JIMWLK evolution in the Gaussian approximation

Edmond Iancu

Institut de Physique Théorique de Saclay

with D.N. Triantafyllopoulos, arXiv:1109.0302, 1112.1104 [hep-ph]

● Once that the B-JIMWLK equation/hierarchy has been finally established, following a strenuous and heroic, collective work ...

Balitsky (96), Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (97-00)

• Once that the B-JIMWLK equation/hierarchy has been finally established, following a strenuous and heroic, collective work ...

Balitsky (96), Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (97-00)

... it appeared to be so complicated that any solution to it seemed to be out of reach !

Once that the B–JIMWLK equation/hierarchy has been finally established, following a strenuous and heroic, collective work ...

Balitsky (96), Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (97-00)

- ... it appeared to be so complicated that any solution to it seemed to be out of reach !
- Yet, only a few years later (following Blaizot, lancu, Weigert, 02), Rummukainen and Weigert presented the first numerical solution (03).
- Nowadays, we have several 'codes' available: $Lappi$, Schenke & collabs

Once that the B–JIMWLK equation/hierarchy has been finally established, following a strenuous and heroic, collective work ...

Balitsky (96), Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (97-00)

- ... it appeared to be so complicated that any solution to it seemed to be out of reach !
- Yet, only a few years later (following Blaizot, lancu, Weigert, 02), Rummukainen and Weigert presented the first numerical solution (03).
- Nowadays, we have several 'codes' available: $Lappi$, Schenke & collabs
- This has been completed by various 'mean field studies'
	- solutions to the Balitksy–Kovchegov (BK) equation (large N_c)
	- Gaussian Ansatz for the CGC weight function

Iancu, Itakura, McLerran (02), Kovchegov, Kuokkanen, Rummukainen, Weigert (09)

Once that the B–JIMWLK equation/hierarchy has been finally established, following a strenuous and heroic, collective work ...

Balitsky (96), Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (97-00)

- ... it appeared to be so complicated that any solution to it seemed to be out of reach !
- Yet, only a few years later (following Blaizot, lancu, Weigert, 02), Rummukainen and Weigert presented the first numerical solution (03).
- Nowadays, we have several 'codes' available: $Lappi$, Schenke & collabs
- This has been completed by various 'mean field studies'
	- solutions to the Balitksy–Kovchegov (BK) equation (large N_c)
	- Gaussian Ansatz for the CGC weight function

Iancu, Itakura, McLerran (02), Kovchegov, Kuokkanen, Rummukainen, Weigert (09)

• For quite some time, these efforts were restricted to the dipole amplitude (a 2–point function generalizing the gluon distribution)

- Directly relevant to the phenomenology ...
	- deep inelastic scattering
	- \bullet single inclusive particle production in $p+A$
- ... and also easier to compute.

- Directly relevant to the phenomenology ...
	- deep inelastic scattering
	- \bullet single inclusive particle production in $p+A$
- ... and also easier to compute.
- Recently, phenomenology started to be more demanding: multi–particle correlations at RHIC
- ... thus requiring the study of higher n–point correlations $(n \geq 4)$.

- Directly relevant to the phenomenology ...
	- deep inelastic scattering
	- \bullet single inclusive particle production in $p+A$
- ... and also easier to compute.
- Recently, phenomenology started to be more demanding: multi–particle correlations at RHIC
- ... thus requiring the study of higher n–point correlations $(n \geq 4)$.
- The first numerical calculation of 4-p and 6-p functions for special configurations (Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan, 11)
- ... came with a big surprise: numerics is very well reproduced by high–energy extrapolations of the McLerran–Venugopalan model!

- Directly relevant to the phenomenology ...
	- deep inelastic scattering
	- \bullet single inclusive particle production in $p+A$
- ... and also easier to compute.
- Recently, phenomenology started to be more demanding: multi–particle correlations at RHIC
- ... thus requiring the study of higher n–point correlations $(n \geq 4)$.
- The first numerical calculation of 4-p and 6-p functions for special configurations (Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan, 11)
- ... came with a big surprise: numerics is very well reproduced by high–energy extrapolations of the McLerran–Venugopalan model!
- A Gaussian approximation : information only about the 2–p function !

• Is that just numerical coincidence restricted to special configurations?

- Is that just numerical coincidence restricted to special configurations?
- Or rather is a generic feature of the B–JIMWLK evolution that one could further exploit ?

