# Observables in Anisotropic Plasma in AdS/CFT

#### **Dimitrios Giataganas**

Witwatersrand University, Johannesburg

Based on results of the paper arXiv:1202.next week hep-th, hep-ph

Talk given at:Stellenbosch, Exploring QCD frontiers: from RHIC and LHC to EIC, January 2012

IV. Drag Ford

V. The jet Queno

VII. Conclusions



- 1. Introduction and motivation
- 2 II. The background
- III. The Static potential
- 4 IV. Drag Force
- 5 V. The jet Quenching
- 6 VII. Conclusions

- 4 日 + 4 個 + 4 画 + 4 画 + - 三 - の Q ()

# AdS/CFT correspondence

- The AdS/CFT correspondence, in the original and best understood form, is a duality between the  $\mathcal{N} = 4$  supersymmetric Yang-Mills and type IIB superstring theory on  $AdS_5 \times S^5$ .
- In this correspondence there exist a map between gauge invariant operators in field theory and states in string theory.
- Example: The Wilson loop, is a physical gauge invariant object and can measure the interaction potential between the external quarks and acts as an order of confinement.
- The Wilson loop operator in the fundamental representation is dual to a string worldsheet extending in the  $AdS_5 \times S^5$  with boundary the actual loop placed on the AdS boundary. (Maldacena; Rey, Yee)

 $< W[C] >= e^{-S_{string[C]}}$ 

- Less Supersymmetry.
- Broken conformal symmetry, confinement.
- Finite temperature.
- Inclusion of dynamical quarks.
- Inclusion of Anisotropy(for our purposes)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- Less Supersymmetry.
- Broken conformal symmetry, confinement.
- Finite temperature.
- Inclusion of dynamical quarks.
- Inclusion of Anisotropy(for our purposes)

- Less Supersymmetry.
- Broken conformal symmetry, confinement.
- Finite temperature.
- Inclusion of dynamical quarks.
- Inclusion of Anisotropy(for our purposes)

- Less Supersymmetry.
- Broken conformal symmetry, confinement.
- Finite temperature.
- Inclusion of dynamical quarks.
- Inclusion of Anisotropy(for our purposes)

- Less Supersymmetry.
- Broken conformal symmetry, confinement.
- Finite temperature.
- Inclusion of dynamical quarks.
- Inclusion of Anisotropy(for our purposes)

- Less Supersymmetry.
- Broken conformal symmetry, confinement.
- Finite temperature.
- Inclusion of dynamical quarks.
- Inclusion of Anisotropy(for our purposes)

## Motivation

- The rapid expansion of the plasma along the longitudinal beam axis at the earliest times after the collision results to momentum anisotropic plasmas.
- Properties of the supergravity solutions, that are dual to the anisotropic plasmas.
- There exist several results for observables in weakly coupled anisotropic plasmas. Do their predictions carry on in the strongly coupled limit?
- The main question we answer accurately here is: How the inclusion of anisotropy modifies the results on several observables in our dual QGP compared to the isotropic theory?

#### The anisotropic background

The metric in string frame

(Mateos, Trancanelli, 2011)

$$ds^{2} = \frac{1}{u^{2}} \left( -\mathcal{FB} \, dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + \mathcal{H} dx_{3}^{2} + \frac{du^{2}}{\mathcal{F}} \right) + \mathcal{Z} \, d\Omega_{S^{5}}^{2} \, .$$

The functions  $\mathcal{F}, \mathcal{B}, \mathcal{H}$  depend on the radial direction u and the anisotropy. The anisotropic parameter is  $\alpha$  with units of inverse length. In sufficiently high temperatures,  $T \gg \alpha$ , and imposed boundary conditions the Einstein equations can be solved analytically:

$$\mathcal{F}(u) = 1 - \frac{u^4}{u_h^4} + \alpha^2 \frac{1}{24u_h^2} \left[ 8u^2(u_h^2 - u^2) - 10u^4 \log 2 + (3u_h^4 + 7u^4) \log \left(1 + \frac{u^2}{u_h^2}\right) \right]$$

$$\mathcal{B}(u) = 1 - \alpha^2 \frac{u_h^2}{24} \left[ \frac{10u^2}{u_h^2 + u^2} + \log \left(1 + \frac{u^2}{u_h^2}\right) \right], \quad \mathcal{H}(u) = \left(1 + \frac{u^2}{u_h^2}\right)^{\frac{\alpha^2 u_h^2}{4}}$$

The isotropic limit  $\alpha \to 0$  reproduce the well know result of the isotropic D3-brane solution (dual to  $\mathcal{N} = 4$  finite sYM solution).

