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This talk : evolution up to times ~ 1 fm/c
i. Partonic content of high energy nuclei
ii. Gluon production in the collision
iii. Evolution shortly after the collision, Thermalization




Kinematics

o™~ ]M] ’\
/ﬁ /l ol

e Low typical final state transverse momentum p, <1 GeV
¢ Incoming partons have low momentum fractions x ~p, /E

e x ~ 1072 at RHIC (E = 200 GeV)
e x~4.107* at the LHC (E = 2.76 — 5.5 TeV)
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Nucleon parton distributions
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Nucleon parton distributions

H1 and ZEUS

X Q*=10 GeV?
10 o——
Large x : dilute regime

l:l model uncert.

- parametrization uncert.
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Nucleon parton distributions e

H1 and ZEUS
‘;‘ L
X8 Q*=10 GeV?
10 = B \
Small x : dense regime, gluon saturation UIntoduction
Initial state
Final state evolution
Summary
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Color Glass Condensate = effective theory of small x gluons

[McLerran, Venugopalan (1994), Jalilian-Marian, Kovner, Leonidov,
Weigert (1997), lancu, Leonidov, McLerran (2001)]

e The fast partons (k™ > A™) are frozen by time dilation
> described as on the light-cone :

JH=08"Tp(x7,%1) (0<x™ <T1/AT)

e The color sources p are random, and described by a
probability distribution WA+ [p]

e Slow partons (k™ < A*) may evolve during the collision
> treated as standard gauge fields
> eikonal coupling to the current J* : J A*

] v
Sz—ZJFuVF“ +J JHAL
| —

Sy fast partons
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Renormalization group evolution, JIMWLK equation

,,,,,,,,,,,,,,,, fields <— sources —
: 2 Frr
A, P _
Initial state
Final state evolution
e The cutoff between the sources and the fields is not SN

physical, and should not enter in observables
e Loop corrections contain logs of the cutoff

e These logs can be cancelled by letting the distribution of
the sources depend on the cutoff

AWl _ <p’ & )W[p} (JIMWLK equation)

oA op



Initial State
Factorization

[FG, Venugopalan (2006)]
[FG, Lappi, Venugopalan (2008)]



Power counting

In the saturated regime: | ~ g*‘

—2 _# of external legs

g g 2x (# of loops)

9

¢ No dependence on the number of sources |
> infinite number of graphs at each order
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Inclusive gluon spectrum -

Inclusive gluon spectrum to all orders

N,
&p

Introduction

Final state evolution

~ J a*xd’y P 7Y OO, [A+(X)A7[y) + G+7(x,y)]

Summary

A+, G = Schwinger-Keldysh 1- and 2-point functions

e Structure of the expansion in g :

1
Ai=*[ao +a192+~~~] G4+— = bo +b192+-~~
gL~~~ —~~ ~—

tree 1-loop tree 1-loop



Leading Order

e LO:weneedonly A, (x)and A_(y), at tree level

e These functions obey the classical equation of motion :

OA+V/(A) =]
e Boundary conditions : retarded, with A — 0 at xo = —©

Inclusive spectra at LO

dN] ip-(x—
5| ~Jd4xd4y eP v OOy Ax) Aly)
dNn - dN1 dNI
d3ﬁ1 e dsﬁn - d3ﬁ] dsﬁn

LO LO LO
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Cauchy problem for classical fields

¢ In some situations, one needs to express the classical field
in terms of the source ] and its value on a surface X

Green’s formula

A0 =1 [ 636w [Jw) = Varw)] +1 [ 63 0w) (0 8y )

yeQ

yer

A(x)

init
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Small perturbations of a classical field

Disturbance propagating over a classical background

[DX+V"(A(X))} ax)=0 , alx)=«x) on £

Formal solution

5 )
s, T ) AL )

[oﬂI‘]y = afy)

: L . A(x)
e Diagrammatic interpretation :

init
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Small perturbations of a classical field

Disturbance propagating over a classical background

[DX—FV”(A(X))} ax)=0 , alx)=«x) on £

Formal solution

5 +(n-aoc(y))m+fuy))

[oﬂI‘]y = afy)

0 A (Y)
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Next to Leading Order
e What do we need at NLO?
1
Aizg[QO"‘a]gz"_"'] G+7:b +b]g SF oo Introduction

Final state evolution

Summary

e These two subleading quantities can be expressed in
terms of perturbations to the retarded classical field

e For instance, at tree level:

d3k

G+,(X,y) = J m ak(x) a]t(y)

[DX+V”(A(x))} akx) =0 , lim ag(x)=e**

X0 ——00
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Next to Leading Order