- Is that just numerical coincidence restricted to special configurations?
- Or rather is a generic feature of the B–JIMWLK evolution that one could further exploit ?
- Previous studies of the Gaussian approximation did not address its validity for higher n -point correlations
- No a priori reason to expect it should work !
	- complicated, non–linear, evolution
	- infinite hierarchy of equations coupling $n-p$ functions with arbitrary n

- Is that just numerical coincidence restricted to special configurations?
- Or rather is a generic feature of the B–JIMWLK evolution that one could further exploit ?
- Previous studies of the Gaussian approximation did not address its validity for higher n -point correlations
- No a priori reason to expect it should work !
	- complicated, non–linear, evolution
	- infinite hierarchy of equations coupling $n-p$ functions with arbitrary n
- And yet it works ! (E.I., Triantafyllopoulos, 2011)
	- a meaningful piecewise approximation, which is correct both in the dilute (BFKL) and the dense (saturation) regimes
	- smooth interpolation between the two limiting regimes
	- good agreement with numerics ... whenever the latter exists
- Analytic solutions which should greatly facilitate phenomenology

Di–hadron azimuthal correlations

[[]Nucl.Phys.A783:249-260,2007]

- Typical final state: a pair of jets back–to–back in the transverse plane
- Particle distribution as a function of the azimuthal angle:

a peak at $\Delta\Phi = 180^\circ$

Particle production in hadron–hadron collisions **Initial particle production**

• The colliding partons carry longitudinal momentum fractions

 $x_1 = \frac{|p_a| e^{y_a} + |p_b| e^{y_b}}{\sqrt{a}}, \qquad x_2 = \frac{|p_a| e^{-y_a} + |p_b|}{\sqrt{a}}$ $\frac{1}{\sqrt{s}} + |\bm{p}_b| \mathrm{e}^{y_b} \, , \qquad x_2 \, = \, \frac{|\bm{p}_a| \, \mathrm{e}^{-y_a} + |\bm{p}_b| \, \mathrm{e}^{-y_b}}{\sqrt{s}}$ $\frac{1}{\sqrt{s}}$

• Forward rapidities : $y_a \sim y_b$ are both positive and large $\implies x_1 \sim \mathcal{O}(1)$ and $x_2 \ll 1$ ('dense–dilute scattering')

- One may be able to probe saturation effects in the target
- These effects are enhanced for a nuclear target

Di-hadron correlations at RHIC: $p+p$ vs. d+Au

• $d+Au$: the 'away jet' gets smeared out \implies saturation in Au

Di-hadron correlations at RHIC: $p+p$ vs. d+Au

• $d+Au$: the 'away jet' gets smeared out \implies saturation in Au

Multiple scattering & Wilson line

- The produced quark and gluon undergo multiple scattering
- Broadening of their transverse momentum distribution: important if $p_{\perp} \sim Q_s(x_2, A)$... in agreement with the data !
- Eikonal approximation \implies Wilson lines :

$$
V_{\bm{x}}^{\dagger} \,\equiv\, \mathsf{P} \exp \left[ig \int \mathrm{d} x^- \mathcal{A}_a^+ (x^-, \bm{x}) T^a \right]
$$

 \Rightarrow two WL's per parton (direct amplitude + the c.c. amplitude)

Higher–point correlations of the Wilson lines

- Quark–gluon pair production: the color trace of a product of 4 Wilson lines (2 fundamental, 2 adjoint)
- Equivalently (after using Fierz identity): 6 fundamental Wilson lines

$$
\left\langle \frac{1}{N_c} \operatorname{tr}(V_{\bm{x}_1}^\dagger V_{\bm{x}_2} V_{\bm{x}_3}^\dagger V_{\bm{x}_4}) \, \frac{1}{N_c} \operatorname{tr}(V_{\bm{x}_4}^\dagger V_{\bm{x}_3}) \right\rangle_Y \equiv \left\langle \hat{Q}_{\bm{x}_1 \bm{x}_2 \bm{x}_3 \bm{x}_4} \hat{S}_{\bm{x}_4 \bm{x}_3} \right\rangle_Y
$$

• Expectation value of a 2-trace operator: quadrupole \times dipole

Higher–point correlations of the Wilson lines

- Quark–gluon pair production: the color trace of a product of 4 Wilson lines (2 fundamental, 2 adjoint)
- Equivalently (after using Fierz identity): 6 fundamental Wilson lines

$$
\left\langle \frac{1}{N_c} \operatorname{tr}(V_{\bm{x}_1}^\dagger V_{\bm{x}_2} V_{\bm{x}_3}^\dagger V_{\bm{x}_4}) \, \frac{1}{N_c} \operatorname{tr}(V_{\bm{x}_4}^\dagger V_{\bm{x}_3}) \right\rangle_Y \equiv \left\langle \hat{Q}_{\bm{x}_1 \bm{x}_2 \bm{x}_3 \bm{x}_4} \hat{S}_{\bm{x}_4 \bm{x}_3} \right\rangle_Y
$$

- Expectation value of a 2–trace operator: quadrupole \times dipole
- The target dynamics is encoded in the CGC average :

$$
\langle \hat{\mathcal{O}} \rangle_Y \equiv \int \mathcal{D}\alpha \, \mathcal{O}[\alpha] \, W_Y[\alpha] \,, \qquad \alpha_a \equiv \mathcal{A}_a^+(x^-, \mathbf{x}) \,, \quad Y \equiv \ln \frac{1}{x_2}
$$