The temperature is given by

$$T = -\frac{\partial_u \mathcal{F} \sqrt{\mathcal{B}}}{4\pi} \bigg|_{u=u_h} = \frac{1}{\pi u_h} + \frac{\alpha^2 5 \log 2 - 2}{48\pi} u_h$$

The metric can be expressed in  $\alpha, {\mathcal T}$  parameters through

$$u_h = rac{1}{\pi T} + lpha^2 rac{5 \log 2 - 2}{48 \pi^3 T^3} \; .$$

The energy and pressures can be found from the expectation value of the stress tensor, where the elements  $\langle T_{11} \rangle = \langle T_{22} \rangle = P_{x_1x_2}$  denote the pressure along the  $x_1$  and  $x_2$  directions and  $\langle T_{33} \rangle = P_{x_3}$  is the pressure along the anisotropic direction. The analytic expression read

$$P_{x_1x_2} = \frac{\pi^2 N_c^2 T^4}{8} + \alpha^2 \frac{N_c^2 T^2}{32}.$$
$$P_{x_3} = \frac{\pi^2 N_c^2 T^4}{8} - \alpha^2 \frac{N_c^2 T^2}{32}.$$

 $P_{x_3} < P_{x_1x_2}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Static potential

• The static potential measures the interaction between two heavy quarks. The  $SU(N_c)$  pure gauge theory at zero temperature has a static potential of the form

$$E = \text{const.} + \sigma L + \frac{c_1^{\text{gauge}}}{L} + \cdots$$

- The constant is non-physical and one can get rid of it by considering the static force.
- The string tension  $\sigma$  for small  $N_c$ , can be computed in lattice Monte Carlo simulations as the slope of the static potential, as a function of the static quark separation L.

• The static potential measures the interaction between two heavy quarks. The  $SU(N_c)$  pure gauge theory at zero temperature has a static potential of the form

$$E = \text{const.} + \sigma L + \frac{c_1^{\text{gauge}}}{L} + \cdots$$

- The constant is non-physical and one can get rid of it by considering the static force.
- The string tension  $\sigma$  for small  $N_c$ , can be computed in lattice Monte Carlo simulations as the slope of the static potential, as a function of the static quark separation L.

• The static potential measures the interaction between two heavy quarks. The  $SU(N_c)$  pure gauge theory at zero temperature has a static potential of the form

$$E = \text{const.} + \sigma L + \frac{c_1^{\text{gauge}}}{L} + \cdots$$

- The constant is non-physical and one can get rid of it by considering the static force.
- The string tension  $\sigma$  for small  $N_c$ , can be computed in lattice Monte Carlo simulations as the slope of the static potential, as a function of the static quark separation L.

ション ふゆ マ キャット マン・ション シック

• The Coulomb like term (Lüscher term), is of special importance because its coefficient is dimensionless. Towards the IR, it stops running roughly around a particular scale, the Sommer scale and takes a constant value predicted and successfully confirmed in a Monte Carlo simulation to be

 $c_1^{\rm gauge}=-(d-2)\pi/24$ 

in *d*-dimensions. (Lüscher, Symanzik, Weisz) This result can be also reproduced using the gauge/gravity duality. (Kinat, Schreiber, Sonnenschein, Weiss, 1999; Aharony, Karzbrun, Field,2009...)

 Screening of the static force when backreacted flavor branes are taken into account in AdS/CFT has been observed. (Giataganas, Irges, 2011)

# Static Potential in AdS/CFT

The static potential can be measured by introducing two infinitely heavy probe quarks on the boundary of the space. This corresponds to a Wilson loop of the following shape:



(pic taken from 0712.0689)

・ロト ・ ア・ ・ マト ・ マー・

The normalized expectation value of the Wilson loop which involves the minimal surface of the particular world-sheet minus the infinite quark mass is

$$W[C] \sim e^{-(S-mass_Q)} \sim e^{-m{V}_{Qar{Q}}T}$$

ション ふゆ マ キャット マン・ション シック

#### Static Potential in the anisotropic background

• We consider a string world-sheet  $(\tau,\sigma)$  of the following form.

