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Stages of a collision

This talk : evolution up to times ∼ 1 fm/c

i. Partonic content of high energy nuclei
ii. Gluon production in the collision

iii. Evolution shortly after the collision, Thermalization
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Kinematics

• Low typical final state transverse momentum p⊥ . 1 GeV
• Incoming partons have low momentum fractions x ∼ p⊥/E

• x ∼ 10−2 at RHIC (E = 200 GeV)
• x ∼ 4.10−4 at the LHC (E = 2.76 − 5.5 TeV)
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Nucleon parton distributions
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Nucleon parton distributions

Large x : dilute regime
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Nucleon parton distributions

Small x : dense regime, gluon saturation
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Color Glass Condensate = effective theory of small x gluons
[McLerran, Venugopalan (1994), Jalilian-Marian, Kovner, Leonidov,
Weigert (1997), Iancu, Leonidov, McLerran (2001)]

• The fast partons (k+ > Λ+) are frozen by time dilation
B described as static color sources on the light-cone :

Jµ = δµ+ρ(x−,~x⊥) (0 < x− < 1/Λ+)

• The color sources ρ are random, and described by a
probability distribution WΛ+ [ρ]

• Slow partons (k+ < Λ+) may evolve during the collision
B treated as standard gauge fields
B eikonal coupling to the current Jµ : JµAµ

S = −
1

4

∫
FµνF

µν︸ ︷︷ ︸
SYM

+

∫
JµAµ︸ ︷︷ ︸

fast partons
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Renormalization group evolution, JIMWLK equation

k
-

P
-

Λ
-

0

fields sources

• The cutoff between the sources and the fields is not
physical, and should not enter in observables

• Loop corrections contain logs of the cutoff

• These logs can be cancelled by letting the distribution of
the sources depend on the cutoff

Λ
∂W[ρ]

∂Λ
= H

(
ρ,
δ

δρ

)
W[ρ] (JIMWLK equation)
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Initial State
Factorization
[FG, Venugopalan (2006)]

[FG, Lappi, Venugopalan (2008)]
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Power counting

In the saturated regime: J ∼ g−1

g−2 g# of external legs g2×(# of loops)

• No dependence on the number of sources J
B infinite number of graphs at each order
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Inclusive gluon spectrum

Inclusive gluon spectrum to all orders

dN1

d3~p
∼

∫
d4xd4y eip·(x−y) �x�y

[
A+(x)A−(y) +G+−(x, y)

]
A±, G+− = Schwinger-Keldysh 1- and 2-point functions

• Structure of the expansion in g2 :

A± =
1

g

[
a0︸︷︷︸
tree

+a1g
2︸ ︷︷ ︸

1-loop

+ · · · ] G+− = b0︸︷︷︸
tree

+b1g
2︸ ︷︷ ︸

1-loop

+ · · ·
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Leading Order

• LO : we need only A+(x) and A−(y), at tree level

• These functions obey the classical equation of motion :

�A+ V ′(A) = J

• Boundary conditions : retarded, with A → 0 at x0 = −∞
Inclusive spectra at LO

dN1

d3~p

∣∣∣∣
LO

∼

∫
d4xd4y eip·(x−y) �x�y A(x)A(y)

dNn

d3~p1 · · ·d3~pn

∣∣∣∣
LO

=
dN1

d3~p1

∣∣∣∣
LO

· · · dN1
d3~pn

∣∣∣∣
LO
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Cauchy problem for classical fields

• In some situations, one needs to express the classical field
in terms of the source J and its value on a surface Σ

Green’s formula

A(x) = i

∫
y∈Ω

G0
R
(x, y)

[
J(y) − V ′(A(y))

]
+ i

∫
y∈Σ

G0
R
(x, y) (n·

↔
∂y)Ainit(y)

Ω

Σ
dyµ

y

nµ

A(x)

A
init

J

Σ
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Small perturbations of a classical field

Disturbance propagating over a classical background[
�x + V

′′(A(x))
]
a(x) = 0 , a(x) = α(x) on Σ

Formal solution[
αT

]
y
≡ α(y)

δ

δAinit(y)
+ (n · ∂α(y)) δ

δ(n · ∂Ainit(y))

a(x) ≡
∫

y∈Σ

[
αT

]
y

A(x)

• Diagrammatic interpretation :
A(x)

A
init

J

Σ
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Small perturbations of a classical field

Disturbance propagating over a classical background[
�x + V

′′(A(x))
]
a(x) = 0 , a(x) = α(x) on Σ

Formal solution[
αT

]
y
≡ α(y)

δ

δAinit(y)
+ (n · ∂α(y)) δ

δ(n · ∂Ainit(y))

a(x) ≡
∫

y∈Σ

[
αT

]
y

A(x)

• Diagrammatic interpretation :
a(x)

α

J

Σ
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Next to Leading Order

• What do we need at NLO?