• The CGC weight function $W_Y[\alpha]$ obeys JIMWLK equation high–energy evolution [leading log $\ln(1/x)$] of the multigluon correlations for the case of a dense target

JIMWLK Hamiltonian

• Renormalization group equation for the CGC weight function $W_Y[\alpha]$:

$$
\frac{\partial}{\partial Y} W_Y[\alpha] = HW_Y[\alpha]
$$

$$
H = -\frac{1}{16\pi^3} \int_{uvz} \mathcal{M}_{uvz} \left(1 + \widetilde{V}_{\boldsymbol{u}}^\dagger \widetilde{V}_{\boldsymbol{v}} - \widetilde{V}_{\boldsymbol{u}}^\dagger \widetilde{V}_{\boldsymbol{z}} - \widetilde{V}_{\boldsymbol{z}}^\dagger \widetilde{V}_{\boldsymbol{v}} \right)^{ab} \frac{\delta}{\delta \alpha_{\boldsymbol{u}}^a} \frac{\delta}{\delta \alpha_{\boldsymbol{v}}^b}
$$

• dipole kernel:
$$
\mathcal{M}_{uvz} \equiv \frac{(u-v)^2}{(u-z)^2(z-v)^2}
$$

- functional derivatives: 'creation operators' for the emission of a new gluon at small x
- (adjoint) Wilson lines: multiple scattering between the newly emitted gluon and the color field created by the previous ones with $x'\gg x$
- N.B. : The first 2 terms within H ('virtual') and the last 2 ones ('real') will play different roles in what follows

Balitsky–JIMWLK hierarchy

• Infinite hierarchy of coupled evolution equations for the n -point functions of the Wilson lines (Balitsky, 1996)

$$
\frac{\partial \langle \hat{\mathcal{O}} \rangle_Y}{\partial Y} = \int \mathcal{D}\alpha \, \mathcal{O}[\alpha] \, \frac{\partial}{\partial Y} \, W_Y[\alpha] = \langle H \hat{\mathcal{O}} \rangle_Y
$$

Functional derivatives act on the color field at the largest value of x^- :

$$
\frac{\delta}{\delta \alpha_{\bm{u}}^a} V_{\bm{x}}^\dagger = \mathrm{i} g \delta_{\bm{x} \bm{u}} \, t^a V_{\bm{x}}^\dagger
$$

... i.e. at the end point of the Wilson lines

Generators of color rotations 'on the left' (or 'left Lie derivatives'): each evolution step adds a new layer of field at a larger value of \bar{x}^+ :

$$
V_n^\dagger(\boldsymbol{x})\,\rightarrow\,V_{n+1}^\dagger(\boldsymbol{x})=\exp[\mathrm{i} g\epsilon\alpha_{n+1}(\boldsymbol{x})]\,V_n^\dagger(\boldsymbol{x})
$$

• We shall later return to this point (longitudinal structure of the target)

Dipole evolution (1)

- Observables involving $2n$ Wilson lines are coupled to those with $2n+2$
- Dipole S –matrix: $\hat{S}_{\bm{x}_1\bm{x}_2}=\frac{1}{N}$ $\frac{1}{N_c}\operatorname{tr}(V_{\bm{x}_1}^\dagger V_{\bm{x}_2})$

$$
H_{\text{virt}}\hat{S}_{\boldsymbol{x}_1\boldsymbol{x}_2} = -\frac{\bar{\alpha}}{2\pi} \left(1 - \frac{1}{N_c^2}\right) \int_{\boldsymbol{z}} \mathcal{M}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{z}} \hat{S}_{\boldsymbol{x}_1\boldsymbol{x}_2}
$$

$$
H_{\text{real}}\hat{S}_{\boldsymbol{x}_1\boldsymbol{x}_2} = \frac{\bar{\alpha}}{2\pi} \int_{\boldsymbol{z}} \mathcal{M}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{z}} \left(\hat{S}_{\boldsymbol{x}_1\boldsymbol{z}} \hat{S}_{\boldsymbol{z}\boldsymbol{x}_2} - \frac{1}{N_c^2} \hat{S}_{\boldsymbol{x}_1\boldsymbol{x}_2}\right)
$$

The $1/N_c^2$ corrections cancel between 'real' and 'virtual' contributions

$$
\frac{\partial \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y}{\partial Y} = \frac{\bar{\alpha}}{2\pi} \int_{\bm{z}} \mathcal{M}_{\bm{x}_1\bm{x}_2\bm{z}} \langle \hat{S}_{\bm{x}_1\bm{z}} \hat{S}_{\bm{z}\bm{x}_2} - \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y
$$

Physical interpretation: projectile (dipole) evolution

Dipole evolution (2)

- Use the rapidity increment $(Y \to Y + dY)$ to boost the dipole
- The dipole 'evolves' by emitting a small- x gluon
- 'Real' term: quark-antiquark-gluon system interacts with the target

- \bullet At large N_c , this system looks like two dipoles.
- 'Virtual' term: the emitted gluon does not interact with the target

• The probability for the dipole not to evolve.

