NLO corrections to the dipole factorization of F2 and FL at low x

Guillaume Beuf

Universidade de Santiago de Compostela

Exploring QCD frontiers: from RHIC and LHC to EIC STIAS, Stellenbosch, South Africa, february 3, 2012

ADD YEARS ARA YOUR

Outline

- **1** Introduction: Dipole factorization of DIS at LO
- 2 NLO corrections to the Dipole factorization of DIS G.B. arXiv:1112.4501 [hep-ph], accepted in PRD
	- **Photon wave-functions at NLO**
	- NLO virtual photon cross sections
	- Some remarks about kinematics of parton cascades in mixed space

ADD YEARS ARA YOUR

3 Improving the treatment of kinematics in the BK equation G.B., in preparation

Deep inelastic Scattering (DIS) structure functions

$$
\frac{d^2 \sigma^{DIS}}{dx \, dQ^2} = \frac{4\pi \, \alpha_{em}^2}{x \, Q^4} \left\{ \left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right\}
$$

$$
x = \frac{Q^2}{2(q \cdot P)} \simeq \frac{Q^2}{2q^+ P^-} \quad \text{and} \quad y = \frac{Q^2}{xs}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Virtual photon cross sections

$$
F_2(x, Q^2) \equiv F_T(x, Q^2) + F_L(x, Q^2)
$$

$$
F_{T,L}(x, Q^2) = \frac{Q^2}{(2\pi)^2 \alpha_{em}} \sigma_{T,L}^{\gamma}(x, Q^2)
$$

 $\sigma_{\mathcal{I}}^{\gamma}$ T and σ_L^{γ} $\frac{\gamma}{L}$: Transverse and longitudinal virtual photon - target total cross sections.

$$
\frac{\mathrm{d}^2 \sigma^{DIS}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{\alpha_{\text{em}}}{\pi \, x \, Q^2} \left\{ \left(1 - y + \frac{y^2}{2} \right) \, \sigma^{\gamma}_T(x, Q^2) + (1 - y) \, \sigma^{\gamma}_L(x, Q^2) \right\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Dipole factorization of DIS at LO order

 $\sigma^{\gamma}_{T,L}(x,Q^2) = \frac{2N_C \alpha_{em}}{(2\pi)^2} \sum_f e_f^2 \int {\rm d}^2 {\bf x}_{01} \int_0^1 {\rm d}z_1 \;\; {\cal I}^{LO}_{T,L}(x_{01},1-z_1,z_1) \;\; \sigma_{dipole}(x_{01},\cdots)$ Nikolaev, Zakharov (1991)

ADD YEARS ARA YOUR

 ${\cal I}^{LO}_{\cal T,L}\propto|$ virtual photon light-front wave-function $|^2$

Dipole factorization of DIS at LO order

 $\sigma^{\gamma}_{T,L}(x,Q^2) = \frac{2N_c \alpha_{em}}{(2\pi)^2} \sum_f e_f^2 \int {\rm d}^2 {\bf x}_{01} \int_0^1 {\rm d}z_1 \;\; {\cal I}^{LO}_{T,L}(x_{01},1-z_1,z_1) \;\; \sigma_{dipole}(x_{01},\cdots)$ Nikolaev, Zakharov (1991)

$$
\mathcal{I}_L^{LO}(x_{01}, z_0, z_1) = 4Q^2 z_0^2 z_1^2 K_0^2(Q\sqrt{z_0 z_1 x_{01}^2})
$$

 2990

Þ

Dipole factorization of DIS at LO order

 $\sigma^{\gamma}_{T,L}(x,Q^2) = \frac{2N_c \alpha_{em}}{(2\pi)^2} \sum_f e_f^2 \int {\rm d}^2 {\bf x}_{01} \int_0^1 {\rm d}z_1 \;\; {\cal I}^{LO}_{T,L}(x_{01},1-z_1,z_1) \;\; \sigma_{dipole}(x_{01},\cdots)$ Nikolaev, Zakharov (1991)

$$
\mathcal{I}_{7}^{LO}(x_{01}, z_{0}, z_{1}) = \left[z_{0}^{2} + z_{1}^{2}\right]z_{0}z_{1}Q^{2}\mathrm{K}_{1}^{2}\left(Q\sqrt{z_{0}z_{1}x_{01}^{2}}\right)
$$