 $x_0 = \tau, \qquad x_p = \sigma, \qquad u = u(\sigma) .$ 

The  $x_p$  is the direction where the pair is aligned:  $x_p = x_2 =: x_{\perp}$  pair along transverse direction,  $x_p = x_3 =: x_{\parallel}$  pair along parallel direction to anisotropy.

The solution to Nambu-Goto action is a catenary shape w-s with  $u_0$  being the turning point.

We can work in full generality by renaming for example the anisotropic metric as

 $ds^2 = g_{00}dx_0^2 + \sum g_{ii}dx_i^2 + g_{pp}dx_p^2 + g_{uu}du^2 + \text{internal space}$ 

To find the static potential we need to derive from the eoms of the NG action the length L of the Wilson loop. Then express the minimal surface ( $\sim$ static potential) in terms of L. The process is not always doable analytically. In general the length of the two endpoints of the string on the boundary is given by

$$L = 2 \int_{\infty}^{u_0} \frac{du}{u'} = 2 \int_{u_0}^{\infty} du \sqrt{\frac{-g_{uu}c_0^2}{(g_{00}g_{pp} + c_0^2)g_{pp}}} \, .$$

Which should be inverted as  $u_0(L)$ . The normalized energy of the string is

$$2\pi \alpha' V = c_0 L + 2 \left[ \int_{u_0}^{\infty} du \sqrt{-g_{uu}g_{00}} \left( \sqrt{1 + \frac{c_0^2}{g_{pp}g_{00}}} - 1 \right) - \int_{u_h}^{u_0} du \sqrt{-g_{00}g_{uu}} \right]$$

(Sonnenschein..)

This does not always implies that exist a term linear in L, since eventually  $c_0$  (the Hamiltonian) is a function of L.

Therefore we can always at least numerically find the V(L) expression for any background. In the anisotropic case we get:

•  $V_{\parallel} < V_{\perp} < V_{iso}$  when the comparison is done with LT keeping  $\alpha$ , T fixed.

•  $\alpha_1 < \alpha_2 \Rightarrow V_{\parallel_2} > V_{\parallel_2}$ . Increase of anisotropy, leads to decrease of the static potential.

 The critical length of the string beyond the quarks are not bounded is decreased in presence of anisotropy as  $L_{c\parallel} < L_{c\perp} < L_{c}$  iso.



 $X_0$ 

tial IV. Drag Force

イロト (得) (日) (日) (日) () ()

### Drag Force

In AdS/CFT the drag force of a single quark moving in the anisotropic plasma can be represented by a trailing string from the boundary where the probe quark moves with the constant speed, to the horizon of the black hole. (Herzog, Karch, Kovtun, Kozcaz, Yaffe; Gubser, 2006) In radial gauge the trailing string motion along the  $x_p := x_{\parallel,\perp}$  directions described by:



$$= \tau, \qquad u = \sigma, \qquad x_p = v\tau + \xi(u)$$

イロト (局) (日) (日) (日) (日) (の)

By solving the Nambu-Goto equations and after some algebra the drag force can be found for any background to be

$$\mathcal{F}_d = -\Pi^1_u = -\sqrt{\lambda} rac{\sqrt{-g_{00}g_{pp}}}{(2\pi)}\Big|_{u=u_0}$$

where here  $u_0$  is given by

$$(g_{uu}(g_{00}+g_{pp}v^2))|_{u=u_0}=0$$

We substitute the metric elements of our background and we find the analytic expressions which have the form