Quadrupole evolution (1)

Quadrupole evolution (2)

More complicated, but the same structural properties as for the dipole:

- Real terms $(2n+2=6$ WL's) : $\langle \hat{S}_{\bm{x}_1\bm{z}}\hat{Q}_{\bm{z}\bm{x}_2\bm{x}_3\bm{x}_4}\rangle_Y$
- Virtual terms (2 $n=4$ WL's) : $\langle \hat{Q}_{\bm{x}_1\bm{x}_2\bm{x}_3\bm{x}_4} \rangle_Y, \; \langle \hat{S}_{\bm{x}_1\bm{x}_4} \hat{S}_{\bm{x}_3\bm{x}_2} \rangle_Y$

- $1/N_c^2$ corrections have cancelled between 'real' and 'virtual'
- Single–trace couples to double–trace under the evolution

The limit of a large number of colors: $N_c \rightarrow \infty$

● Multi–trace expectation values of WL's factorize into single–trace ones

 $\sqrt{1}$ $\frac{1}{N_c}\text{tr}(V_{\bm{x}_1}^\dagger V_{\bm{x}_2} ...) \frac{1}{N}$ $\frac{1}{N_c}\text{tr}(V_{\bm{y}_1}^\dagger V_{\bm{y}_2})\bigg\rangle$ $\frac{1}{N} \simeq \left\langle \frac{1}{N} \right\rangle$ $\frac{1}{N_c}\text{tr}(V_{\bm{x}_1}^\dagger V_{\bm{x}_2}...)\bigg\rangle$ Y $\sqrt{1}$ $\frac{1}{N_c}\text{tr}(V_{\bm{y}_1}^\dagger V_{\bm{y}_2})\bigg\rangle$ Y

- B–JIMWLK hierarchy boils down to closed equations
- Dipole: $\langle \hat S_{\bm x_1\bm z}\hat S_{\bm z\bm x_2}\rangle\simeq\langle \hat S_{\bm x_1\bm z}\rangle\langle \hat S_{\bm z\bm x_2}\rangle\Longrightarrow$ Balitsky–Kovchegov (BK)

$$
\frac{\partial \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y}{\partial Y} = \frac{\bar{\alpha}}{2\pi} \int_{\bm{z}} \mathcal{M}_{\bm{x}_1\bm{x}_2\bm{z}} \left[\langle \hat{S}_{\bm{x}_1\bm{z}} \rangle_Y \langle \hat{S}_{\bm{z}\bm{x}_2} \rangle_Y - \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y \right]
$$

- Closed, non–linear equation for $\langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y$, studied at length.
- Saturation momentum : unitarity limit for the dipole scattering

$$
\langle \hat{S}(r) \rangle_Y \sim \mathcal{O}(1)
$$
 when $1/r \sim Q_s(Y) \propto e^{\lambda Y}$

The limit of a large number of colors: $N_c \rightarrow \infty$

$$
\bullet\;\; {\sf Quadrupole:}\;\, \langle \hat S_{\bm x_1\bm z}\hat Q_{\bm z\bm x_2\bm x_3\bm x_4}\rangle_Y \simeq \langle \hat S_{\bm x_1\bm z}\rangle_Y \langle \hat Q_{\bm z\bm x_2\bm x_3\bm x_4}\rangle_Y
$$

$$
\frac{\partial \langle \hat{Q}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{x}_3\boldsymbol{x}_4} \rangle_Y}{\partial Y} = \frac{\bar{\alpha}}{4\pi} \int_{\boldsymbol{z}} \Big[(\mathcal{M}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{z}} + \cdots) \langle \hat{S}_{\boldsymbol{x}_1\boldsymbol{z}} \rangle_Y \langle \hat{Q}_{\boldsymbol{z}\boldsymbol{x}_2\boldsymbol{x}_3\boldsymbol{x}_4} \rangle_Y + \cdots - (\mathcal{M}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{z}} + \cdots) \langle \hat{Q}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{x}_3\boldsymbol{x}_4} \rangle_Y - (\mathcal{M}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{z}} + \cdots) \langle \hat{S}_{\boldsymbol{x}_1\boldsymbol{x}_2} \rangle_Y \langle \hat{S}_{\boldsymbol{x}_3\boldsymbol{x}_4} \rangle_Y \Big].
$$

An equation for $\langle \hat{Q}_{\bm{x}_1\bm{x}_2\bm{x}_3\bm{x}_4}\rangle_Y$ with $\langle \hat{S}_{\bm{x}_1\bm{x}_2}\rangle_Y$ acting as a source.

