# Transverse (Spin) Structure of Hadrons

### Matthias Burkardt

New Mexico State University

February 2, 2012

- Deeply virtual Compton scattering (DVCS)
- $\hookrightarrow$  Generalized parton distributions (GPDs)
- $\hookrightarrow$  'transverse imaging'
  - Chromodynamik lensing and  $\perp$  single-spin asymmetries (SSA)

transverse distortion of PDFs + final state interactions

- $\hookrightarrow$  SSA in  $\gamma N \longrightarrow \pi + X$ 
  - quark-gluon correlations  $\rightarrow \perp$  force on q in DIS
  - Summary



## Physics of GPDs - Transverse Imaging



## Deeply Virtual Compton Scattering (DVCS)

- virtual Compton scattering:  $\gamma^* p \longrightarrow \gamma p$  (actually:  $e^- p \longrightarrow e^- \gamma p$ )
- 'deeply':  $-q_{\gamma}^2 \gg M_p^2$ ,  $|t| \longrightarrow$  Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
- $\hookrightarrow$  only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
- $\hookrightarrow$  DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs).



## Deeply Virtual Compton Scattering (DVCS)

- virtual Compton scattering:  $\gamma^* p \longrightarrow \gamma p$  (actually:  $e^- p \longrightarrow e^- \gamma p$ )
- 'deeply':  $-q_{\gamma}^2 \gg M_p^2$ ,  $|t| \longrightarrow$  Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
- $\hookrightarrow$  only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
- $\hookrightarrow$  DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs).

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx E_q(x,\xi,t) = F_2^q(t)$$
  
e
$$\int dx H_q(x,\xi,t) = F_2^q(t)$$
future experiments
JLab@12GeV, COMPASS II, T
PANDA/FAIR

, EIC.

# Physics of GPDs - Transverse Imaging

- form factors:  $\stackrel{FT}{\longleftrightarrow} \rho(\vec{r})$
- $GPDs(x, \vec{\Delta})$ : form factor for quarks with momentum fraction x
- $\hookrightarrow$  suitable FT of GPDs should provide spatial distribution of quarks with momentum fraction x
  - careful: cannot measure longitudinal momentum (x) and longitudinal position simultaneously (Heisenberg)
- $\hookrightarrow\,$  consider purely transverse momentum transfer

### Impact Parameter Dependent Quark Distributions

$$q(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x,\xi=0,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}$$

 $q(x, \mathbf{b}_{\perp}) =$  parton distribution as a function of the separation  $\mathbf{b}_{\perp}$  from the transverse center of momentum  $\mathbf{R}_{\perp} \equiv \sum_{i \in q,g} \mathbf{r}_{\perp,i} x_i$  MB, Phys. Rev. D62, 071503 (2000)

- No relativistic corrections (Galilean subgroup!)
- $\hookrightarrow$  corollary: interpretation of 2d-FT of  $F_1(Q^2)$  as charge density in transverse plane also free of relativistic corrections
  - probabilistic interpretation

6





### unpolarized proton

- $q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$
- x = momentum fraction of the quark
- $\vec{b} = \bot$  distance of quark from  $\bot$  center of momentum
- small x: large 'meson cloud'
- larger x: compact 'valence core'
- $x \to 1$ : active quark becomes center of momentum
- $\hookrightarrow \vec{b}_{\perp} \to 0$  (narrow distribution) for  $x \to 1$



MB, Int. J. Mod. Phys. A18, 173 (2002)



proton polarized in 
$$+\hat{x}$$
 direction  
 $u(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$ 

sign & magnitude of the average shift

model-independently related to p/n anomalous magnetic moments:

$$\begin{aligned} \langle b_y^q \rangle &\equiv \int dx \int d^2 b_\perp q(x, \mathbf{b}_\perp) b_y \\ &= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \end{aligned}$$

k



sign & magnitude of the average shift

8

model-independently related to p/n anomalous magnetic moments:

$$\begin{aligned} b_y^q \rangle &\equiv \int dx \int d^2 b_\perp q(x, \mathbf{b}_\perp) b_y \\ &= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \end{aligned}$$

$$\begin{aligned} \dot{x}^p &= 1.913 = \frac{2}{3}\kappa_u^p - \frac{1}{3}\kappa_d^p + \dots \\ \bullet \ u\text{-quarks:} \ \kappa_u^p &= 2\kappa_p + \kappa_n = 1.673 \\ \hookrightarrow \text{ shift in } +\hat{y} \text{ direction} \\ \bullet \ d\text{-quarks:} \ \kappa_d^p &= 2\kappa_n + \kappa_p = -2.033 \\ \hookrightarrow \text{ shift in } -\hat{y} \text{ direction} \end{aligned}$$

!!!!!

