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Introduction

Once that the B–JIMWLK equation/hierarchy has been finally
established, following a strenuous and heroic, collective work ...

Balitsky (96), Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (97-00)

... it appeared to be so complicated that any solution to it seemed to
be out of reach !

Yet, only a few years later (following Blaizot, Iancu, Weigert, 02),

Rummukainen and Weigert presented the first numerical solution (03).

Nowadays, we have several ‘codes’ available: Lappi, Schenke & collabs

This has been completed by various ‘mean field studies’
solutions to the Balitksy–Kovchegov (BK) equation (large Nc)
Gaussian Ansatz for the CGC weight function

Iancu, Itakura, McLerran (02), Kovchegov, Kuokkanen, Rummukainen, Weigert (09)

For quite some time, these efforts were restricted to the dipole
amplitude (a 2–point function generalizing the gluon distribution)
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Introduction (2)

Directly relevant to the phenomenology ...

deep inelastic scattering
single inclusive particle production in p+A

... and also easier to compute.

Recently, phenomenology started to be more demanding:
multi–particle correlations at RHIC

... thus requiring the study of higher n–point correlations (n ≥ 4).

The first numerical calculation of 4-p and 6-p functions for special
configurations (Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan, 11)

... came with a big surprise: numerics is very well reproduced by
high–energy extrapolations of the McLerran–Venugopalan model !

A Gaussian approximation : information only about the 2–p function !
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Introduction (3)

Is that just numerical coincidence restricted to special configurations?

Or rather is a generic feature of the B–JIMWLK evolution that one
could further exploit ?

Previous studies of the Gaussian approximation did not address its
validity for higher n–point correlations

No a priori reason to expect it should work !
complicated, non–linear, evolution
infinite hierarchy of equations coupling n–p functions with arbitrary n

And yet it works ! (E.I., Triantafyllopoulos, 2011)

a meaningful piecewise approximation, which is correct both in the
dilute (BFKL) and the dense (saturation) regimes
smooth interpolation between the two limiting regimes
good agreement with numerics ... whenever the latter exists

Analytic solutions which should greatly facilitate phenomenology
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Di–hadron azimuthal correlations
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[Nucl.Phys.A783:249-260,2007]

Typical final state: a pair of jets back–to–back in the transverse plane

Particle distribution as a function of the azimuthal angle:
a peak at ∆Φ = 180◦
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Particle production in hadron–hadron collisions

Introduction to AA collisions

Bookkeeping

Inclusive gluon spectrum

Loop corrections

CERN

François Gelis – 2007 Lecture III / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 9/65

Initial particle production

! Dilute regime : one parton in each projectile interact

x1
pa

pb

x2

samedi 20 août 2011

The colliding partons carry longitudinal momentum fractions

x1 =
|pa| eya + |pb| eyb

√
s

, x2 =
|pa| e−ya + |pb| e−yb

√
s

Forward rapidities : ya ∼ yb are both positive and large
=⇒ x1 ∼ O(1) and x2 � 1 (‘dense–dilute scattering’)

One may be able to probe saturation effects in the target

These effects are enhanced for a nuclear target
Exploring QCD Frontiers ()JIMWLK evolution in the Gaussian approximation STIAS, Stellenbosh 6 / 32



Di–hadron correlations at RHIC: p+p vs. d+Au
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d+Au : the ‘away jet’ gets smeared out =⇒ saturation in Au
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(Albacete and Marquet, 2010, PRL)

d+Au : the ‘away jet’ gets smeared out =⇒ saturation in Au
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Multiple scattering & Wilson line

The produced quark and gluon undergo multiple scattering

Broadening of their transverse momentum distribution:
important if p⊥ ∼ Qs(x2, A) ... in agreement with the data !

Eikonal approximation =⇒ Wilson lines :

V †x ≡ P exp
[
ig

∫
dx−A+

a (x−,x)T a
]

⇒ two WL’s per parton (direct amplitude + the c.c. amplitude)
Exploring QCD Frontiers ()JIMWLK evolution in the Gaussian approximation STIAS, Stellenbosh 8 / 32



Higher–point correlations of the Wilson lines

Quark–gluon pair production: the color trace of a product of 4 Wilson
lines (2 fundamental, 2 adjoint)

Equivalently (after using Fierz identity): 6 fundamental Wilson lines〈
1
Nc

tr(V †x1
Vx2V

†
x3
Vx4)

1
Nc

tr(V †x4
Vx3)