- Numerical solution still complicated (due to real terms)
	- non–linear terms
	- transverse non–locality (integral over z)
- In practice it is easier to solve the full JIMWLK equation (finite N_c) using its reformulation as a (functional) Langevin equation

(Blaizot, E.I., Weigert, 2002) cf. talk by T. Lappi

Towards a Gaussian approximation

• The prototype for it: the McLerran–Venugopalan model

$$
W_{\text{MV}}[\rho] \,=\, \exp\left[-\frac{1}{2}\int\text{d}x^-\!\int_{\bm{x}}\frac{\rho^a(x^-,\bm{x})\rho^a(x^-,\bm{x})}{\lambda(x^-)}\right]
$$

• Large nucleus $(A \gg 1)$, not so small x :

 $'color$ sources' = independent valence quarks

- $\rho_a(x^-,\bm{x})$ color charge density : $-\nabla_\perp^2\alpha_a=\rho_a$
- Often used as an initial condition for JIMWLK at $Y_0 \sim 4$
- Could a Gaussian be a reasonable approximation also at $Y \gg Y_0$?
	- high energy evolution introduces correlations among the color sources
	- non–linear effects \Rightarrow coupled equations for *n*–point functions of WL's
- Yet... there is impressive agreement between numerical solutions to JIMWLK and simple extrapolations of the MV model !

(Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan 2011)

Some encouraging arguments (1)

In the dilute regime $\big(k_\perp\gg Q_s(Y)$ or $|x_i-x_j|\ll 1/Q_s(Y)\big)$, the correlations refer to the BFKL evolution of the 2–point function :

$$
\langle \hat{S}_{\boldsymbol{x}_1\boldsymbol{x}_2} \rangle_Y \simeq 1 - \frac{g^2}{4N_c} \langle (\alpha_{\boldsymbol{x}_1}^a - \alpha_{\boldsymbol{x}_2}^a)^2 \rangle_Y \equiv 1 - \langle \hat{T}_{\boldsymbol{x}_1\boldsymbol{x}_2} \rangle_Y
$$

$$
1-\langle \hat{Q}_{\boldsymbol{x}_1\boldsymbol{x}_2\boldsymbol{x}_3\boldsymbol{x}_4} \rangle_Y \simeq \langle \hat{T}_{\boldsymbol{x}_1\boldsymbol{x}_2} - \hat{T}_{\boldsymbol{x}_1\boldsymbol{x}_3} + \hat{T}_{\boldsymbol{x}_1\boldsymbol{x}_4} + \hat{T}_{\boldsymbol{x}_2\boldsymbol{x}_3} - \hat{T}_{\boldsymbol{x}_2\boldsymbol{x}_4} + \hat{T}_{\boldsymbol{x}_3\boldsymbol{x}_4} \rangle_Y
$$

 $\langle \hat{T}_{\bm{x}_1\bm{x}_2} \rangle_Y$ (dipole scattering amplitude) obeys the BFKL equation :

$$
\frac{\partial \langle \hat{T}_{\bm{x}_1\bm{x}_2} \rangle_Y}{\partial Y} = \frac{\bar{\alpha}}{2\pi} \int_{\bm{z}} \mathcal{M}_{\bm{x}_1\bm{x}_2\bm{z}} \left\langle \hat{T}_{\bm{x}_1\bm{z}} + \hat{T}_{\bm{z}\bm{x}_2} - \hat{T}_{\bm{x}_1\bm{x}_2} \right\rangle_Y
$$

A 2–point function can always be encoded in a Gaussian !

Some encouraging arguments (2)

• Saturation regime : $k_1 \ll Q_s(Y)$ or $|x_i - x_j| \gg 1/Q_s(Y)$

 \rightarrow 'keep only the first term (no WL's) in H_{JIMWLK} '

$$
H = -\frac{1}{16\pi^3} \int_{uvz} \mathcal{M}_{uvz} \left(1 + \widetilde{V}_{\boldsymbol{u}}^{\dagger} \widetilde{V}_{\boldsymbol{v}} - \widetilde{V}_{\boldsymbol{u}}^{\dagger} \widetilde{V}_{\boldsymbol{z}} - \widetilde{V}_{\boldsymbol{z}}^{\dagger} \widetilde{V}_{\boldsymbol{v}} \right)^{ab} \frac{\delta}{\delta \alpha_{\boldsymbol{u}}^a} \frac{\delta}{\delta \alpha_{\boldsymbol{v}}^b}
$$

'Random phase approximation' (E.I. & McLerran, 2001)

$$
H_{\rm RPA} \simeq -\frac{1}{8\pi^2} \int_{\bm{u}\bm{v}} \ln \left[(\bm{u} - \bm{v})^2 Q_s^2(Y) \right] \; \frac{\delta}{\delta \alpha^a_{\bm{u}}} \frac{\delta}{\delta \alpha^a_{\bm{v}}}
$$