 299

Dipole cross section

Optical theorem:

$$
\sigma_{\textit{dipole}}(x_{01},\cdots) \quad = \quad 2 \, \int \mathrm{d}^2 \bm{b} \, \bigg[1 {-} \langle {\cal S}_{01} \rangle_{\cdots} \bigg]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Impact parameter: $\mathbf{b} = (\mathbf{x}_0 + \mathbf{x}_1)/2$

Dipole cross section

Optical theorem:

$$
\sigma_{\textit{dipole}}(x_{01},\dots) \quad = \quad 2 \, \int \mathrm{d}^2 \mathbf{b} \left[1 \!-\! \langle \mathcal{S}_{01} \rangle \!\dots \right]
$$

Impact parameter: $\mathbf{b} = (\mathbf{x}_0 + \mathbf{x}_1)/2$

 S_{01} : dipole-target elastic S-matrix:

$$
S_{01} = \frac{1}{N_c} tr(U(\mathbf{x}_0) U^{\dagger}(\mathbf{x}_1))
$$

KORK EXTERNE PROVIDE

Dipole cross section

Optical theorem:

$$
\sigma_{dipole}(x_{01},\dots) = 2 \int d^2 \mathbf{b} \left[1 - \langle \mathcal{S}_{01} \rangle ... \right]
$$

Impact parameter: $\mathbf{b} = (\mathbf{x}_0 + \mathbf{x}_1)/2$

 S_{01} : dipole-target elastic S-matrix:

$$
\mathcal{S}_{01} = \frac{1}{N_c} \operatorname{tr} (U(\mathbf{x}_0) U^{\dagger}(\mathbf{x}_1))
$$

Fondamental Wilson line in the semiclassical gluon field of the target:

$$
U(\mathbf{x}) = \mathcal{P} \exp[i\mathbf{g} \int d\mathbf{x}^+ \mathbf{T}^a \mathbf{\mathcal{A}}_a^- (\mathbf{x}^+, \mathbf{x}, 0)]
$$

 $\langle \cdots \rangle$...: average over the target state (from Color Glass Condensate formalism), with some high-energy factorization scheme & scale.**ADD YEARS ARA YOUR**

Phenomenological studies

In practice, Dipole cross section or S-matrix taken from:

- Phenomenological models
- \bullet B-JIMWLK or BK or BFKL evolution, $+$ initial conditions

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Phenomenological studies

In practice, Dipole cross section or S-matrix taken from:

- Phenomenological models
- \bullet B-JIMWLK or BK or BFKL evolution, $+$ initial conditions

State of the art: fits of F_2 data with numerical simulations of BK with running coupling inserted in the LO dipole factorization: Albacete, Armesto, Milhano, Quiroga, Salgado (2011) Kuokkanen, Rummukainen, Weigert (2011) Heavy quark production or diffractive structure functions also included in the fits, and comparison with F_L data is provided.

ADD YEARS ARA YOUR

Phenomenological studies

In practice, Dipole cross section or S-matrix taken from:

- Phenomenological models
- \bullet B-JIMWLK or BK or BFKL evolution, $+$ initial conditions

State of the art: fits of F_2 data with numerical simulations of BK with running coupling inserted in the LO dipole factorization: Albacete, Armesto, Milhano, Quiroga, Salgado (2011) Kuokkanen, Rummukainen, Weigert (2011) Heavy quark production or diffractive structure functions also included in the fits, and comparison with F_L data is provided.

Aim: precision predictions for EIC and LHeC \Rightarrow use the NLO dipole factorization formula with numerical solutions of the NLL BK equation of Balitsky, Chirilli (2008)

Calculations of NLO impact factors for DIS at low x

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

NLO photon impact factor for the BFKL formalism in momentum space Bartels et al., and Fadin et al. (2000-2005)

Calculations of NLO impact factors for DIS at low x

- NLO photon impact factor for the BFKL formalism in momentum space Bartels et al., and Fadin et al. (2000-2005)
- NLO photon impact factor in the dipole picture from the high-energy OPE Balitsky, Chirilli (2011)

ADD YEARS ARA YOUR

However: not yet available in a useful form for phenomenology with the BK equation.