〉
Y

≡
〈
Q̂x1x2x3x4Ŝx4x3

〉
Y

Expectation value of a 2–trace operator: quadrupole × dipole
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〈
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〉
Y

Expectation value of a 2–trace operator: quadrupole × dipole

The target dynamics is encoded in the CGC average :

〈Ô〉Y ≡
∫
DαO[α]WY [α] , αa ≡ A+

a (x−,x) , Y ≡ ln
1
x2

The CGC weight function WY [α] obeys JIMWLK equation

high–energy evolution [leading log ln(1/x)] of the multigluon
correlations for the case of a dense target
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JIMWLK Hamiltonian

Renormalization group equation for the CGC weight function WY [α] :

∂

∂Y
WY [α] = HWY [α]

H = − 1
16π3

∫
uvz
Muvz

(
1 + Ṽ †uṼv − Ṽ †uṼz − Ṽ †z Ṽv

)ab δ

δαau

δ

δαbv

dipole kernel: Muvz ≡ (u−v)2

(u−z)2(z−v)2

functional derivatives: ‘creation operators’ for the emission of a new
gluon at small x

(adjoint) Wilson lines: multiple scattering between the newly emitted
gluon and the color field created by the previous ones with x′ � x

N.B. : The first 2 terms within H (‘virtual’) and the last 2 ones
(‘real’) will play different roles in what follows
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Balitsky–JIMWLK hierarchy

Infinite hierarchy of coupled evolution equations for the n–point
functions of the Wilson lines (Balitsky, 1996)

∂〈Ô〉Y
∂Y

=
∫
DαO[α]

∂

∂Y
WY [α] = 〈HÔ〉Y

Functional derivatives act on the color field at the largest value of x− :

δ

δαau
V †x = igδxu t

aV †x

... i.e. at the end point of the Wilson lines

Generators of color rotations ‘on the left’ (or ‘left Lie derivatives’):
each evolution step adds a new layer of field at a larger value of x− :

V †n (x) → V †n+1(x) = exp[igεαn+1(x)]V †n (x)

We shall later return to this point (longitudinal structure of the target)

Exploring QCD Frontiers ()JIMWLK evolution in the Gaussian approximationSTIAS, Stellenbosh 11 / 32



Dipole evolution (1)

Observables involving 2n Wilson lines are coupled to those with 2n+ 2

Dipole S–matrix: Ŝx1x2 = 1
Nc

tr(V †x1Vx2)

Hvirt Ŝx1x2 = − ᾱ

2π

(
1− 1

N2
c

)∫
z
Mx1x2zŜx1x2

Hreal Ŝx1x2 =
ᾱ

2π

∫
z

Mx1x2z

(
Ŝx1zŜzx2 −

1
N2
c

Ŝx1x2

)
The 1/N2

c corrections cancel between ‘real’ and ‘virtual’ contributions

∂〈Ŝx1x2〉Y
∂Y

=
ᾱ

2π

∫
z
Mx1x2z〈Ŝx1zŜzx2 − Ŝx1x2〉Y

Physical interpretation: projectile (dipole) evolution
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Dipole evolution (2)

Use the rapidity increment (Y → Y + dY ) to boost the dipole

The dipole ‘evolves’ by emitting a small–x gluon

‘Real’ term: quark-antiquark-gluon system interacts with the target

At large Nc, this system looks like two dipoles.

‘Virtual’ term: the emitted gluon does not interact with the target

The probability for the dipole not to evolve.
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Quadrupole evolution (1)

Q̂x1x2x3x4 =
1
Nc

tr(V †x1
Vx2V

†
x3
Vx4)

∂〈Q̂x1x2x3x4〉Y
∂Y

=
ᾱ

4π

∫
z

[
(Mx1x2z +Mx1x4z −Mx2x4z)〈Ŝx1zQ̂zx2x3x4〉Y

+Mx1x2z +Mx2x3z −Mx1x3z)〈Ŝzx2Q̂x1zx3x4〉Y
+ (Mx2x3z +Mx3x4z −Mx2x4z)〈Ŝx3zQ̂x1x2zx4〉Y
+ (Mx1x4z +Mx3x4z −Mx1x3z)〈Ŝzx4Q̂x1x2x3z〉Y
− (Mx1x2z +Mx3x4z +Mx1x4z +Mx2x3z)〈Q̂x1x2x3x4〉Y
− (Mx1x2z +Mx3x4z −Mx1x3z −Mx2x4z)〈Ŝx1x2Ŝx3x4〉Y

− (Mx1x4z +Mx2x3z −Mx1x3z −Mx2x4z)〈Ŝx3x2Ŝx1x4〉Y
]
.
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Quadrupole evolution (2)

