\Rightarrow

 $4.171.16$ - 4 母 \mathbf{p} つへへ

Nonlocal effective theories

Jakovác Antal

BME Institute of Physics, Budapest, Hungary

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch $1/47$

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)

2 [Effective models at different energy/temperature scales](#page-14-0)

- [The perturbative regime](#page-15-0)
- [The low energy/temperature regime](#page-24-0)
- [Treating resonances in field theory](#page-31-0)

3 [Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- [Black body radiation of a strongly interacting system](#page-49-0)

[Conclusion](#page-52-0)

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

[Introduction](#page-2-0)

• [Effective models](#page-3-0)

[Guiding principles to build effective theories](#page-10-0)

[Effective models at different energy/temperature scales](#page-14-0)

- [The perturbative regime](#page-15-0)
- [The low energy/temperature regime](#page-24-0)
- **•** [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

イロン イ伊ン イヨン イヨン

[Effective models](#page-4-0)

Energy regimes of QCD

 $\text{QCD} \;\;\Rightarrow\;\;$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

[Effective models](#page-5-0)

Energy regimes of QCD

 $\mathsf{QCD} \;\;\Rightarrow\;\;$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

• at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI. . .)

(1999) [arXiv:hep-ph/9906340])

[Effective models](#page-6-0)

Energy regimes of QCD

 $\mathsf{QCD} \;\;\Rightarrow\;\;$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

• at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI. . .)

• near T_c : liquid – description?

(1999) [arXiv:hep-ph/9906340])

[Effective models](#page-7-0)

Energy regimes of QCD

 $\mathsf{QCD} \;\;\Rightarrow\;\;$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

- at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI. . .)
- near T_c : liquid description?
- at low energy $QCD \equiv$ hadrons

(S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]])

[Effective models](#page-8-0)

Energy regimes of QCD

 $\mathsf{QCD} \;\;\Rightarrow\;\;$ interacting theory of quark and gluon fields Is it a theory of quarks and gluons?

• at high energy: quark, gluons lower energies new concepts (pomeron, CGC; HTL, screened PT, 2PI. . .)

• near
$$
T_c
$$
: liquid – description?

• at low energy $QCD \equiv$ hadrons

⇓ description (physical picture) depends on the energy range

(S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]])

- **•** Perturbation theory: basic model & small interactions
- basic model must depend on the energy range (or, in general, on the environment)
- "physical picture" ∼ basic model

⇓

To understand QCD we need effective models

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

Symmetries of the effective model \equiv symmetries of the fundamental model

eg. symmetries of (u,d,s) QCD: $U(3) \times U(3) \rightarrow U_B(1) \times U_A(1) \times SU_V(3) \times SU_A(3)$ \Rightarrow sigma models (nonlinear σ -model, chiral PT, linear σ -models, chiral σ -models, $O(N)$ models etc.)

重 p.

basic excitation spectrum must be close to the real spectrum

- o otherwise: to correct the spectrum we need strong interactions is needed it seems nonperturbative, but we just use the false excitations.
- parameters of the basic model must be fitted to experiments

[Introduction](#page-2-0) [Effective models at different energy/temperature scales](#page-14-0) [Applications](#page-35-0) [Conclusion](#page-52-0) 0000000 [Guiding principles to build effective theories](#page-13-0)

characterization of the spectrum

spectrum: energy levels belonging to certain Q numbers (eg. momentum). measure the spectrum: A operator with fixed quantum numbers: $\varrho_{A}(x) = \langle 0|[A(x), A(0)]|0\rangle \Rightarrow \varrho_{A}(k)_{k_{0}>0} = \sum$ $\sum_{n} \alpha_{n,k} \delta(k_0 - \bar{E}_{n,k})$ spectral function wrt. A.

• projects out energy levels with the given Q numbers

$$
\bullet \ \alpha_{n,\mathbf{k}} = 2\pi |\langle 0|A|n,\mathbf{k}\rangle|^2
$$

- normalization is not too important \Rightarrow reflects the measurement of the spectrum
- for $V \rightarrow \infty$ discrete levels + continuum (if $m = 0$ excitations \Rightarrow only continuum!)