Calculations of NLO impact factors for DIS at low x

- NLO photon impact factor for the BFKL formalism in momentum space Bartels et al., and Fadin et al. (2000-2005)
- NLO photon impact factor in the dipole picture from the high-energy OPE Balitsky, Chirilli (2011)

ADD YEARS ARA YOUR

However: not yet available in a useful form for phenomenology with the BK equation.

NLO dipole factorization formulae for $\sigma_{\mathcal{I}}^{\gamma}$ $\frac{\gamma}{I}$ and σ_{L}^{γ} L G.B. arXiv:1112.4501 [hep-ph]

 \rightarrow Main topic of this talk !

$q\bar{q}g$ part of the transverse photon wave-function

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 2990

 \equiv

Light-front quantization of QCD+QED \Rightarrow instantaneous interactions in x^+ .

$q\bar{q}g$ part of the longitudinal photon wave-function

In Light-front quantization : no longitudinal photon in the Hilbert space, only in instantaneous Coulomb interactions.

 \Rightarrow Effective $\gamma^*_L\rightarrow q\bar{q}$ vertex: part of the instantaneous $e\rightarrow eq\bar{q}$ vertex.

 \Rightarrow No instantaneous diagrams for the longitudinal photon case.

ADD YEARS ARA YOUR

$q\bar{q}g$ part of the photon wave-function

$$
\left|\gamma_{T,L}^{*}\left(q^{+},Q^{2},(\lambda)\right)_{H}\right\rangle_{q\bar{q}_{g}} = \frac{\epsilon_{g}}{2(2\pi)} \int_{0}^{1} \frac{dz_{0}}{\sqrt{z_{0}}} \int_{0}^{1} \frac{dz_{1}}{\sqrt{z_{1}}} \int_{0}^{1} \frac{dz_{2}}{z_{2}} \delta(z_{0}+z_{1}+z_{2}-1) \int \frac{d^{2}x_{0}}{(2\pi)^{2}} \int \frac{d^{2}x_{1}}{(2\pi)^{2}} \int \frac{dz_{1}}{(2\pi)^{2}} \times \int \frac{d^{2}x_{2}}{(2\pi)^{2}} \sum_{h_{0},\lambda_{2}} \Phi_{T,L}^{q\bar{q}_{g}}\left(\mathbf{x}_{0},\mathbf{x}_{1},\mathbf{x}_{2},z_{0},z_{1},z_{2},h_{0},\lambda_{2},(\lambda)\right) \sum_{A_{0},A_{1},a} \left(T^{a}\right)_{A_{0}A_{1}} \times \sum_{f} e_{f} b^{\dagger}(\mathbf{x}_{0},z_{0}q^{+},h_{0},A_{0},f) d^{\dagger}(\mathbf{x}_{1},z_{1}q^{+},-h_{0},A_{1},f) a^{\dagger}(\mathbf{x}_{2},z_{2}q^{+},\lambda_{2},a)|0\rangle
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$q\bar{q}g$ part of the longitudinal photon wave-function

$$
\Phi_{L}^{q\bar{q}g}\left(\mathbf{x}_{0},\mathbf{x}_{1},\mathbf{x}_{2},z_{0},z_{1},z_{2},h_{0},\lambda_{2}\right) = 2iQ \operatorname{K}_{0}(QX_{3})\left\{ z_{1}(1-z_{1})\left[1-\frac{z_{2}}{(1-z_{1})}\left(\frac{1-2h_{0}\lambda_{2}}{2}\right)\right] \frac{\varepsilon_{\lambda_{2}}^{*}\cdot\mathbf{x}_{20}}{z_{20}^{2}} - z_{0}(1-z_{0})\left[1-\frac{z_{2}}{(1-z_{0})}\left(\frac{1+2h_{0}\lambda_{2}}{2}\right)\right] \frac{\varepsilon_{\lambda_{2}}^{*}\cdot\mathbf{x}_{21}}{z_{21}^{2}} \right\}
$$