Master relation between LO and NLO

dN;
&p

L . dN
- |:2 J Jk [ak T:I u [ak T:I v + J [(x T:I u:| ] Introduction

Final state evolution

o
w
o]l

Summary

Valid for all inclusive multi-gluon spectra,
and for the energy-momentum tensor

Valid for any Cauchy surface

Not specific to scalar theories

In the CGC, upper cutoff on the loop momentum : k* < A,
to avoid double counting with the sources J; >
> large logarithms of the cutoff
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Initial state logarithms

Central result

! J L (@ T], [a; T], + J [aT], =

u,vex uex Final state evolution

= log (A*) H; +log (A™) 3, + terms w/o logs

Summary

I » = JIMWLK Hamiltonians of the two nuclei

e No mixing between the logs of A and A~

e Since the LO—NLO relationship is the same for all
inclusive observables, these logs have a universal
structure
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Factorization of the logarithms

o By integrating over p; >’s, one can absorb the logarithms
into universal distributions W1 >[p1 2]

o J} is a self-adjoint operator :

Introduction

J[Dp] W (30) :J[Dp] (W) 0 s

Summary

Single inclusive gluon spectrum at Leading Log accuracy

dN dN
<dTl> :J[Dplez] W, [pl] WZ[pz} %
p Leading Log p LO
fixed P1,2

¢ Logs absorbed into the evolution of W; , with the scales

/\%\\/ =HW (JIMWLK equation)



Frangois Gelis

Multi-gluon correlations at Leading Log

e The previous factorization can be extended to
multi-particle inclusive spectra :

Introduction
< dN;, >
Leading Log

— Final state evolution
3p 3p
d*p;---d°p,

Summary

dNilp1,2]  dNqlp1,2]
:J[Dp1 Dpz] W; [p]} W, [pz] d3]31 dsﬁn

LO

o At Leading Log accuracy, all the rapidity correlations come
from the evolution of the distributions W/p ;]

> they are a property of the pre-collision initial state

e Predicts long range (Ay ~ «; ") correlations in rapidity



Final state
evolution

[Dusling, Epelbaum, FG, Venugopalan (2010)]
[Dusling, FG, Venugopalan (2011)]
[Epelbaum, FG (2011)]
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Energy momentum tensor at LO
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Energy momentum tensor at LO

T for longitudinal E and B
THY(t = 0") = diag (e, €, €, —€)

> far from ideal hydrodynamics
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Weibel instabilities for small perturbations
[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,

Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),

Bodeker, Rummukainen (2007),...]

max ‘c2 ™/ g4 u3 L’

0.0001 T I T I T I T I T T T

1e-05 — ¢ e, Exp(0.427 Sqri(g” . 7))
1e-06H ¢ +c, Exp(0.00544 ¢” 1 1)
le-07F

le-08|
le-09F-
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le-12F [Romatschke, Venugopalan (2005)]
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Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),
Bodeker, Rummukainen (2007),...]

Introduction

0.0001 [ T T T T T T T T T I T | T | Initial state
« Some of the field fluctuations ay diverge like exp /it | Finl stto evouton
when T — 400 Summary

e Some components of T*Y have secular divergences when
evaluated at fixed loop order

e When ay ~ A ~ g, the power counting breaks down and
additional contributions must be resummed :

ge\/ﬁ ~1 at Tpax ~ U-il IOgZ(gil)

1e_13: 1 I 1 I 1 I 1 I 1 I 1 I 1 -I
0 500 1000 1500 2000 2500 3000 3500
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q Frangois Gelis
Improved power counting

Loop ~ 92 ) Ty ~evH® J
Introduction
™ (x) Initial state
i [ Final st evolution
e 1 loop : (geV*™)?

Summary
e 2 disconnected loops :
(gevVFo)*

Ts(u,v,w) e 2 nested loops :
‘ g(geV"™)* > subleading

Leading terms at 7.«
¢ All disjoint loops to all orders
> exponentiation of the 1-loop result




Resummation of the leading secular terms

T2V [Ainidd

resummed

T, =exp| J J [akT]u[amr]v+j [Tl
k

wver ——~—— ucr

G(u,v)
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Resummation of the leading secular terms

1 "
—I-I‘:u\;\med = eXp lz J J [akT]u[airE]v =
k

u,vez—f_/ uex
G(u,v)