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)

[Effective models at different energy/temperature scales](#page-14-0)

- [The perturbative regime](#page-15-0)
- [The low energy/temperature regime](#page-24-0)
- [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- [Black body radiation of a strongly interacting system](#page-49-0)

[The perturbative regime](#page-15-0)

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)

2 [Effective models at different energy/temperature scales](#page-14-0)

- [The perturbative regime](#page-15-0)
- [The low energy/temperature regime](#page-24-0)
- **•** [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- [Black body radiation of a strongly interacting system](#page-49-0)

[The perturbative regime](#page-16-0)

The basic model

- at large energy: QCD weakly interacting
- elementary excitations: free quarks and gluons

 \Rightarrow energy and momentum eigenstates with $E_{\bf k}^2={\bf k}^2+m^2$ dispersion relation

Basic model

Non-interacting, free particles (infinite lifetime)

Weak interaction: expand expectation values with respect of the coupling constant \Rightarrow perturbation theory (PT)

• direct PT: Feynman-diagrams

• divergences (UV and IR) \Rightarrow renormalization, resummation (self-energy, RG, OPE, thermal masses, dimensional reduction, screened PT, HTL, 2PI, etc.)

Result of PT: states with the same quantum numbers mix e.g. one-particle states mix with multi-particle states

$$
\frac{1}{\sqrt{1-\frac{1}{2}}}
$$

multi-particle states have no "mass-shell" (2-particle state with $\mathbf{k} = 0$ net momentum $E = E_p + E_{k-p}$ possible $\forall p$).

[The perturbative regime](#page-19-0)

Typical spectrum

Φ ⁴ model, 2-loop renormalized 2PI resummation $(T = 0, m, \lambda = 10)$ (AJ, PRD76 (2007) 125004 [hep-ph/0612268])

- \bullet $\tau = 0$: mass-shell shifts, multiparticle thresholds
- \bullet $\tau > 0$: mass-shell shifts and acquires width, $\rho > 0$ everywhere

- supports quasiparticle approximation: like fundamental particles, but with modified mass and finite lifetime
- **BUT** no consistent PT can be built on this basic model: finite lifetime \Rightarrow decaying particle \Rightarrow violates E-conservation, unitarity
- • we must keep all the energy levels \Rightarrow 2PI approximation

イロメ イ押メ イヨメ イヨメー

[The perturbative regime](#page-21-0)

2PI approximation

(2PI approximation: 2-particle irreducible)

Idea of 2PI

use the "exact" excitation spectrum for the quasiparticles

Consistent resummed PT: all energy levels are taken into account! technically for scalar field theory we start from the form:

> $\mathcal{L} = \frac{1}{2}$ $rac{1}{2}$ Φ G^{-1} Φ + \mathcal{L}_{int}

 \Rightarrow G comes from self-consistent propagator equation (2PI)

(J. M. Cornwall,R. Jackiw and E. Toumbolis, Phys. Rev. D10, 2428 (1974).) (J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

 $G^{-1}(p) = G_0^{-1}(p) - \Sigma[G](p)$

and in the self-energy calculation we use the G propagator.

[The perturbative regime](#page-22-0)

2PI approximation

(2PI approximation: 2-particle irreducible)

Idea of 2PI

use the "exact" excitation spectrum for the quasiparticles

Consistent resummed PT: all energy levels are taken into account! technically for scalar field theory we start from the form:

> $\mathcal{L} = \frac{1}{2}$ $rac{1}{2}$ Φ G^{-1} Φ + \mathcal{L}_{int}

 \Rightarrow G comes from self-consistent propagator equation (2PI)

(J. M. Cornwall,R. Jackiw and E. Toumbolis, Phys. Rev. D10, 2428 (1974).) (J. Berges and J. Cox, Phys. Lett. B 517 (2001) 369)

 $G^{-1}(p) = G_0^{-1}(p) - \Sigma[G](p)$

and in the self-energy calculation we use the G propagator.

basic model has a G^{-1} non-local kernel!