with the notation:

$$
X_3^2 = z_1 z_0 x_{10}^2 + z_2 z_0 x_{20}^2 + z_2 z_1 x_{21}^2
$$

KO K K Ø K K I K I I LA K I I K K K K I LA K I I LA

$q\bar{q}g$ part of the transverse photon wave-function

$$
\Phi_{T}^{q\bar{q}_{\mathcal{S}}}\left(\mathbf{x}_{0},\mathbf{x}_{1},\mathbf{x}_{2},z_{0},z_{1},z_{2},h_{0},\lambda_{2},\lambda\right) = \frac{Q\mathbf{x}_{3} K_{1}(\mathcal{Q}\mathbf{x}_{3})}{\mathbf{x}_{3}^{2}}
$$
\n
$$
\times \left\{ z_{1}(1-z_{1})[1-2z_{1}+2h_{0}\lambda] \epsilon_{\lambda} \cdot \left(\mathbf{x}_{10}-\frac{z_{2}}{1-z_{1}}\mathbf{x}_{20}\right) \left[1-\frac{z_{2}}{(1-z_{1})}\left(\frac{1-2h_{0}\lambda_{2}}{2}\right)\right] \frac{\epsilon_{\lambda_{2}}^{*} \cdot \mathbf{x}_{20}}{\mathbf{x}_{20}^{2}}
$$
\n
$$
-z_{0}(1-z_{0})[1-2z_{0}-2h_{0}\lambda] \epsilon_{\lambda} \cdot \left(\mathbf{x}_{01}-\frac{z_{2}}{1-z_{0}}\mathbf{x}_{21}\right) \left[1-\frac{z_{2}}{(1-z_{0})}\left(\frac{1+2h_{0}\lambda_{2}}{2}\right)\right] \frac{\epsilon_{\lambda_{2}}^{*} \cdot \mathbf{x}_{20}}{\mathbf{x}_{21}^{2}}
$$
\n
$$
-z_{0} z_{1} z_{2} \delta_{\lambda, \lambda_{2}} \left[\frac{\delta_{\lambda, -2h_{0}}}{1-z_{1}} - \frac{\delta_{\lambda, 2h_{0}}}{1-z_{0}}\right] \right\}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Virtual corrections from probability conservation

Unitarity $\Rightarrow q\bar{q} + q\bar{q}g$ components of the wave function up to order $O(eg)$: Same normalization as $q\bar{q}$ component at order $O(e)$.

$$
\left| \Phi_{T,L}^{LO}\left(\mathbf{x}_0,\mathbf{x}_1,1-z_1,z_1,(h_0),(\lambda)\right) \right|^2 = \left| \Phi_{T,L}^{q\bar{q}}\left(\mathbf{x}_0,\mathbf{x}_1,1-z_1,z_1,h_0,(\lambda)\right) \right|^2 + \left(1-\frac{1}{N_c^2}\right)\bar{\alpha}\int_0^{1-z_1} \frac{dz_2}{z_2} \int \frac{d^2\mathbf{x}_2}{2\pi} \sum_{\lambda_2} \left| \Phi_{T,L}^{q\bar{q}g}\left(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,1-z_1-z_2,z_1,z_2,h_0,\lambda_2,(\lambda)\right) \right|^2
$$

With the notation:

$$
\bar{\alpha} = \frac{N_c}{\pi} \alpha_s = \frac{N_c g^2}{(2\pi)^2}
$$

ADD YEARS ARA YOUR

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0)

[NLO virtual photon cross sections](#page-22-0)

DIS on a classical gluon shockwave field A

 $+$ virtual corrections.

$$
\sigma_{T,L}^{\gamma}[A] = 2 \frac{2N_c \alpha_{em}}{(2\pi)^2} \sum_f e_f^2 \int d^2 \mathbf{x}_0 \int d^2 \mathbf{x}_1 \int_0^1 dz_1 \left\{ \left[1 - S_{01}[A] \right] \mathcal{I}_{T,L}^{LO}(x_{01}, 1-z_1, z_1) + \bar{\alpha} \int \frac{d^2 \mathbf{x}_2}{2\pi} \int_{z_f}^{1-z_1} \frac{dz_2}{z_2} \left[S_{01}[A] - S_{02}[A] \mathcal{S}_{21}[A] \right] \mathcal{I}_{T,L}^{NLO}(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, 1-z_1-z_2, z_1, z_2) \right\}
$$