- Free diffusion ... obviously consistent with a Gaussian weight function !
- Qualitatively right, but a bit naive though !
- \bullet The first two terms within H_{JIMWLK} act on the same footing ! together, they generate the 'virtual' terms in the B-JIMWLK equations

On the importance of the virtual terms

$$
H_{\rm virt} = -\frac{1}{16\pi^3}\int_{\bm u \bm v \bm z}\mathcal M_{\bm u \bm v \bm z}\left(1+\widetilde{V}_{\bm u}^\dagger \widetilde{V}_{\bm v}\right)^{ab} \frac{\delta}{\delta \alpha^a_{\bm u}}\frac{\delta}{\delta \alpha^b_{\bm v}}
$$

- The virtual terms dominate the evolution deeply at saturation
	- surprising at the first sight: the non–linear effects are encoded precisely in the real terms
	- even less obvious at finite N_c : real and virtual term seem to receive $1/N_c^2$ corrections of the same order
- \bullet One can promote H_{virt} into a mean field approximation to H_{JIMWLK} which is valid both in the dense and the dilute regimes!
- **•** Is this consistent with a Gaussian weight function $W_Y[\alpha]$? $H_{\rm virt}$ is still non–linear to all orders in the field α_a ...

Virtual terms dominate deeply at saturation

- They control the approach towards the 'black disk limit': $\langle \hat{S} \rangle_Y \rightarrow 0, \langle \hat{Q} \rangle_Y \rightarrow 0$, etc.
- Easier to understand at large N_c ; e.g. for the dipole (BK equation)

$$
\frac{\partial \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y}{\partial Y} = \frac{\bar{\alpha}}{2\pi} \int_{\bm{z}} \mathcal{M}_{\bm{x}_1\bm{x}_2\bm{z}} \left[\langle \hat{S}_{\bm{x}_1\bm{z}} \rangle_Y \langle \hat{S}_{\bm{z}\bm{x}_2} \rangle_Y - \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y \right]
$$

 \bullet Deeply at saturation: $\langle \hat{S} \rangle_Y \langle \hat{S} \rangle_Y \ll \langle \hat{S} \rangle_Y \ll 1$

$$
\frac{\partial \langle \hat{S}(r) \rangle_Y}{\partial Y} \simeq -\bar{\alpha} \ln[r^2 Q_s^2(Y)] \langle \hat{S}(r) \rangle_Y
$$

- A Sudakov factor : the probability for the dipole not to evolve.
- The conclusion persists at finite N_c , for the same physical reason:

the dipole (quadrupole, etc) has more chances to survive its scattering off the CGC if it remains simple !

Virtual terms can encode BFKL too...

... provided one generalizes the kernel in the Hamiltonian:

$$
H_{\text{MFA}} = -\frac{1}{2} \int_{\boldsymbol{u}\boldsymbol{v}} \gamma_Y(\boldsymbol{u},\boldsymbol{v}) \big(1 + \widetilde{V}_{\boldsymbol{u}}^\dagger \widetilde{V}_{\boldsymbol{v}} \big)^{ab} \frac{\delta}{\delta \alpha_{\boldsymbol{u}}^a} \frac{\delta}{\delta \alpha_{\boldsymbol{v}}^b}
$$

Mean–field evolution of the dipole :

$$
\frac{\partial \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y}{\partial Y} = \langle H_{\text{MFA}} \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y = -2g^2 C_F \gamma_Y(\bm{x}_1, \bm{x}_2) \langle \hat{S}_{\bm{x}_1\bm{x}_2} \rangle_Y
$$

• Weak scattering (BFKL): $\langle \hat{S} \rangle_Y = 1 - \langle \hat{T} \rangle_Y$ with $\langle \hat{T} \rangle_Y \ll 1$

$$
\frac{\partial \langle \hat{T}_{\bm{x}_1\bm{x}_2} \rangle_Y}{\partial Y} \,=\, 2g^2 C_F \,\gamma_Y(\bm{x}_1,\bm{x}_2)
$$

Use this equation, with the l.h.s. estimated at the BFKL level, as the definition of $\gamma_Y(\mathbf{x}_1, \mathbf{x}_2)$ for $|\mathbf{x}_1 - \mathbf{x}_2| \ll 1/Q_s(Y)$

The Mean Field Approximation

• ... is defined by the following Hamiltonian:

$$
H_{\text{MFA}} = -\frac{1}{2}\int_{\boldsymbol{u}\boldsymbol{v}}\gamma_Y(\boldsymbol{u},\boldsymbol{v})\big(1+\widetilde{V}_{\boldsymbol{u}}^\dagger\widetilde{V}_{\boldsymbol{v}}\big)^{ab}\frac{\delta}{\delta\alpha^a_{\boldsymbol{u}}}\frac{\delta}{\delta\alpha^b_{\boldsymbol{v}}}
$$