More complicated, but the same structural properties as for the dipole:

Real terms (2n+ 2 = 6 WL’s) : 〈Ŝx1zQ̂zx2x3x4〉Y
Virtual terms (2n = 4 WL’s) : 〈Q̂x1x2x3x4〉Y , 〈Ŝx1x4 Ŝx3x2〉Y

1/N2
c corrections have cancelled between ‘real’ and ‘virtual’

Single–trace couples to double–trace under the evolution
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The limit of a large number of colors: Nc →∞

Multi–trace expectation values of WL’s factorize into single–trace ones〈
1
Nc

tr(V †x1Vx2 ...)
1
Nc

tr(V †y1Vy2)
〉
Y
'
〈

1
Nc

tr(V †x1Vx2 ...)
〉
Y

〈
1
Nc

tr(V †y1Vy2)
〉
Y

B–JIMWLK hierarchy boils down to closed equations

Dipole: 〈Ŝx1zŜzx2〉 ' 〈Ŝx1z〉〈Ŝzx2〉 =⇒ Balitsky–Kovchegov (BK)

∂〈Ŝx1x2〉Y
∂Y

=
ᾱ

2π

∫
z
Mx1x2z

[
〈Ŝx1z〉Y 〈Ŝzx2〉Y − 〈Ŝx1x2〉Y

]
Closed, non–linear equation for 〈Ŝx1x2〉Y , studied at length.

Saturation momentum : unitarity limit for the dipole scattering

〈Ŝ(r)〉Y ∼ O(1) when 1/r ∼ Qs(Y ) ∝ eλY
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The limit of a large number of colors: Nc →∞
Quadrupole: 〈Ŝx1zQ̂zx2x3x4〉Y ' 〈Ŝx1z〉Y 〈Q̂zx2x3x4〉Y

∂〈Q̂x1x2x3x4〉Y
∂Y

=
ᾱ

4π

∫
z

[
(Mx1x2z + · · · )〈Ŝx1z〉Y 〈Q̂zx2x3x4〉Y

+ . . . . . .

− (Mx1x2z + · · · )〈Q̂x1x2x3x4〉Y

− (Mx1x2z + · · · )〈Ŝx1x2〉Y 〈Ŝx3x4〉Y
]
.

An equation for 〈Q̂x1x2x3x4〉Y with 〈Ŝx1x2〉Y acting as a source.

Numerical solution still complicated (due to real terms)
non–linear terms
transverse non–locality (integral over z)

In practice it is easier to solve the full JIMWLK equation (finite Nc)
using its reformulation as a (functional) Langevin equation

(Blaizot, E.I., Weigert, 2002) cf. talk by T. Lappi
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Towards a Gaussian approximation

The prototype for it: the McLerran–Venugopalan model

WMV[ρ] = exp
[
−1

2

∫
dx−

∫
x

ρa(x−,x)ρa(x−,x)
λ(x−)

]
Large nucleus (A� 1), not so small x :
‘color sources’ = independent valence quarks

ρa(x−,x) color charge density : −∇2
⊥αa = ρa

Often used as an initial condition for JIMWLK at Y0 ∼ 4

Could a Gaussian be a reasonable approximation also at Y � Y0 ?

high energy evolution introduces correlations among the color sources

non–linear effects ⇒ coupled equations for n–point functions of WL’s

Yet... there is impressive agreement between numerical solutions to
JIMWLK and simple extrapolations of the MV model !

(Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan 2011)
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Some encouraging arguments (1)

In the dilute regime
(
k⊥ � Qs(Y ) or |xi − xj | � 1/Qs(Y )

)
,

the correlations refer to the BFKL evolution of the 2–point function :

〈Ŝx1x2〉Y ' 1− g2

4Nc
〈(αax1

− αax2
)2〉Y ≡ 1− 〈T̂x1x2〉Y

1− 〈Q̂x1x2x3x4〉Y ' 〈T̂x1x2 − T̂x1x3 + T̂x1x4 + T̂x2x3 − T̂x2x4 + T̂x3x4〉Y

〈T̂x1x2〉Y (dipole scattering amplitude) obeys the BFKL equation :

∂〈T̂x1x2〉Y
∂Y

=
ᾱ

2π

∫
z
Mx1x2z

〈
T̂x1z + T̂zx2 − T̂x1x2

〉
Y

A 2–point function can always be encoded in a Gaussian !
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Some encouraging arguments (2)

Saturation regime : k⊥ � Qs(Y ) or |xi − xj | � 1/Qs(Y )

−→ ‘keep only the first term (no WL’s) in HJIMWLK’

H = − 1
16π3

∫
uvz
Muvz

(
1 + Ṽ †uṼv − Ṽ †uṼz − Ṽ †z Ṽv

)ab δ

δαau

δ

δαbv

‘Random phase approximation’ (E.I. & McLerran, 2001)

HRPA ' −
1

8π2

∫
uv

ln
[
(u− v)2Q2

s(Y )
] δ

δαau

δ

δαav

Free diffusion ... obviously consistent with a Gaussian weight function !