\n
$$
z_f: \text{ IR cut-off.}
$$

Longitudinal NLO impact factor

$$
\begin{split} \mathcal{I}^{NLO}_L(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,z_0,z_1,z_2) & = & 4Q^2\; \mathrm{K}_0^2(QX_3) \left\{ z_1^2(1-z_1)^2 \frac{\mathcal{P}\left(\frac{z_2}{1-z_1}\right)}{z_{20}^2} \right. \\ & \left. + z_0^2(1-z_0)^2 \frac{\mathcal{P}\left(\frac{z_2}{1-z_0}\right)}{z_{21}^2} - 2z_1(1-z_1)z_0(1-z_0) \left[1 - \frac{z_2}{2(1-z_1)} - \frac{z_2}{2(1-z_0)} \right] \left(\frac{\mathbf{x}_{20}\cdot\mathbf{x}_{21}}{z_{20}^2} z_2^2 \right) \right\} \end{split}
$$

DGLAP quark to gluon splitting function:

$$
\mathcal{P}(z) = \frac{1}{2} \left[1 + (1-z)^2 \right]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Transverse NLO impact factor

$$
\mathcal{I}_{T}^{\text{NLO}}(x_{0},x_{1},x_{2},z_{0},z_{1},z_{2}) = \left[\frac{Qx_{3} K_{1}(Qx_{3})}{x_{3}^{2}} \right]^{2} \left\{ z_{1}^{2}(1-z_{1})^{2} \left[z_{1}^{2}+(1-z_{1})^{2} \right] \left(x_{10}-\frac{z_{2}}{1-z_{1}}x_{20} \right)^{2} \frac{\mathcal{P}\left(\frac{z_{2}}{1-z_{1}}\right)}{x_{20}^{2}}
$$
\n
$$
+z_{0}^{2}(1-z_{0})^{2} \left[z_{0}^{2}+(1-z_{0})^{2} \right] \left(x_{01}-\frac{z_{2}}{1-z_{0}}x_{21} \right)^{2} \frac{\mathcal{P}\left(\frac{z_{2}}{1-z_{0}}\right)}{x_{21}^{2}}
$$
\n
$$
+2z_{1}(1-z_{1})z_{0}(1-z_{0}) \left[z_{1}(1-z_{0})+z_{0}(1-z_{1}) \right] \left(x_{10}-\frac{z_{2}}{1-z_{1}}x_{20} \right) \cdot \left(x_{01}-\frac{z_{2}}{1-z_{0}}x_{21} \right)
$$
\n
$$
\times \left[1-\frac{z_{2}}{2(1-z_{1})}-\frac{z_{2}}{2(1-z_{0})} \right] \left(\frac{x_{20} \cdot x_{21}}{x_{20}^{2}} \right)
$$
\n
$$
+ \frac{z_{0}}{2}z_{1}z_{2}^{2} \left(z_{0}-z_{1}\right)^{2} \left(x_{20} \wedge x_{21} \right)^{2} + z_{0} z_{1}^{2} z_{2} \left[\frac{z_{0}}{(1-z_{1})} + \frac{(1-z_{1})^{2}}{(1-z_{0})} \right] \left(x_{10}-\frac{z_{2}}{1-z_{1}}x_{20} \right) \cdot \left(\frac{x_{20}}{x_{20}^{2}} \right)
$$
\n
$$
+z_{0}^{2} z_{1} z_{2} \left[\frac{z_{0} z_{1}}{(1-z_{0})} + \frac{(1-z_{0})^{2}}{(1-z_{0})} \right] \left(x_{01}-\frac{z_{2}}{1-z_{0}}x_{21} \
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

High-energy factorization

Choice of high-energy factorization scheme:

- gluons with $k^+>z_f\,q^+$: kept into the NLO impact factor
- gluons with $k^+ < z_f q^+$: put into the shockwave field $\mathcal A$ of the target

ADD YEARS ARA YOUR

see e.g Balitsky, Chirilli (2007)

High-energy factorization

Choice of high-energy factorization scheme:

- gluons with $k^+>z_f\,q^+$: kept into the NLO impact factor
- gluons with $k^+ < z_f q^+$: put into the shockwave field $\mathcal A$ of the target
- see e.g Balitsky, Chirilli (2007)

Physical minimal cut-off set by the target:

$$
z_f q^+ > k_{min}^+ = \frac{Q_0^2}{2P^-} = x \frac{Q_0^2}{Q^2} q^+
$$

ADD YEARS ARA YOUR

High-energy factorization

Choice of high-energy factorization scheme:

- gluons with $k^+>z_f\,q^+$: kept into the NLO impact factor
- gluons with $k^+ < z_f q^+$: put into the shockwave field $\mathcal A$ of the target
- see e.g Balitsky, Chirilli (2007)

Physical minimal cut-off set by the target:

$$
z_f q^+ > k_{min}^+ = \frac{Q_0^2}{2P^-} = x \frac{Q_0^2}{Q^2} q^+
$$

 \Rightarrow Range for LL evolution from the target to the factorization scale:

$$
Y_f^+ = \log\left(\frac{z_f q^+}{k_{\min}^+}\right) = \log\left(\frac{z_f Q^2}{x Q_0^2}\right)
$$

 000

 \rightarrow Not a rapidity range, and not log(1/x) ei[th](#page-26-0)[er,](#page-28-0) [b](#page-25-0)[e](#page-27-0)[yo](#page-28-0)[n](#page-21-0)[d](#page-28-0) [L](#page-29-0)[L](#page-21-0)

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0)

[NLO virtual photon cross sections](#page-28-0)

Final result

$$
\sigma_{T,L}^{\gamma} = 2 \frac{2N_c \alpha_{em}}{(2\pi)^2} \sum_f e_f^2 \int d^2 \mathbf{x}_0 \int d^2 \mathbf{x}_1 \int_0^1 dz_1 \left\{ \mathcal{I}_{T,L}^L(\mathbf{x}_0, \mathbf{x}_1, 1 - z_1, z_1) \right\}
$$

$$
\times \left[1 - \langle \mathcal{S}_{01} \rangle_{Y_f^+} + \bar{\alpha} \log \left(\frac{1 - z_1}{z_f} \right) \int \frac{d^2 \mathbf{x}_2}{2\pi} \frac{\chi_{01}^2}{\chi_{02}^2 \chi_{21}^2} \langle \mathcal{S}_{01} - \mathcal{S}_{02} \mathcal{S}_{21} \rangle_{Y_f^+} \right]
$$

$$
+ \bar{\alpha} \int \frac{d^2 \mathbf{x}_2}{2\pi} \langle \mathcal{S}_{01} - \mathcal{S}_{02} \mathcal{S}_{21} \rangle_{Y_f^+} \int_{z_f}^{1 - z_1} \frac{dz_2}{z_2} \Delta \mathcal{I}_{T,L}^{NLO}(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, z_1, z_2) \right\}
$$

with

$$
\Delta\mathcal{I}^{\text{NLO}}_{\mathcal{T},L}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,z_1,z_2)\!\!=\!\!\mathcal{I}^{\text{NLO}}_{\mathcal{T},L}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,\!1\!-\!z_1\!-\!z_2,z_1,z_2)\!-\!\mathcal{I}^{\text{NLO}}_{\mathcal{T},L}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,\!1\!-\!z_1,z_1,0)
$$

Evolution in Y_f^+ (or equivalently z_f) given by B-JIMLWK evolution at LL accuracy as expected.