[Ty | THY [Ainid

_ J[Dx] o l— : j WG (1, v)x ) | TEY LA + x + o

u,vex -

LO

e The evolution remains classical, but we must average over

a Gaussian ensemble of initial conditions

e Note : the constant shift « can be absorbed into a

redefinition of A;p;
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More on this resummation

e The Gaussian fluctuations around the classical field A;p;
promote it to a coherent quantum state
(they add 1/2 particle to every mode)

¢ Dual formulation of QM in the classical phase-space : Introduction
Initial state
A [ Final st evolution
p W(Q,P)
Summary
0P +ilH,p1=0 =5 3W+{{W,H}=0
rans.
| Ainit) (Ainie| exp—3 [ xS 'x

Approximations :
e Moyal bracket {{-, -}} replaced by classical Poisson bracket
¢ Non-gaussianities of the initial distribution are ignored

¢ Independent (and anterior..) uses of this scheme :

e Cosmology [Polarski, Starobinsky (1995), Son (1996),
Khlebnikov, Tkachev (1996)]

e Cold atoms [Davis, Morgan, Burnett (2002), Norrie,
Ballagh, Gardiner (2004)]



Anharmonicity and decoherence

e The oscillation frequency depends on the initial condition
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Anharmonicity and decoherence
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Anharmonicity and decoherence

e The oscillation frequency depends on the initial condition
¢ An ensemble of initial configurations spreads in time

¢ At large times, the ensemble fills densely all the region
allowed by energy conservation
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Similar problem in a simpler toy model

¢* field theory coupled to a source

1 2 94
L= E(a“d)) _ Ed) + Id) Introduction
Initial state
 Finalstate evoluton
Summary
3
] < 8(—x°%) %

¢ In 3+1-dim, g is dimensionless, and the only scale in the
problem is Q, provided by the external source

e The source is active only at x° < 0, and is turned off
adiabatically when x° — —oco

e This theory has unstable modes (parametric resonance)



Secular divergences in fixed order calculations

Tree

40

30

20

M
2

-20 0 20 40 60
time.

Pio 0

80

e Oscillating pressure at LO : no equation of state
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Secular divergences in fixed order calculations

Tree + 1-loop

40

30

20 |

/
\\

-20

-30

-40
-20 0 20 40 60 80

time

PLomo —*€Lo:nio

e Oscillating pressure at LO : no equation of state

e Small NLO correction to the energy density (protected by
energy conservation)

e Secular divergence in the NLO correction to the pressure
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Frs is Gelis
Resummed energy momentum tensor e

s P

il
0; l I l 7 Initial state
’ U} Il

¢ No secular divergence in the resummed pressure

e The pressure relaxes to the equilibrium equation of state



Energy fluctuations in a small subvolume

Probability distribution P(e) (e = energy on one site, g = 0.5)

0016 T T T T T
time= 0 ——
18 ——
0014 | - 1
31 ——
0012 | 26 ——
62 ——
0.01 1256 — |
170 ——
0.008 - 1
0.006 - 1
0.004 1
0.002 [ 1
0 .
0 100 200 300 400 500 600

energy per site

e Att =0, narrow Gaussian fluctuations
e Very rapid change of shape
e Shape close to that expected from the canonical ensemble
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Spectral density

=0

time = 0.0

plok)

LoaNwArOON

Loanwas oo~

e Complicated spectral density at early times
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Spectral density

T = 3000

time = 3000.0

plok)

LoanwsrOD

Lo-mdwasoao

e Complicated spectral density at early times

¢ Single quasiparticle peak at late times
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Medium induced mass

Fit of the spectral peak by w? = k* + m?

1

0.8

0.6

§.t

mass?

0.4

t

e
ti g

$3383

0.2

i

100

time

1000 10000

e Note : at weak coupling, the mass fitted from the spectral
peak agrees with

m

2 90

2

(¢%)
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Entropy production

§ = L [(1 + 1) log(1 + fi) — fx 10g(fk)}

Time evolution of the entropy

1

et

entropy

0.1

0.01
100 1000 10000

time
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Time evolution of the occupation number

10000

1000

100 F!

T T T
Bose-Einstein with u=0.54,7=1.31

T/oyt)-1/2 with p=0.54,T=1.31 ——

const /K
t=0

60

200

1000

2000
5000

10

e u~m + excess at k = 0 : Bose-Einstein condensation?

Resonant peak at early times

Turbulent Kolmogorov spectrum in the intermediate k-range?

Late times : classical equilibrium with a chemical potential
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Bose-Einstein condensation

10
\
10°
I .
102 1 Introduction
4 -
Q H g Initial state
li %
0 BN 1  Finalstate evoluton
“ : - 25 Summary
10° /
|
|
E |
107" i
[
[ I
12 [ il
0 0.5 35
t=0 & a
50 -~ 300 & 5000 Thwych)-1/2
y.

e Start with the same energy density, but an empty zero mode
e Very quickly, the zero mode becomes highly occupied

e Same distribution as before at late times



Evolution of the condensate

20° lattice , 256 configurations , V(0) = g%6%/4!