Qualitatively right, but a bit naive though !

The first two terms within HJIMWLK act on the same footing !
together, they generate the ‘virtual’ terms in the B-JIMWLK equations
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On the importance of the virtual terms

Hvirt = − 1
16π3

∫
uvz
Muvz

(
1 + Ṽ †uṼv

)ab δ

δαau

δ

δαbv

The virtual terms dominate the evolution deeply at saturation

surprising at the first sight: the non–linear effects are encoded precisely
in the real terms

even less obvious at finite Nc : real and virtual term seem to receive
1/N2

c corrections of the same order

One can promote Hvirt into a mean field approximation to HJIMWLK

which is valid both in the dense and the dilute regimes !

Is this consistent with a Gaussian weight function WY [α] ?
Hvirt is still non–linear to all orders in the field αa ...
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Virtual terms dominate deeply at saturation

They control the approach towards the ‘black disk limit’:
〈Ŝ〉Y → 0, 〈Q̂〉Y → 0, etc.

Easier to understand at large Nc ; e.g. for the dipole (BK equation)

∂〈Ŝx1x2〉Y
∂Y

=
ᾱ

2π

∫
z
Mx1x2z

[
〈Ŝx1z〉Y 〈Ŝzx2〉Y − 〈Ŝx1x2〉Y

]
Deeply at saturation: 〈Ŝ〉Y 〈Ŝ〉Y � 〈Ŝ〉Y � 1

∂〈Ŝ(r)〉Y
∂Y

' −ᾱ ln[r2Q2
s(Y )] 〈Ŝ(r)〉Y

A Sudakov factor : the probability for the dipole not to evolve.

The conclusion persists at finite Nc, for the same physical reason:

the dipole (quadrupole, etc) has more chances to survive its scattering
off the CGC if it remains simple !
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Virtual terms can encode BFKL too...

... provided one generalizes the kernel in the Hamiltonian:

HMFA = −1
2

∫
uv
γY (u,v)

(
1 + Ṽ †uṼv

)ab δ

δαau

δ

δαbv

Mean–field evolution of the dipole :

∂〈Ŝx1x2〉Y
∂Y

= 〈HMFA Ŝx1x2〉Y = −2g2CF γY (x1,x2)〈Ŝx1x2〉Y

Weak scattering (BFKL): 〈Ŝ〉Y = 1− 〈T̂ 〉Y with 〈T̂ 〉Y � 1

∂〈T̂x1x2〉Y
∂Y

= 2g2CF γY (x1,x2)

Use this equation, with the l.h.s. estimated at the BFKL level, as the
definition of γY (x1,x2) for |x1 − x2| � 1/Qs(Y )
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The Mean Field Approximation

... is defined by the following Hamiltonian:

HMFA = −1
2

∫
uv
γY (u,v)

(
1 + Ṽ †uṼv

)ab δ

δαau

δ

δαbv

... where the kernel γY (u,v) is uniquely defined

in the dilute regime at |u− v| � 1/Qs(Y ) (BFKL)
in the dense regime at |u− v| � 1/Qs(Y )

The transition region around |u− v| ∼ 1/Qs(Y ) goes beyond the
accuracy of the MFA ⇒ any smooth interpolation is equally good

In practice: trade the kernel for the dipole S–matrix :

γY (u,v) = − 1
2g2CF

∂ ln〈Ŝuv〉Y
∂Y
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The Mean Field Approximation

... is defined by the following Hamiltonian:

HMFA = −1
2

∫
uv
γY (u,v)

(
1 + Ṽ †uṼv

)ab δ

δαau

δ

δαbv

... where the kernel γY (u,v) is uniquely defined

in the dilute regime at |u− v| � 1/Qs(Y ) (BFKL)
in the dense regime at |u− v| � 1/Qs(Y )

The transition region around |u− v| ∼ 1/Qs(Y ) goes beyond the
accuracy of the MFA ⇒ any smooth interpolation is equally good