$$F_{aniso} = F_{iso} + \alpha^2 f(v)$$

They lead to •  $F_{\parallel} > F_{iso}$ •  $F_{\perp} > F_{iso}$  for  $v > v_c \simeq 0.9$ , while below this velocity  $F_{\perp} < F_{iso}$ . ۰  $\frac{F_{\parallel}}{F_{\perp}} = 1 + \alpha^2 \frac{\left(2 - v^2\right) \log\left[1 + \sqrt{1 - v^2}\right]}{8\pi^2 T^2 \left(1 - v^2\right)} \ .$ For any velocity:  $F_{drag,\parallel} > F_{drag,\perp}$ Fdrag1 Fdrag 1.0025 1.0000 1.0020 1.0004 1.0015 1.001 1.000 0.20 T 0.10 0.05 Figure: ... vs v,  $\alpha = 0.1$  and Figure:  $F_{drag,\parallel}/F_{drag,\perp}$ , T=1. $F_{drag,\parallel}/F_{drag,iso}$ ,  $F_{drag,\perp}/F_{drag,iso}$ , vs  $\alpha/T$ ,  $v \simeq 0.98$  and T = 1. イロト (局) (日) (日) (日) (日) (の)

### Diffusion time

The drag coefficient is defined as

$$rac{dp}{dt}=-n_D p, ext{ with } p=rac{M_q v}{\sqrt{1-v^2}}$$
 .

Therefore the diffusion time  $\tau_D$  is given by:

$$au_{D,\parallel,\perp} = rac{1}{n_{D,\parallel,\perp}} = -rac{1}{F_{drag,\parallel,\perp}} rac{M_q v}{\sqrt{1-v^2}} \; ,$$

Relations between the diffusion times in different directions are inverse to the drag force ones.

For example for  $v > v_{c}, \ \tau_{D,\parallel} < \tau_{D,\perp} < \tau_{D,iso}$  and

$$\frac{\tau_{D,\parallel}}{\tau_{D,\perp}} = 1 - \alpha^2 \frac{\left(2 - v^2\right) \log\left[1 + \sqrt{1 - v^2}\right]}{8\pi^2 T^2 \left(1 - v^2\right)}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

# The jet Quenching

In the gravity dual description the jet quenching can be calculated from the minimal surface of a world-sheet which ends on an orthogonal Wilson loop lying along the light-like lines. Two parallel lines of the Wilson loop, with length say  $L_{-}$  related to the partons moving at relativistic velocities are taken to be much more larger that the other two sides with length  $L_{\perp}$  related to the transverse momentum of the radiated gluons.

$$\langle W(\mathcal{C}) 
angle = \exp^{-\frac{1}{4\sqrt{2}}\hat{q}L_{\perp}^{2}L_{-}}$$

(Liu,Rajagopal,Wiedermann,2006)

• We manage again to do the calculation in a generic background.

To calculate the corresponding Wilson loop we go to the light-cone coordinates as  $\sqrt{2}x^{\pm} = x_0 \pm x_p$  where i, p, k = 1, 2, 3 A generic metric becomes

$$\begin{split} ds^2 &= g_{--}(dx_+^2 + dx_-^2) + g_{+-}(dx_+dx_-) + g_{ii(i\neq\rho)}dx_i^2 + g_{uu}du^2 \\ g_{--} &= \frac{1}{2}(g_{00} + g_{\rho\rho}), \qquad g_{+-} = g_{00} - g_{\rho\rho} \end{split}$$

The ansatz that describes the string configuration and solves the eom is

$$x_{-} = \tau$$
,  $x_{k} = \sigma$ ,  $u = u(\sigma)$   
 $x_{+}, x_{p \neq k}$  are constant,

which represents a Wilson loop extending along the  $x_k$  direction and lying at a constant  $x_+, x_{i \neq k}$ . The index k here denotes a chosen direction.

| ĝ                            | xp              | x <sub>k</sub>    | Energetic parton along | Momentum broadening along |
|------------------------------|-----------------|-------------------|------------------------|---------------------------|
| $\hat{q}_{\perp(\parallel)}$ | $x_{\perp}$     | $ x_{\parallel} $ | $x_{\perp}$            | $x_{\parallel}$           |
| $\hat{q}_{\parallel(\perp)}$ | $x_{\parallel}$ | $x_{\perp}$       | x                      | $x_{\perp}$               |
| $\hat{q}_{pl}$               | $x_{\perp,1}$   | $x_{\perp,2}$     | $x_{\perp,1}$          | $x_{\perp,2}$             |