• ... where the kernel $\gamma_Y(u, v)$ is uniquely defined

- in the dilute regime at $|u v| \ll 1/Q_s(Y)$ (BFKL)
- in the dense regime at $|\mathbf{u} \mathbf{v}| \gg 1/Q_s(Y)$
- The transition region around $|u v| \sim 1/Q_s(Y)$ goes beyond the accuracy of the MFA \Rightarrow any smooth interpolation is equally good
- In practice: trade the kernel for the dipole S -matrix :

$$
\gamma_Y(\boldsymbol{u},\boldsymbol{v})\,=\,-\frac{1}{2g^2C_F}\frac{\partial\ln\langle \hat{S}_{\boldsymbol{u}\boldsymbol{v}}\rangle_Y}{\partial Y}
$$

The Mean Field Approximation

• ... is defined by the following Hamiltonian:

$$
H_{\text{MFA}} = -\frac{1}{2}\int_{\boldsymbol{u}\boldsymbol{v}} \gamma_Y(\boldsymbol{u},\boldsymbol{v})\big(1+\widetilde{V}_{\boldsymbol{u}}^\dagger \widetilde{V}_{\boldsymbol{v}}\big)^{ab} \frac{\delta}{\delta \alpha_{\boldsymbol{u}}^a} \frac{\delta}{\delta \alpha_{\boldsymbol{v}}^b}
$$

- ... where the kernel $\gamma_Y(\boldsymbol{u},\boldsymbol{v})$ is uniquely defined
	- in the dilute regime at $|u v| \ll 1/Q_s(Y)$ (BFKL)
	- in the dense regime at $|u v| \gg 1/Q_s(Y)$
- The transition region around $|u v| \sim 1/Q_s(Y)$ goes beyond the accuracy of the MFA \Rightarrow any smooth interpolation is equally good
- The kernel is independent of $N_c \Rightarrow$ can be inferred from the solution to the BK equation (large N_c) ... and then used at finite N_c :

$$
\gamma_Y(\boldsymbol{u},\boldsymbol{v})\,=\,-\frac{1}{g^2N_c}\frac{\partial\ln\langle\hat{S}_{\boldsymbol{uv}}^{\mathrm{BK}}\rangle_Y}{\partial Y}
$$

N.B. this yields the same kernel as Heribert's 'Gaussian truncation'

Evolution equations in the MFA

• Obtained by keeping only the virtual terms in the respective B–JIMWLK equations and replacing the kernel according to

$$
\frac{1}{8\pi^3}\int_{\bm{z}}\mathcal{M}_{\bm{u}\bm{v}\bm{z}}\rightarrow\gamma_Y(\bm{u},\bm{v})
$$

- Considerably simpler than the original equations :
	- **a** linear
	- local in transverse coordinates
	- coupled, but closed, systems: they couple only n -point functions with the same value of n (e.g. $\langle \hat{Q} \rangle_Y$ with $\langle \hat{S} \hat{S} \rangle_Y$)
- The equations can be solved analytically.
- The solutions becomes especially simple if
	- the kernel is separable: $\gamma_V(u, v) = h_1(Y) q(u, v) + h_2(Y)$
	- at large N_c (any kernel)
	- for special configurations of the external points in the transverse space

The MV model strikes back

- The mean–field equations allow one to compute the n –point functions of the WL's with $n \geq 4$ in terms of the dipole S matrix $\langle \hat{S} \rangle_Y$ ($n = 2$)
- For a separable kernel, the Y-dependence in the final results enters exclusively via $\langle \hat{S} \rangle_V$

 \triangleright separability is a good approximation, in both dense and dilute limits

- In that case, the functional form of the solutions is formally the same as in the MV model !
- This is rewarding: it explains the numerical findings in arXiv:1108.4764 (Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan 2011)
- ... but it also rises a puzzle: it strongly suggests that the mean field approximation has an underlying Gaussian structure
- How is that possible?

The Gaussian CGC weight function

$$
H_{\text{MFA}}=-\frac{1}{2}\int_{\bm{u}\bm{v}}\gamma_Y(\bm{u},\bm{v})\big(1+\widetilde{V}_{\bm{u}}^{\dagger}\widetilde{V}_{\bm{v}}\big)^{ab}\frac{\delta}{\delta\alpha_{\bm{u}}^a}\frac{\delta}{\delta\alpha_{\bm{v}}^b}
$$

The functional derivatives act as generators of color rotations:

$$
\frac{\delta}{\delta \alpha_{\boldsymbol{u}}^a} V_{\boldsymbol{x}}^{\dagger} = ig \delta_{\boldsymbol{x} \boldsymbol{u}} t^a V_{\boldsymbol{x}}^{\dagger} \qquad \widetilde{V}_{\boldsymbol{u}}^{ab} \frac{\delta}{\delta \alpha_{\boldsymbol{u}}^b} V_{\boldsymbol{x}}^{\dagger} = ig \delta_{\boldsymbol{x} \boldsymbol{u}} V_{\boldsymbol{x}}^{\dagger} t^a,
$$