[The perturbative regime](#page-23-0)

Consistency

\bullet renormalizability \checkmark

(H. van Hees, J. Knoll, PRD66 (2002) 025028) (A. Jakovac, Zs. Szep PRD71 (2005) 105001 [hep-ph/0405226]) (A. Patkos, Zs. Szep, Nucl.Phys. A811 (2008) 329, [arXiv:0806.2554])

- \bullet unitarity: no missing state \checkmark
- \bullet global symmetries \checkmark
- local symmetries (gauge) λ

(U. Reinosa, J. Serreau, Ann.Phys. 325 (2010) 969, [arXiv:0906.2881])

 \bullet deep IR physics \times

(AJ., P. Mati, arXiv:1112.3476 [hep-ph])

Lessons

1 For representation of finite width we need non-local theory

2 2PI framework treats non-local theories consistently

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 19 / 47

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)

2 [Effective models at different energy/temperature scales](#page-14-0)

- [The perturbative regime](#page-15-0)
- [The low energy/temperature regime](#page-24-0)
- **•** [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

[The low energy/temperature regime](#page-25-0)

QCD at low energy/temperature

- **•** Strongly interacting, nonperturbative from the point of view of the quark-gluon picture
- observation: "weakly" interacting bound states (hadrons)

Basic model

non-interacting hadrons

Taking into account all hadrons as stable particles

 \Rightarrow hadron resonance gas model (HRG)

HRG (hadron resonance gas) – masses from the experiments

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz) (S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077)

basic model works reasonably well for thermodynamics!

 \Rightarrow How shall we represent a realistic spectrum of bound states?

- **•** Spectrum and symmetries: HRG introduces a lot of new conserved quantities! (the partcile numbers for different hadrons)
	- \Rightarrow changes the symmetries of the basic model

does it matter?

very short lifetime and "overlapping" hadronic states how shall we treat them?

(J. Knoll, Yu.B. Ivanov and D.N. Voskresensky, Ann. of Phys. 293 (2001) 126)

Example: 1 component free scalar model at high temperatures $\mathcal{L} = \frac{1}{2} \Phi \mathcal{K} \Phi$ where $\mathcal{K} = -\partial^2 - m^2$ spectral function $\varrho(k) = 2\pi \text{sgn}(k_0) \delta(k^2 - m^2)$ energy density: $\varepsilon = \frac{\pi^2}{30} \, \mathcal{T}^4$ at high \mathcal{T} Take a 2-component representation! $\mathcal{L} = \frac{1}{2} (\Phi_1 \; \Phi_2) \; \bigg(\frac{\mathcal{K}}{0} \frac{0}{\mathcal{K}}$ 0 ${\cal K}$ \bigwedge \bigwedge Φ_2 \setminus spectral function of $\Phi = \frac{\Phi_1 + \Phi_2}{\sqrt{2}}$ $\frac{\Phi_2}{2}$ is the same!

energy density: $\varepsilon=2\times\frac{\pi^2}{30}\mathcal{T}^4$ $\bm{\mathcal{X}}$: wrong with factor of 2

Take a non-independent 2-component representation! $\mathcal{L} = \frac{1}{2} \left(\Phi_1 \; \Phi_2 \right) \, \begin{pmatrix} \mathcal{K} \; \mathcal{K} \ \mathcal{K} \; \mathcal{K} \end{pmatrix} \begin{pmatrix} \Phi_1 \ \Phi_2 \end{pmatrix}$ $\Bigg) = \frac{1}{2}(\Phi_1 + \Phi_2) \mathcal{K}(\Phi_1 + \Phi_2)$ spectral function of $\Phi = \frac{\Phi_1 + \Phi_2}{\sqrt{2}}$ $\frac{\Phi_2}{2}$ is the same! energy density: $\varepsilon = \frac{\pi^2}{30} \, \mathcal{T}^4$ \checkmark θ > \rightarrow 3 + \rightarrow 3 + \rightarrow 3

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

Lesson

Fields with the same quantum numbers may represent non-independent degrees of freedom!