A± =
1

g

[
a0 + a1g

2 + · · · ] G+− = b0 + b1g
2 + · · ·

• These two subleading quantities can be expressed in
terms of perturbations to the retarded classical field

• For instance, at tree level:

G+−(x, y) =

∫
d3k

(2π)32k
ak(x)a

∗
k(y)[

�x + V
′′(A(x))

]
ak(x) = 0 , lim

x0→−∞ak(x) = e
ik·x
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Next to Leading Order

Master relation between LO and NLO

dN1

d3~p

∣∣∣∣
NLO

=

[
1

2

∫
u,v∈Σ

∫
k

[
akT

]
u

[
a∗kT

]
v
+

∫
u∈Σ

[
αT

]
u

]
dN1

d3~p

∣∣∣∣
LO

• Valid for all inclusive multi-gluon spectra,
and for the energy-momentum tensor

• Valid for any Cauchy surface Σ

• Not specific to scalar theories

• In the CGC, upper cutoff on the loop momentum : k± < Λ,
to avoid double counting with the sources J1,2
B large logarithms of the cutoff
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Initial state logarithms

Central result

1

2

∫
u,v∈Σ

∫
k

[
akT

]
u

[
a∗kT

]
v
+

∫
u∈Σ

[
αT

]
u
=

= log
(
Λ+
)
H1 + log

(
Λ−
)
H2 + terms w/o logs

H1,2 = JIMWLK Hamiltonians of the two nuclei

• No mixing between the logs of Λ+ and Λ−

• Since the LO↔NLO relationship is the same for all
inclusive observables, these logs have a universal
structure



François Gelis

Introduction

Initial state

Final state evolution

Summary

18

Factorization of the logarithms

• By integrating over ρ1,2’s, one can absorb the logarithms
into universal distributions W1,2[ρ1,2]

• H is a self-adjoint operator :∫
[Dρ]W

(
HO

)
=

∫
[Dρ]

(
HW

)
O

Single inclusive gluon spectrum at Leading Log accuracy

〈
dN1

d3~p

〉
Leading Log

=

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

] dN1[ρ1,2]
d3~p

∣∣∣∣
LO︸ ︷︷ ︸

fixed ρ1,2

• Logs absorbed into the evolution of W1,2 with the scales

Λ
∂W

∂Λ
= HW (JIMWLK equation)
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Multi-gluon correlations at Leading Log

• The previous factorization can be extended to
multi-particle inclusive spectra :

〈
dNn

d3~p1 · · ·d3~pn

〉
Leading Log

=

=

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

] dN1[ρ1,2]
d3~p1

· · · dN1[ρ1,2]
d3~pn

∣∣∣∣
LO

• At Leading Log accuracy, all the rapidity correlations come
from the evolution of the distributions W[ρ1,2]

B they are a property of the pre-collision initial state

• Predicts long range (∆y ∼ α−1
s ) correlations in rapidity



François Gelis

Introduction

Initial state

Final state evolution

Summary

20

Final state
evolution

[Dusling, Epelbaum, FG, Venugopalan (2010)]
[Dusling, FG, Venugopalan (2011)]

[Epelbaum, FG (2011)]
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Energy momentum tensor at LO
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Energy momentum tensor at LO

Tµν for longitudinal ~E and ~B

Tµν
LO

(τ = 0+) = diag (ε, ε, ε,−ε)

B far from ideal hydrodynamics
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Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),
Bodeker, Rummukainen (2007),...]
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Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),
Bodeker, Rummukainen (2007),...]

• Some of the field fluctuations ak diverge like exp
√
µτ

when τ→ +∞
• Some components of Tµν have secular divergences when

evaluated at fixed loop order

• When ak ∼ A ∼ g−1, the power counting breaks down and
additional contributions must be resummed :

g e
√
µτ ∼ 1 at τmax ∼ µ−1 log2(g−1)
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Improved power counting

Loop ∼ g2 , Tu ∼ e
√
µτ

u

T
µν
(x)

vΓ
2
(u,v)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops :
g(ge

√
µτ)3 B subleading

Leading terms at τmax

• All disjoint loops to all orders
B exponentiation of the 1-loop result
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√
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√
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• 2 disconnected loops :
(ge
√
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Improved power counting

Loop ∼ g2 , Tu ∼ e
√
µτ

T
µν
(x)

Γ3(u,v,w)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops :
g(ge

√
µτ)3 B subleading

Leading terms at τmax

• All disjoint loops to all orders
B exponentiation of the 1-loop result
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Resummation of the leading secular terms