#### |▲□▶ ▲圖▶ ▲画▶ ▲画▶ | 画||| のへで

After calculating the on-shell action, canceling the divergences and applying the approximations we obtain

$$\hat{q}_{\rho\ (k)}=rac{\sqrt{2}}{\pi lpha'}\left(\int_{0}^{u_{h}}rac{1}{g_{kk}}\sqrt{rac{g_{uu}}{g_{--}}}
ight)^{-1}.$$

Applying the results to our background we obtain:

•  $\hat{q}_{\parallel(\perp)}$   $\stackrel{\scriptstyle{\scriptstyle{\leftarrow}}}{>}$   $\hat{q}_{\perp(\parallel)}$  >  $\hat{q}_{
ho l}$  >  $\hat{q}_{iso}$ .

 $\hat{q}(q \text{ motion parallel to anisotropy, broadening along transverse}) > \hat{q}(q \text{ motion transverse to anisotropy, broadening along parallel}) > \hat{q}(q \text{ motion transverse to anisotropy, broadening along transverse})$ 



I. Introduction and motivation

II. The background

II.The Static potentia

IV. Drag Force

V. The jet Quenching

VII. Conclusion:

#### Anisotropic momentum distribution function

The anisotropic distribution function that can be written as

$$f_{aniso} = c_{norm}(\xi) f_{iso}(\sqrt{\mathbf{p}^2 + \xi(\mathbf{p} \cdot \mathbf{n})^2})$$

where

(Romatschke, Strickland, 2003)

$$\xi = \frac{\left\langle p_T^2 \right\rangle}{2 \left\langle p_L^2 \right\rangle} - 1$$

and **n** the unit vector along the anisotropic direction. To relate  $\xi$  and  $\alpha$  define

$$\Delta := rac{P_T}{P_L} - 1 = rac{P_{x_1 x_2}}{P_{x_3}} - 1 \; .$$

Using the anisotropic distribution function: (Martinez, Strickland, 2009)

$$\Delta = \frac{1}{2}(\xi - 3) + \xi \left( (1 + \xi) \frac{\arctan \sqrt{\xi}}{\sqrt{\xi}} - 1 \right)^{-1}$$

Using the supergravity model

$$\Delta = \frac{\alpha^2}{2\pi^2 T^2} \; .$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQQ

ション ふゆ マ キャット マン・ション シック

Then

$$T \gg \alpha \Rightarrow \xi \ll 1 \Rightarrow \xi \simeq \frac{5\alpha^2}{8\pi^2 T^2} ,$$

Supposing we trust the estimation of the anisotropic parameter  $\xi \simeq 1$ . Using any comparison normalization scheme(direct or fixed energy density scheme)

#### $\xi_{\rm aSYM}\gtrsim\xi$ .

Therefore, in that case we can not make a more 'quantitative' comparison using our model in the particular limit  $T \gg \alpha$ . We can do it only if the values of  $\xi \ll 1$ .

But we have found the qualitative behavior on how the observables behave in the strong coupling in presence of anisotropy.

### Conclusions-Partial List of Results

We have calculated several observables using a IIB supergravity solution in the dual anisotropic finite temperature  ${\cal N}=4$  sYM plasma.

- The static potential:
  - $\bullet V_{\parallel} < V_{\perp} < V_{iso}.$
  - $\alpha_1 < \alpha_2 \Rightarrow V_{\parallel_1} > V_{\parallel_2}.$

• In weak coupling has been observed increase of the static potential but the models have many differences, that can affect the potential significantly. (Dumitru, Guo, Strickland, 2007).

- The drag Force:
  - $F_{\parallel} > F_{iso}$  and  $F_{\parallel} > F_{\perp}$ .
  - $F_{\perp} > F_{iso}$  for  $v > v_c \simeq 0.9$ , while below this velocity  $F_{\perp} < F_{iso}$ .
- The jet quenching:
  - $ullet \hat{q}_{\parallel(\perp)} > \hat{q}_{\perp(\parallel)} > \hat{q}_{
    m pl} > \hat{q}_{
    m iso}.$

• In weak coupling has been observed enhancement of the jet quenching in agreement with our results. (Dumitru, Nara, Schenke, Strickland; Baier, Mehtar-Tani, 2008,..).