Transverse recoil effects

Including recoil effects, the parent dipole is not x_{01} but $x_{0'1}$ for the diagram (a) , with

$$
\textbf{x}_{0'} = \frac{z_0 \, \textbf{x}_0 + z_2 \, \textbf{x}_2}{z_0 + z_2}
$$

 2990

In general: parent parton position always at the barycenter of the daughter partons, when including transverse recoil. cf. ta[l](#page-28-0)ks by Matthias Burkardt and Markus Diehl

Formation time of multiparticle states

From diagram (a): the first expression obtained for X_3 is

$$
X_3^2\Big|_{(a)}=z_1(1\!-\!z_1)\,x_{10'}^2+\frac{z_2\,z_0}{(z_2\!+\!z_0)}\,x_{20}^2
$$

 \Rightarrow sum of the formation times associated with the two splitting, up to a factor $2q^+$. **ADD YEARS ARA YOUR**

Formation time of multiparticle states

Little miracle: same argument in the Bessel functions for all diagrams, including instantaneous ones!

$$
X_3^2\Big|_{(a)} = X_3^2\Big|_{(b)} = X_3^2\Big|_{(c)} = X_3^2\Big|_{(d)} = z_1 z_0 x_{10}^2 + z_2 z_0 x_{20}^2 + z_2 z_1 x_{21}^2
$$

KORK EXTERNE PROVIDE

⇒ universal expression for the formation time of a 3−partons state.

Formation time of multiparticle states

Little miracle: same argument in the Bessel functions for all diagrams, including instantaneous ones!

$$
X_3^2\Big|_{(a)} = X_3^2\Big|_{(b)} = X_3^2\Big|_{(c)} = X_3^2\Big|_{(d)} = z_1 z_0 x_{10}^2 + z_2 z_0 x_{20}^2 + z_2 z_1 x_{21}^2
$$

 \Rightarrow universal expression for the formation time of a 3–partons state.

Generalization:

Formation time for a n−partons state from a single parton: $\tau_{\rm form,\; \textit{n} \; {\rm part}} = 2 \textit{q}^+ \, \textit{X}^2_{\textit{n}}$, with

$$
X_n^2 = \sum_{\substack{i,j=0 \ i
$$

independently of the dynamical mechanism.

Formation time of multiparticle states

Impact parameter of the parton cascade, including recoil effects $(\rightarrow$ position of the parent photon):

$$
\mathbf{x}_b = \sum_{i=0}^{n-1} z_i \mathbf{x}_i
$$

Alternative formula for the formation time variable:

$$
X_n^2 = \sum_{\substack{i,j=0 \ i
$$

ADD YEARS ARA YOUR

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0) [Improving the treatment of kinematics in the BK equation](#page-34-0)

Back to the subtraction of LL BK from NLO σ_l^{γ} L

Low z_2 contribution to σ_L^{γ} \int_{L}^{γ} at NLO:

$$
\sim \bar{\alpha}\frac{\mathrm{d} z_2}{z_2} \int \frac{\mathrm{d}^2\mathbf{x}_2}{2\pi} \frac{x_{01}^2}{x_{02}^2 x_{21}^2} \,\mathrm{K}_0^2(QX_3) \,\left\langle \mathcal{S}_{01} - \mathcal{S}_{02} \,\mathcal{S}_{21} \right\rangle
$$

for $z_2 \ll z_1, 1-z_1$.

Low z_2 term used to subtract LL from σ_{L}^{γ} $\int_{\mathcal{L}}^{\gamma}$ at NLO:

$$
\sim \bar{\alpha} \frac{dz_2}{z_2} \; \int \frac{d^2 \textbf{x}_2}{2 \pi} \; \frac{x_{01}^2}{x_{02}^2 \, x_{21}^2} \, K_0^2 \bigg(Q \sqrt{z_1 (1 \! - \! z_1) x_{01}^2} \bigg) \; \langle \mathcal{S}_{01} - \mathcal{S}_{02} \, \mathcal{S}_{21} \rangle
$$

ADD YEARS ARA YOUR

 \Rightarrow Mismatch at low z_2 in the regime $z_1(1-z_1)x_{01}^2 \ll z_2x_{02}^2 \simeq z_2x_{12}^2$, where $X_3^2 \simeq z_2x_{02}^2 \simeq z_2x_{12}^2$.