Problematic also in QM, H gas

• if all excited states was independent, the H gas would be always ionized

(Landau, Lifsitz; Peierls: Surprises in theoretical physics)

• ad hoc solution: highly excited states are too large, omit them

- **•** Scattering theory (Beth-Uhlenbeck formula): resonances give contribution to the free energy \Rightarrow degrees of freedom (Landau, Lifsitz V.)
- well-separated peaks are independent

(R.F Dashen, R. Rajaraman, PRD10 (1974), 694.)

- non-well separated peaks contribute to the S-matrix with complex amplitudes
	- \Rightarrow analytic: means relations between the amplitudes
	- (M. Svec, PRD64 (2001) 096003 [hep-ph/0009275])

Lesson

Overlapping peaks of a spectral function represent non-independent degrees of freedom!

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 26 / 47

COLL

メタトメ きょくぼう

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)

2 [Effective models at different energy/temperature scales](#page-14-0)

- [The perturbative regime](#page-15-0)
- [The low energy/temperature regime](#page-24-0)
- [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

[Conclusion](#page-52-0)

Strategy

Represent a spectral function at fixed Q numbers with a single field.

(AJ. arXiv:1102.5629)

Similar to the 2PI resummation

$$
\mathcal{L}=\frac{1}{2}\Phi(x)\mathcal{K}(i\partial)\Phi(x)
$$

• relation of K kernel and ρ spectral function:

 $G_R(k_0, \mathbf{k}) = \mathcal{K}^{-1}(k_0 + i\varepsilon, \mathbf{k}), \qquad \varrho = -2 \operatorname{Im} G_R$ $G_R(k_0, \mathbf{k}) = \int \frac{d\omega}{2\pi}$ 2π $\varrho(\omega,{\bf k})$ $\frac{\varrho(\omega,\mathbf{k})}{k_0 - \omega + i\varepsilon}, \qquad \mathcal{K} = \text{Re } \mathcal{G}_R^{-1}$

spectrum completely determines phyisics!

 \equiv \rightarrow

$$
\mathcal{L} = \frac{1}{2}\Phi(x)\mathcal{K}(i\partial)\Phi(x)
$$

- **unitarity fulfilled if** $\rho(\omega > 0) > 0$ \checkmark physically: we take into account all possible states (J. Polonyi, A. Siwek, Phys. Rev. D81, 085040 (2010).)
- \bullet causality: x space-like vector $\langle [A(x), B(0)] \rangle = 0 \Leftrightarrow \rho(x) = 0$ Now ρ is an input \Rightarrow causality \checkmark
- **•** energy and momentum conservation: consequence of the space and time translation symmetry \checkmark
- \bullet Lorentz-invariance: if kernel is Lorentz-invariant \checkmark

```
(similar to 2PI resummation case)
```


We constructed a consistent (unitary, causal, E-conserving, Lorentz-invariant) non-local effective theory with correct symmetries!

 \Rightarrow This theory should be used to represent the (finite width) bound states.

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

3 [Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

[Thermodynamics](#page-36-0)

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

3 [Applications](#page-35-0)

• [Thermodynamics](#page-36-0)

- [QCD near the critical temperature](#page-43-0)
- [Black body radiation of a strongly interacting system](#page-49-0)

 \Rightarrow

Construction

- time translation symmetry \Rightarrow energy density (Noether-thm)
- finite temperature averaging (KMS relation)
- **•** renormalization

$$
\varepsilon = T_{00} = \int \frac{d^4 p}{(2\pi)^4} \, \Theta(p_0) \left(p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K} \right) n(p_0) \varrho(p)
$$

Consequences

- **•** pressure, entropy, etc come from standard thermodynamics
- nonlinear functional of ρ ! (because $\rho \Rightarrow \mathcal{K}$)
- rescaling invariant $\rho \rightarrow Z\rho$ yields the same energy density

 \Rightarrow only the energy levels count, not the way we measure them!

More instructive characterization of the system: Number of the bound states?