• ... both on the left and on the right

$$
H_{\text{MFA}} = -\frac{1}{2} \int_{\boldsymbol{u}\boldsymbol{v}} \gamma_Y(\boldsymbol{u},\boldsymbol{v}) \left(\frac{\delta}{\delta \alpha_{Lu}^a} \frac{\delta}{\delta \alpha_{Lv}^a} + \frac{\delta}{\delta \alpha_{Ru}^a} \frac{\delta}{\delta \alpha_{R\boldsymbol{v}}^a} \right)
$$

This is free diffusion ... but simultaneously 'towards the left' (increasing x^-) and 'towards the right' (decreasing x^-)

With increasing Y , the target color field expands symmetrically in x^\pm around the light–cone $(x^-=0)$

The CGC weight function in the MFA is a Gaussian symmetric in x^{\pm} Exploring QCD Frontiers \qquad JIMWLK evolution in the Gaussian approx \qquad STIAS, Stellenbosh 27 / 32

Longitudinal structure of the CGC

$$
W_Y[\alpha] = \mathcal{N}_Y \exp \left\{ -\frac{1}{2} \int_{-x_M^-(Y)}^{x_M^-(Y)} dx^- \int_{\mathbf{x}_1 \mathbf{x}_2} \frac{\alpha_a(x^-, \mathbf{x}_1) \alpha_a(x^-, \mathbf{x}_2)}{\gamma(x^-, \mathbf{x}_1, \mathbf{x}_2)} \right\}
$$

•
$$
x_M^-(Y) = x_0^- \exp(Y - Y_0)
$$

 \bullet even smaller x gluons

The mirror symmetry

This has observable consequences: $\langle \hat{Q}_{\bm{x}_1\bm{x}_2\bm{x}_3\bm{x}_4}\rangle_Y=\langle \hat{Q}_{\bm{x}_1\bm{x}_4\bm{x}_3\bm{x}_2}\rangle_Y$

- Time reversal symmetry for the projectile (with 'time' = x^-).
- Similar identities hold for the higher n -point functions.
- An exact symmetry of the JIMWLK equation.

Applications to special configurations

• Di–hadron correlations: quadrupole \times dipole — line configuration

• Our full MFA result cannot be distinguished from the numerical solution to JIMWLK (Dumitru et al, 2011) Exploring QCD Frontiers \qquad JIMWLK evolution in the Gaussian approx \qquad STIAS, Stellenbosh \qquad 30 / 32

A versatile configuration

- One finds exact factorization: $\langle \hat{Q}_{\bm{x}_1\bm{x}_2\bm{x}_3\bm{x}_4}\rangle_Y=\langle \hat{S}_{\bm{x}_1\bm{x}_2}\rangle_Y\langle \hat{S}_{\bm{x}_3\bm{x}_4}\rangle_Y$
- Natural when r_{12} , $r_{34} \ll r_{14}$, r_{23} ... but remarkable in general.

$$
\langle \hat{S}_{6\,x_1x_2x_3x_4} \rangle_Y = \langle \hat{S}_{\mathbf{x}_1\mathbf{x}_2} \rangle_Y \Big[\langle \hat{S}_{\mathbf{x}_3\mathbf{x}_4} \rangle_Y \Big] \frac{\frac{2N_c^2}{N_c^2 - 1}}{\frac{N_c^2}{N_c^2 - 1}} \simeq \langle \hat{S}_{\mathbf{x}_1\mathbf{x}_2} \rangle_Y \Big[\langle \hat{S}_{\mathbf{x}_3\mathbf{x}_4} \rangle_Y \Big]^2
$$

A versatile configuration

- One finds exact factorization: $\langle \hat{Q}_{\bm{x}_1\bm{x}_2\bm{x}_3\bm{x}_4}\rangle_Y=\langle \hat{S}_{\bm{x}_1\bm{x}_2}\rangle_Y\langle \hat{S}_{\bm{x}_3\bm{x}_4}\rangle_Y$
- Natural when r_{12} , $r_{34} \ll r_{14}$, r_{23} ... but remarkable in general.

$$
\langle \hat{S}_{6\,\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4} \rangle_Y = \langle \hat{S}_{\mathbf{x}_1\mathbf{x}_2} \rangle_Y \Big[\langle \hat{S}_{\mathbf{x}_3\mathbf{x}_4} \rangle_Y \Big] \frac{\frac{2N_c^2}{N_c^2 - 1}}{\frac{N_c^2}{N_c^2 - 1}} \simeq \langle \hat{S}_{\mathbf{x}_1\mathbf{x}_2} \rangle_Y \Big[\langle \hat{S}_{\mathbf{x}_3\mathbf{x}_4} \rangle_Y \Big]^2
$$

THANK YOU !

Exploring QCD Frontiers **(1) JIMWLK** evolution in the Gaussian approx **STIAS**, Stellenbosh $32 / 32$