10*
o =1
2 ﬁ\
4
10° | A
s
i \\\ \ N
-
° ‘MM\ m W’M
10°
-1
10
10° 10° 10* 10°

time

¢ Formation time almost independent of the coupling
e Condensate lifetime much longer than its formation time
o Smaller amplitude and faster decay at large coupling
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Effect of longitudinal expansion Fracsei Gele
e The EoM is singular when T — 0 : one must start at Ty # 0

o With the proper spectrum of field fluctuations (that
depends on tp) and zero point subtraction, the result does

not depend on the initial to radusion
Initial state
 Finalstate evoluton
10*
P1(14=0.01) —— Summary

€(1p=0.01) ——
10°

Pr(s=01)

'\ jx £(5=0.1) o
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Effect of longitudinal expansion

o After some time, the pressures relax and we have the
expected equation of state : e = 2P + P,

e However: P, # PL

Introduction

Initial state

Summary

Pr

2Pr+ P




Effect of longitudinal expansion
e Py = P requires

236 @)

But instead...

T T T

1
0.5*((do/dx)%+(dd/dy)?]

1/2%*(do/dn)?

0.01

0.001

300 350 400

0.0001
0
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Effect of longitudinal expansion

e Constant anisotropy (the drop of P, /e at T > 200 is likely a
lattice artifact)

Introduction
Initial state
Summary
i
—-.MM
\
0 50 100 150 200 250 300 350 400
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0.425
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Summary

o Factorization of high energy logarithms in AA collisions

e limited to inclusive observables
e controls the rapidity dependence of correlations
e links nucleus-nucleus collisions to other reactions (pA, DIS)

Introduction
Initial state

Final state evolution

e Resummation of secular terms in the final state evolution E—

stabilizes the NLO calculation

leads to the equilibrium equation of state

full thermalization on much longer time-scales
Bose-Einstein condensation for overoccupied initial state
¢* theory : instabilities too weak to resist against expansion

Outlook
o thermalization in QCD, w/ longitudinal expansion?

e if a BEC is formed, phenomenological implications?
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Dense-dilute collisions
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Dense-dilute collisions

)4 q
A / § §§ g
Expected complications

e More diagrams to consider even at Leading Order
e More terms in the evolution Hamiltonian if p ~ g:

2\? o \*
2.2( 9 420
gp(%) gp(%)

pA AA
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Exclusive processes

T

:
-
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Exclusive processes

| @ .
Example : differential probability to produce 1 particle at LO

dP;

&p

= F[0] x Jd“xd“y el? v O, 0, A (x)A-(y)

Lo z=0

e The vacuum-vacuum graphs do not cancel in exclusive
quantities : F[0] # 1 (in fact, F[0] = exp(—c/g?) < 1)

e A, and A _ are classical solutions of the Yang-Mills
equations, but with non-retarded boundary conditions

A
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Thermalization in Yang-Mills theory

¢ Recent analytical work : Kurkela, Moore (2011)

e Going from scalars to gauge fields :

e More fields per site (3 Lorentz components x 8 colors)
e More complicated spectrum of initial conditions

e Expansion : UV overflow on a fixed grid in n
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BEC and dilepton production

Final state evolution

Introduction
Initial state
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BEC and dilepton production

‘g g g ‘g g ‘g g ‘g Introduction
g g g 9 g 9 g 9
g3 g 9 g 9 g g Initial state
== g 9 == g 9

i
i
i
w“‘(/—% ﬁm ‘ﬂ i mﬁ Final state evolution
| i

Two topologiés for‘virtual photons at LO

Connected W~ My ~ Qs ki ~Qs
Disconnected w ~ M, ~ Qs  k, < Qs

> excess of dileptons with k; < M,y




Links to Quantum Chaos

¢ Quantum Chaos : how does the chaos at the classical
level manifests itself in quantum mechanics?

e Berry’s conjecture [M.V. Berry (1977)]
High lying eigenstates of such systems have nearly

random wavefunctions. The corresponding Wigner
distribution is almost uniform on the energy surface

o Srednicki’s eigenstate thermalization hypothesis
[M. Srednicki (1994)]
For sufficiently inclusive measurements, these high lying
eigenstates look thermal. If the system starts in a coherent

state, decoherence is the main mechanism to
thermalization
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