The kernel is independent of Nc ⇒ can be inferred from the solution
to the BK equation (large Nc) ... and then used at finite Nc :

γY (u,v) = − 1
g2Nc

∂ ln〈ŜBK
uv 〉Y

∂Y

N.B. this yields the same kernel as Heribert’s ‘Gaussian truncation’
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Evolution equations in the MFA

Obtained by keeping only the virtual terms in the respective
B–JIMWLK equations and replacing the kernel according to

1
8π3

∫
z
Muvz → γY (u,v)

Considerably simpler than the original equations :

linear
local in transverse coordinates
coupled, but closed, systems: they couple only n–point functions with
the same value of n (e.g. 〈Q̂〉Y with 〈ŜŜ〉Y )

The equations can be solved analytically.

The solutions becomes especially simple if

the kernel is separable: γY (u,v) = h1(Y ) g(u,v) + h2(Y )
at large Nc (any kernel)
for special configurations of the external points in the transverse space
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The MV model strikes back

The mean–field equations allow one to compute the n–point functions
of the WL’s with n ≥ 4 in terms of the dipole S matrix 〈Ŝ〉Y (n = 2)

For a separable kernel, the Y –dependence in the final results enters
exclusively via 〈Ŝ〉Y
B separability is a good approximation, in both dense and dilute limits

In that case, the functional form of the solutions is formally the same
as in the MV model !

This is rewarding: it explains the numerical findings in arXiv:1108.4764
(Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan 2011)

... but it also rises a puzzle: it strongly suggests that the mean field
approximation has an underlying Gaussian structure

How is that possible ?
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The Gaussian CGC weight function

HMFA = −1
2

∫
uv
γY (u,v)

(
1 + Ṽ †uṼv

)ab δ

δαau

δ

δαbv

The functional derivatives act as generators of color rotations:

δ

δαau
V †x = igδxu t

aV †x Ṽ ab
u

δ

δαbu
V †x = igδxu V

†
xt
a,

... both on the left and on the right

HMFA = −1
2

∫
uv
γY (u,v)

(
δ

δαaLu

δ

δαaLv

+
δ

δαaRu

δ

δαaRv

)
This is free diffusion ... but simultaneously ‘towards the left’
(increasing x−) and ‘towards the right’ (decreasing x−)

With increasing Y , the target color field expands symmetrically in x−

around the light–cone (x− = 0)

The CGC weight function in the MFA is a Gaussian symmetric in x−
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Longitudinal structure of the CGC

WY [α] = NY exp

{
−1

2

∫ x−M (Y )

−x−M (Y )
dx−

∫
x1x2

αa(x−,x1)αa(x−,x2)
γ(x−,x1,x2)

}

x−M (Y ) = x−0 exp(Y − Y0)

z

t
x x+

valence quarks
small x gluons
even smaller x gluons
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The mirror symmetry

This has observable consequences: 〈Q̂x1x2x3x4〉Y = 〈Q̂x1x4x3x2〉Y

Time reversal symmetry for the projectile (with ‘time’ = x−).

Similar identities hold for the higher n–point functions.

An exact symmetry of the JIMWLK equation.
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Applications to special configurations

Di–hadron correlations: quadrupole × dipole — line configuration

Ŝ6 x1x2x3x4 =
N2
c

N2
c − 1

Q̂x1x2x3x4Ŝx4x3 −
1

N2
c − 1

Ŝx1x2

MFA Nc!3
MFA large"Nc
Factorized Nc!3!S#"3

1 2 3 4 5
Qsr

"0.2

0.0

0.2

0.4

0.6

0.8

1.0

!S#6"

Our full MFA result cannot be distinguished from the numerical
solution to JIMWLK (Dumitru et al, 2011)

Exploring QCD Frontiers ()JIMWLK evolution in the Gaussian approximationSTIAS, Stellenbosh 30 / 32



A versatile configuration

〈Q̂x1x2x3x4〉Y with r13 = r14 and r23 = r24 & arbitrary r12 and r34

One finds exact factorization: 〈Q̂x1x2x3x4〉Y = 〈Ŝx1x2〉Y 〈Ŝx3x4〉Y

Natural when r12, r34 � r14, r23 ... but remarkable in general.

〈Ŝ6 x1x2x3x4〉Y = 〈Ŝx1x2〉Y
[
〈Ŝx3x4〉Y

] 2N2
c

N2
c−1 ' 〈Ŝx1x2〉Y

[
〈Ŝx3x4〉Y

]2
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THANK YOU !
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