- not evident in case of a general spectrum!
- consistency (for independent particles, or for one Breit-Wigner form)
- consistent with usual physical picture (Williams-Weizsacker)

$$
N_{dof} = \int_{0}^{\infty} \frac{dp_0}{2\pi} \frac{1}{p_0} \left(p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K}\right) \varrho(p).
$$

Consequences

- for $\varrho(\omega) = \sum^{n}$ $\sum_{i=1} Z_i \delta(\omega - E_i) \Rightarrow N_{dof} = n!$ independent of the normalization
- number of DoF is a dynamical quantity[.](#page-37-0)

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 35

[Thermodynamics](#page-40-0)

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 35 / 47

÷,

 $4.17 \times$

[Thermodynamics](#page-41-0)

On the independence of the bound states

Change the width and compute the number of degrees of freedom!

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 35 / 47

[Thermodynamics](#page-42-0)

Independece of bound states from thermodynamics

$$
m_1 = 1, m_2 = 2
$$

$$
\bullet \ \Gamma = 0: \ 2 \ \text{Dirac-delta} \ (\Gamma_1 = \Gamma_2 = 0)
$$

•
$$
\Gamma = 0.2
$$
: finite width peaks
\n $\Gamma_1 = \Gamma_2 = 0.2$: if we had only one particle!

 \Rightarrow reduction of the number of degrees of freedom is observable in thermodynamics, too

Lowest curve: multiparticle threshold $\varrho(p) = \sqrt{1-p^2}$ $m²$ p^2

- **•** negligible contribution to thermodynamics!
- overlapping Breit-Wigners \Rightarrow destructive interference

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

3 [Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- [Black body radiation of a strongly interacting system](#page-49-0)

Exploring QCD frontiers, January 30 to February 3 2012, Stellenbosch 37 / 47

experimental evidence: liquid-like matter ("almost perfect liquid")

more precisely: $\frac{\eta}{s} \sim \eta \ell^3 \sim \frac{1}{4\pi^3}$ $\frac{1}{4\pi}$ small (on ℓ internal scale)

 \Rightarrow very far from an ideal gas

- kinetic theory: $\frac{\eta}{s} \sim E \tau$ small
	- \Rightarrow very short lifetime excitations are needed (!?)
	- (cf. jet suppression)

nonperturbative regime both from hadronic and quark-gluon side

how to treat it?

[Introduction](#page-2-0) [Effective models at different energy/temperature scales](#page-14-0) [Applications](#page-35-0) [Conclusion](#page-52-0) 0000000 [QCD near the critical temperature](#page-45-0) I. method: exactly solvable model

 $\mathcal{N}=$ 4 SYM theory with large \mathcal{N}_c and $\lambda=g^2\mathcal{N}_c$

- CFT \Rightarrow AdS/CFT duality \Rightarrow 5D AdS gravitation \Rightarrow computable
- indeed liquid: $\eta/s = 1/4\pi$ if $\lambda \to \infty$

(P. Kovtun, D.T. Son, A.O. Starinets JHEP 0310, (2003) 064.)

(A. Buchel, R.C. Myers, M.F. Paulos, A. Sinha, Phys.Lett.B669:364-370,2008.)

BUT: $\mathcal{N} = 4$ SYM \neq QCD (symmetries, particle content)

- **•** similar when we apply Φ^3 model instead QCD
- Hope: some universality is in the background, and so the details are not important

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

How specific is QCD?

Generic fluid:

- fluidity measure $\frac{\eta}{s} \rightarrow \frac{L_\eta}{L_n}$ L_n
- smallest to supercritical fluids

Lesson:

- QCD not extraordinary
- behaviour near T_C ⇓ supercritical fluids?