Tµν
resummed

= exp

[
1

2

∫
u,v∈Σ

∫
k

[akT]u[a
∗
kT]v︸ ︷︷ ︸

G(u,v)

+

∫
u∈Σ

[αT]u

]
Tµν

LO
[Ainit]

• The evolution remains classical, but we must average over
a Gaussian ensemble of initial conditions

• Note : the constant shift α can be absorbed into a
redefinition of Ainit
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Resummation of the leading secular terms

Tµν
resummed

= exp

[
1

2

∫
u,v∈Σ

∫
k

[akT]u[a
∗
kT]v︸ ︷︷ ︸

G(u,v)

+

∫
u∈Σ

[αT]u

]
Tµν

LO
[Ainit]

=

∫
[Dχ] exp

[
−
1

2

∫
u,v∈Σ

χ(u)G−1(u, v)χ(v)

]
Tµν

LO
[Ainit + χ+ α]

• The evolution remains classical, but we must average over
a Gaussian ensemble of initial conditions

• Note : the constant shift α can be absorbed into a
redefinition of Ainit
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More on this resummation

• The Gaussian fluctuations around the classical field Ainit
promote it to a coherent quantum state
(they add 1/2 particle to every mode)

• Dual formulation of QM in the classical phase-space :

Density ρ̂ W(Q, P)

Evolution ∂tρ̂ + i[Ĥ, ρ̂] = 0
Wigner−→
trans.

∂tW + {{W,H}} = 0

Initial condition
∣∣Ainit

〉〈
Ainit

∣∣ exp− 1
2

∫
χG−1χ

Approximations :
• Moyal bracket {{·, ·}} replaced by classical Poisson bracket
• Non-gaussianities of the initial distribution are ignored

• Independent (and anterior..) uses of this scheme :
• Cosmology [Polarski, Starobinsky (1995), Son (1996),

Khlebnikov, Tkachev (1996)]
• Cold atoms [Davis, Morgan, Burnett (2002), Norrie,

Ballagh, Gardiner (2004)]
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Anharmonicity and decoherence

Q

P

• The oscillation frequency depends on the initial condition

• An ensemble of initial configurations spreads in time

• At large times, the ensemble fills densely all the region
allowed by energy conservation
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• The oscillation frequency depends on the initial condition

• An ensemble of initial configurations spreads in time

• At large times, the ensemble fills densely all the region
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Anharmonicity and decoherence

Q

P

• The oscillation frequency depends on the initial condition

• An ensemble of initial configurations spreads in time

• At large times, the ensemble fills densely all the region
allowed by energy conservation
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Similar problem in a simpler toy model

φ4 field theory coupled to a source

L =
1

2
(∂αφ)

2 −
g2

4!
φ4 + Jφ

J ∝ θ(−x0)
Q3

g

• In 3+1-dim, g is dimensionless, and the only scale in the
problem is Q, provided by the external source

• The source is active only at x0 < 0, and is turned off
adiabatically when x0 → −∞

• This theory has unstable modes (parametric resonance)
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Secular divergences in fixed order calculations

Tree

-40

-30

-20

-10

 0

 10

 20

 30

 40

-20  0  20  40  60  80

time

PLO εLO

• Oscillating pressure at LO : no equation of state

• Small NLO correction to the energy density (protected by
energy conservation)

• Secular divergence in the NLO correction to the pressure
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Secular divergences in fixed order calculations

Tree + 1-loop

-40

-30

-20

-10

 0

 10

 20

 30

 40

-20  0  20  40  60  80

time

PLO+NLO εLO+NLO

• Oscillating pressure at LO : no equation of state
• Small NLO correction to the energy density (protected by

energy conservation)
• Secular divergence in the NLO correction to the pressure
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Resummed energy momentum tensor

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 10  100  1000  10000

time

px+py+pz

ε

• No secular divergence in the resummed pressure

• The pressure relaxes to the equilibrium equation of state
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Energy fluctuations in a small subvolume

Probability distribution P(e) (e = energy on one site, g = 0.5)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  100  200  300  400  500  600

energy per site

time =   0

        18

        27

        31

        36

        62

       125

       170

• At t = 0, narrow Gaussian fluctuations

• Very rapid change of shape

• Shape close to that expected from the canonical ensemble
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Spectral density

τ = 0

time = 0.0

 0
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ρ(ω,k)
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 5

 6

 7

• Complicated spectral density at early times

• Single quasiparticle peak at late times
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Spectral density

τ = 3000

time = 3000.0
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• Complicated spectral density at early times

• Single quasiparticle peak at late times
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Medium induced mass