•  $\langle b_{y}^{q} \rangle = \mathcal{O}(\pm 0.2 fm)$ 





# Angular Momentum Carried by Quarks

### transverse images $\leftrightarrow$ Ji relation for quark angular momentum:

- $J_q^x = m_N \int dx \, xr^y q(x, \mathbf{r}_{\perp})$  with  $b^y = r^y \frac{1}{2m_N}$ , where  $q(x, \mathbf{r}_{\perp})$  is distribution relative to CoM of whole nucleon
- recall:  $q(x, \mathbf{b}_{\perp})$  for nucleon polarized in  $+\hat{x}$  direction

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M_N} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$$

$$\Rightarrow J_q^x = M_N \int dx \, x r^y q(x, \mathbf{r}_\perp) = \int dx \, x \left( m_N b^y + \frac{1}{2} \right) q(x, \mathbf{r}_\perp)$$
$$= \frac{1}{2} \int dx \, x \left[ H(x, 0, 0) + E(x, 0, 0) \right]$$

• X.Ji(1996): rotational invariance  $\Rightarrow$  apply to all components of  $\vec{J}_q$ 

• partonic interpretation exists only for  $\perp$  components!

### Angular Momentum Carried by Quarks



# Transverse Imaging in Momentum Space

### TMDs

- Transverse Momentum Dependent Parton Distributions
- 8 structures possible at leading twist (only 3 for PDFs)
- $f_{1T}^{\perp}$  and  $h_1^{\perp}$  require both orbital angular momentum and final state interaction
- can be measured in semi-inclusive deep-inelastic scattering (SIDIS) & Drell-Yan (DY)  $q\bar{q} \rightarrow \mu^+\mu^-$

#### experiments

JLab@6GeV & 12GeV, Hermes, Compass I & II, RHIC, EIC, FAIR/PANDA





- u, d distributions in  $\perp$  polarized proton have left-right asymmetry in  $\perp$  position space (T-even!); sign 'determined' by  $\kappa_u \& \kappa_d$
- attractive FSI deflects active quark towards the CoM

 $\Rightarrow$ 

 $\hookrightarrow$  FSI translates position space distortion (before the quark is knocked out) in  $+\hat{y}$ -direction into momentum asymmetry that favors  $-\hat{y}$  direction  $\rightarrow$  'chromodynamic lensing'

 $\kappa_p, \kappa_n \quad \longleftrightarrow \quad \text{sign of SSA!!!!!!!!} \quad \text{MB, PRD 69, 074032 (2004)}$ 

• confirmed by HERMES (and recent COMPASS) p data; consistent with vanishing isoscalar Sivers (COMPASS)  $\longrightarrow$  G. Schnell

# FSI in SIDIS vs. ISI in DY

compare FSI for 'red' q that is being knocked out of nucleon with ISI for 'anti-red'  $\bar{q}$  that is about to annihilate with a 'red' target q



### FSI in SIDIS

- $\bullet$  knocked-out q 'red'
- $\hookrightarrow$  spectators 'anti-red'

### ISI in DY

- incoming  $\bar{q}$  'anti-red'
- $\hookrightarrow$  struck target q 'red'
- $\hookrightarrow$  spectators also 'anti-red'
- $\hookrightarrow$  interaction between incoming  $\bar{q}$  and spectators repulsive

test of  $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})_{DY} = -f_{1T}^{\perp}(x, \mathbf{k}_{\perp})_{SIDIS}$  and  $h_1^{\perp}(x, \mathbf{k}_{\perp})_{DY} = -h_1^{\perp}(x, \mathbf{k}_{\perp})_{SIDIS}$ critical test of TMD factorization approach

# Sign of Boer-Mulders Function



### unpolarized target



- transversity distribution in unpol. target described by chirally odd GPD  $\bar{E}_T$ (M.Diehl & P.Haegler '05)
- $\overline{E}_T > 0$  for u & d (QCDSF)
- connection  $h_1^{\perp}(x, \mathbf{k}_{\perp}) \leftrightarrow \overline{E}_T$  similar to  $f_{1T}^{\perp}(x, \mathbf{k}_{\perp}) \leftrightarrow E$  (MB '05)
- $\hookrightarrow \ h_1^{\perp}(x, \mathbf{k}_{\perp}) < 0 \ \text{for} \ u/p, \ d/p, \ u/\pi, \ \bar{d}/\pi$
- $h_{1 SIDIS}^{\perp} = -h_{1 DY}^{\perp}$

### experiments (no polarization needed!):

HERMES, COMPASS, RHIC, JLab@12GeV, FAIR/PANDA, EIC





• tilted symmetrically w.r.t. normal of lepton scattering plane













### higher twist in polarized DIS

• 
$$\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$$

• 
$$g_1 = \frac{1}{2} \sum_q e_q^2 g_1^q$$
 with  $g_1^q = q^{\uparrow}(x) + \bar{q}^{\uparrow}(x) - q^{\downarrow}(x) - \bar{q}^{\downarrow}(x)$ 