T ! **T**

(J. Liao, V. Koch, Phys. Rev. C81, 014902 (2010))

dicate cu[rren](#page-45-0)t [esti](#page-47-0)[m](#page-45-0)[ates](#page-46-0) [o](#page-47-0)[f t](#page-42-0)[he](#page-43-0) [r](#page-48-0)[es](#page-49-0)[pe](#page-34-0)[cti](#page-35-0)[ve](#page-51-0) [fl](#page-52-0)[uid](#page-0-0)[ity w](#page-53-0)ith possible

can we build a quadratic model which describes liquid?

$$
\mathcal{L} = \frac{1}{2} \Phi(x) \mathcal{K}(i\partial) \Phi(x) \qquad \mathcal{K} \Leftrightarrow \varrho
$$

- in the spectrum must be no sharp peaks \Rightarrow they would lead to large free mean path, gas-like behaviour
- excitations are not particle-like "non-particles", "non-shell particles", "unparticles"

```
(N.P. Landsman, Annals Phys. 186 (1988) 141)
```
(H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). [hep-ph/0703260].)

0000000

[Introduction](#page-2-0) [Effective models at different energy/temperature scales](#page-14-0) [Applications](#page-35-0) [Conclusion](#page-52-0)

[QCD near the critical temperature](#page-48-0)

Viscosity for broad spectral functions

One can calculate η/s for a generic spectral function

(AJ., PRD81 (2010) 045020 [arXiv:0911.3248])

generic structure:

$$
\frac{\eta}{s} \sim \frac{\int f_1 \varrho^2}{\int f_2 \varrho + \ln \int f_3 \varrho} \stackrel{\text{rescaling}}{\longrightarrow} \frac{\langle \varrho^2 \rangle}{\langle \varrho \rangle, \ln \langle \varrho \rangle}.
$$

sum rule: $\int \varrho = 1$

- large peak in $\varrho \quad \Rightarrow \quad$ even larger peak in $\varrho^2 \quad \Rightarrow \quad \eta/s$ large
- shallow $\varrho \quad \Rightarrow \quad \varrho^2$ even shallower $\quad \Rightarrow \quad \eta/s$ small

robust result: broad spectral function describes liquid!

is it the universality in the background. . . ?

lower bound $\frac{\eta}{s} \geq \frac{s}{NL}$ $NLT₁₁⁴$ N number of species, L "interaction length" no universal lower bound!

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

3 [Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

In the plasma: distribution function $e^{-\beta E} \quad \Rightarrow \quad$ what is the outgoing particle current?

- \bullet quasiparticles in the plasma \neq vacuum particles
- **o** dressing ("hadronization"): assume some conserved quantity: energy and momentum! (works also with other assumptions)
- observed energy spectrum:

$$
\omega_{p}n_{obs}(\omega_{p}) = \int_{0}^{\infty} \frac{dp_{0}}{2\pi} \left(p_{0} \frac{\partial \mathcal{K}}{\partial p_{0}} - \mathcal{K}\right) \varrho(p_{0}, p) n(p_{0})
$$

- if ρ peaked near $\omega_p \Rightarrow$ at small energies the peak region dominates
- at large energies peak suppressed by $n(p_0)$ exponentially \Rightarrow small p_0 regime dominates \Rightarrow off-shell effects

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

in case of a Breit-Wigner spectrum ($\Gamma = 0.1E$)

Prediction

- exponential behaviour at small energies
- **o** power-law at large energies

 $4.17 \times$

(details depend on the form of the spectral function at small energies)

Outlines

[Introduction](#page-2-0)

- **•** [Effective models](#page-3-0)
- [Guiding principles to build effective theories](#page-10-0)
- [Effective models at different energy/temperature scales](#page-14-0)
	- [The perturbative regime](#page-15-0)
	- [The low energy/temperature regime](#page-24-0)
	- **•** [Treating resonances in field theory](#page-31-0)

[Applications](#page-35-0)

- [Thermodynamics](#page-36-0)
- [QCD near the critical temperature](#page-43-0)
- • [Black body radiation of a strongly interacting system](#page-49-0)

[Conclusion](#page-52-0)

Conclusions

- **•** description of quasiparticles is consistent only with taking into account the complete spectrum
	- gives nonlocal theory
	- unitary, causal, E-conserving
	- number of exciations is dynamical question
		- \Rightarrow independence of excitations, change in the number of excitations is possible to describe
- • applications
	- quasiparticles in PT: 2PI method
	- description of bound states
	- description of liquids, transport coefficients
	- black body radiation, off-shell effects: lower-law at large energies