Fit of the spectral peak by ω2 = k2 +m2

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

m
a

s
s

2

time

m
2

• Note : at weak coupling, the mass fitted from the spectral
peak agrees with

m2 =
g2

2

〈
φ2
〉
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Entropy production

S ≡
∫
k

[
(1+ fk) log(1+ fk) − fk log(fk)

]

Time evolution of the entropy

 0.01

 0.1

 1

 10  100  1000  10000

e
n

tr
o

p
y

time

S

SBE
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Time evolution of the occupation number

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  0.5  1  1.5  2  2.5  3  3.5

f k

k

Bose-Einstein with µ=0.54,T=1.31

T/(ωk-µ)-1/2 with µ=0.54,T=1.31

const / k
5/3

t = 0

60

200

1000

2000

5000

10
4

• Resonant peak at early times

• Turbulent Kolmogorov spectrum in the intermediate k-range?

• Late times : classical equilibrium with a chemical potential

• µ ≈ m + excess at k = 0 : Bose-Einstein condensation?
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Bose-Einstein condensation
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• Start with the same energy density, but an empty zero mode

• Very quickly, the zero mode becomes highly occupied

• Same distribution as before at late times
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Evolution of the condensate
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• Formation time almost independent of the coupling
• Condensate lifetime much longer than its formation time
• Smaller amplitude and faster decay at large coupling
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Effect of longitudinal expansion

• The EoM is singular when τ→ 0 : one must start at τ0 6= 0
• With the proper spectrum of field fluctuations (that

depends on τ0) and zero point subtraction, the result does
not depend on the initial τ0
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Effect of longitudinal expansion

• After some time, the pressures relax and we have the
expected equation of state : ε = 2P

T
+ P

L

• However : P
T
6= PL
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Effect of longitudinal expansion
• PT = PL requires

1
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Effect of longitudinal expansion

• Constant anisotropy (the drop of P
L
/ε at τ ≥ 200 is likely a

lattice artifact)
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Summary
and Outlook
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Summary

• Factorization of high energy logarithms in AA collisions
• limited to inclusive observables
• controls the rapidity dependence of correlations
• links nucleus-nucleus collisions to other reactions (pA, DIS)

• Resummation of secular terms in the final state evolution
• stabilizes the NLO calculation
• leads to the equilibrium equation of state
• full thermalization on much longer time-scales
• Bose-Einstein condensation for overoccupied initial state
• φ4 theory : instabilities too weak to resist against expansion

Outlook

• thermalization in QCD, w/ longitudinal expansion?

• if a BEC is formed, phenomenological implications?
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Extra



ρ
1

g 1 g-1

AApA

g-4

g-2

1

g2

g4

p q

p

q

p

q

François Gelis

Introduction

Initial state

Final state evolution

Summary

44

Dense-dilute collisions
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Dense-dilute collisions

Expected complications

• More diagrams to consider even at Leading Order
• More terms in the evolution Hamiltonian if ρ ∼ g:

g2ρ2
(
∂

∂ρ

)2
∼ g4ρ2

(
∂

∂ρ

)4
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Exclusive processes



François Gelis

Introduction

Initial state

Final state evolution

Summary

45

Exclusive processes

Example : differential probability to produce 1 particle at LO

dP1

d3~p

∣∣∣∣
LO

= F[0]×
∫
d4xd4y eip·(x−y)�x�yA+(x)A−(y)

∣∣∣
z=0

• The vacuum-vacuum graphs do not cancel in exclusive
quantities : F[0] 6= 1 (in fact, F[0] = exp(−c/g2)� 1)

• A+ and A− are classical solutions of the Yang-Mills
equations, but with non-retarded boundary conditions
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Thermalization in Yang-Mills theory

• Recent analytical work : Kurkela, Moore (2011)

• Going from scalars to gauge fields :

• More fields per site (3 Lorentz components × 8 colors)

• More complicated spectrum of initial conditions

• Expansion : UV overflow on a fixed grid in η
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BEC and dilepton production
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BEC and dilepton production

Two topologies for virtual photons at LO

Connected ω ∼Minv ∼ Qs k⊥ ∼ Qs

Disconnected ω ∼Minv ∼ Qs k⊥ � Qs

B excess of dileptons with k⊥ �Minv
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Links to Quantum Chaos

• Quantum Chaos : how does the chaos at the classical
level manifests itself in quantum mechanics?

• Berry’s conjecture [M.V. Berry (1977)]
High lying eigenstates of such systems have nearly
random wavefunctions. The corresponding Wigner
distribution is almost uniform on the energy surface

• Srednicki’s eigenstate thermalization hypothesis
[M. Srednicki (1994)]
For sufficiently inclusive measurements, these high lying
eigenstates look thermal. If the system starts in a coherent
state, decoherence is the main mechanism to
thermalization
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