•  $g_2$  involves quark-gluon correlations

 $\hookrightarrow$  no parton interpret. as difference between number densities for  $g_2$ 

• for  $\perp$  pol. target,  $g_1 \& g_2$  contribute equally

$$\sigma_{LT} \propto g_T \equiv g_1 + g_2$$

 $\hookrightarrow$  'clean' separation between  $g_2$  and  $\frac{1}{Q^2}$  corrections to  $g_1$ 

### What can we learn from $g_2$ ?

• 
$$g_2 = g_2^{WW} + \bar{g}_2$$
 with  $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$ 

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x$$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

color Lorentz force

### MB 2008

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for  $\vec{v} = (0, 0, -1)$ 

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

color Lorentz force

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for  $\vec{v} = (0, 0, -1)$ 

 $\hookrightarrow$   $d_2 \leftrightarrow$  average **color Lorentz force** acting on quark moving with v = c in  $-\hat{z}$  direction in the instant after being struck by  $\gamma^*$ 

$$\langle F^{y} \rangle = -2M^{2}d_{2} = -\frac{M}{P^{+2}S^{x}} \langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \rangle$$

cf. Qiu-Sterman matrix element  $\langle k_{\perp}^y\rangle\equiv\int_0^1 dx \int\!\!\mathrm{d}^2k_{\perp}\,k_{\perp}^2f_{1T}^{\perp}(x,k_{\perp}^2)$ 

$$\langle k_{\perp}^{y} \rangle = -\frac{1}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} g G^{+y}(x^{-}) \gamma^{+} q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average  $k_{\perp}$  in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

matrix element defining  $d_2$ 

$$\leftrightarrow$$

 $1^{st}$  integration point in QS-integral

MB 2008

$$d_{2} \equiv 3 \int dx \, x^{2} \bar{g}_{2}(x) = \frac{1}{2MP^{+2}S^{x}} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \right\rangle$$

color Lorentz force

### MB 2008

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y \text{ for } \vec{v} = (0, 0, -1)$$

 $\hookrightarrow d_2 \leftrightarrow$  average **color Lorentz force** acting on quark moving with v = c in  $-\hat{z}$  direction in the instant after being struck by  $\gamma^*$ 

$$\langle F^{y} \rangle = -2M^{2}d_{2} = -\frac{M}{P^{+2}S^{x}} \langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \rangle$$

### sign of $d_2 \leftrightarrow \perp$ imaging

- $\kappa_q/p \longrightarrow \text{sign of deformation}$
- $\hookrightarrow\,$  direction of average force
- $\hookrightarrow \ d_2^u > 0, \ d_2^d < 0$ 
  - $\bullet \ cf. \ f_{1T}^{\perp u} < 0, \ f_{1T}^{\perp u} < 0$

lattice (Göckeler et al., 2005)

 $d_2^u\approx 0.010,\, d_2^d\approx -0.0056$ 

### magnitude of $d_2$

• 
$$\langle F^y \rangle = -2M^2 d_2 = -10 \frac{GeV}{fm} d_2$$

• expect partial cancellation of forces in SSA

$$\hookrightarrow |\langle F^y \rangle| \ll \sigma \approx 1 \frac{GeV}{fm}$$

$$\hookrightarrow d_2 = \mathcal{O}(0.01)$$

## Summary

- Deeply Virtual Compton Scattering  $\longrightarrow$  GPDs
- $\hookrightarrow$  impact parameter dependent PDFs  $q(x, \mathbf{b}_{\perp})$ 
  - $E^q(x, 0, -\Delta_{\perp}^2) \leftrightarrow \kappa_{q/p}$  (contribution from quark flavor q to anomalous magnetic moment)
  - $E^q(x, 0, -\Delta_{\perp}^2) \longrightarrow \perp$  deformation of PDFs for  $\perp$  polarized target
  - $\perp$  deformation  $\leftrightarrow$  (sign of) SSA (Sivers; Boer-Mulders)
  - parton interpretation for Ji-relation
  - higher-twist  $(\int dx \, x^2 \bar{g}_2(x), \int dx \, x^2 \bar{e}(x)) \leftrightarrow \bot$  force in DIS
  - $\perp$  deformation  $\leftrightarrow$  (sign of) quark-gluon correlations  $(\int dx \, x^2 \bar{g}_2(x), \int dx \, x^2 \bar{e}(x))$

combine complementary information from deeply-virtual Compton scattering, semi-includive DIS & Drell-Yan to study orbital angular momentum and map the 3-d structure of hadrons





# Deeply Virtual Compton Scattering (DVCS)



