}}{\partial p_{0}} - \mathcal{K} \right) \varrho(p_{0}, p) n(p_{0})$$

- if ρ peaked near $\omega_p \Rightarrow$ at small energies the peak region dominates
- at large energies peak suppressed by $n(p_0)$ exponentially
 - \Rightarrow small p_0 regime dominates \Rightarrow off-shell effects

(日)、

in case of a Breit-Wigner spectrum ($\Gamma = 0.1E$)

Prediction

- exponential behaviour at small energies
- power-law at large energies

(details depend on the form of the spectral function at small energies)

Outlines

Introduction

- Effective models
- Guiding principles to build effective theories
- 2 Effective models at different energy/temperature scales
 - The perturbative regime
 - The low energy/temperature regime
 - Treating resonances in field theory

3 Applications

- Thermodynamics
- QCD near the critical temperature
- Black body radiation of a strongly interacting system

- description of quasiparticles is consistent only with taking into account the complete spectrum
 - gives nonlocal theory
 - unitary, causal, E-conserving
 - number of exciations is dynamical question
 - $\Rightarrow~$ independence of excitations, change in the number of excitations is possible to describe
- applications
 - quasiparticles in PT: 2PI method
 - description of bound states
 - description of liquids, transport coefficients
 - black body radiation, off-shell effects: lower-law at large energies