Back to the subtraction of LL BK from NLO σ_l^{γ} L

In the regime $z_2 \ll z_1, 1-z_1$ and $z_1(1-z_1)x_{01}^2 \ll z_2x_{02}^2 \simeq z_2x_{12}^2$:

 $\text{K}_0(QX_3)$ is exponentially smaller than $\text{K}_0\Big(\,Q\sqrt{z_1(1\!-\!z_1)x_{01}^2}\,\Big)$

and no contribution to leading logs is present in σ_I^γ \int_{L}^{γ} at NLO.

 \Rightarrow More leading logs subtracted with the BK equation than present in σ_I^γ \int_L^{γ} (and $\sigma_{\overline{I}}^{\gamma}$ $\frac{\gamma}{T}$).

Incorrect treatment in a kinematical regime parametrically narrow, but quantitatively important:

KORKARYKERKE POLO

that's where DGLAP physics sits!

Link with the problems of NLL BK and BFKL

BK and BFKL usually derived in strict Regge kinematics:

- strong ordering in k^+ (or k^- , or rapidity)
- all k's (or dipole sizes) of the same order

and kinematical approximations are performed accordingly.

Problem: unrestricted integration over **k** or **x** in BFKL and BK \Rightarrow Second assumption not consistent!

This is the origin of the largest NLL, NNLL and so on corrections in the BFKL and BK equations.

The whole tower of such large higher order corrections can be resummed into the LL equations by treating more carefully the kinematics.

Previous works on that resummation

That resummation of large higher order corrections is done for BFKL in momentum space by imposing a kinematical constraint in the kernel. Ciafaloni (1988) Kwieciński, Martin, Sutton (1996) Andersson, Gustafson, Kharraziha, Samuelsson (1996)

That kinematical constraint is part of the full treatment of NLL BFKL, together with the resummation of other (less) large corrections (done in momentum or in Mellin space). Salam (1998) Ciafaloni, Colferai, Salam, Staśto (1999-2007) Altarelli, Ball, Forte (2000-2008)

First attempt in mixed space:

Motyka, Staśto (2009)

 \Rightarrow \Rightarrow \Rightarrow General idea correct but wrong implementat[io](#page-38-0)[n](#page-36-0) [o](#page-37-0)[f](#page-38-0) [v](#page-33-0)[ir](#page-34-0)[t](#page-38-0)[u](#page-39-0)[al](#page-33-0) [t](#page-38-0)[er](#page-39-0)[m](#page-0-0)[s.](#page-46-0) $\mathcal{L}_{\mathcal{B}^{(1)}}$

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0) [Improving the treatment of kinematics in the BK equation](#page-38-0)

Kinematically constrained BK equation (kcBK)

With improved kinematics for the real term, and the virtual term obtained by probability conservation:

$$
\partial_{Y_f^+} \left\langle \mathcal{S}_{01} \right\rangle_{Y_f^+} = \bar{\alpha} \int \frac{\mathrm{d}^2 \mathbf{x}_2}{2\pi} \frac{\mathsf{x}_{01}^2}{\mathsf{x}_{02}^2 \mathsf{x}_{21}^2} \, \theta\!\left(Y_f^+ - \Delta_{012}\right) \!\left\{ \left\langle \mathcal{S}_{02} \mathcal{S}_{21} - \frac{1}{N_c^2} \mathcal{S}_{01} \right\rangle_{Y_f^+ - \Delta_{012}} \right. \\ \left. - \left(1 - \frac{1}{N_c^2}\right) \left\langle \mathcal{S}_{01} \right\rangle_{Y_f^+} \right\}
$$

with the notation

$$
\Delta_{012} = \text{Max} \left\{ 0, \text{ log} \left(\frac{x_{02}^2}{x_{01}^2} \right), \text{ log} \left(\frac{x_{21}^2}{x_{01}^2} \right) \right\}
$$

G.B., in preparation

Only gluon emission at large transverse distance is modified, and regime of very large transverse distances completely removed.

This should slow down significantly the BK [evo](#page-37-0)[lu](#page-39-0)[ti](#page-37-0)[on](#page-38-0)[!](#page-39-0)**VENDENTE** 000 [NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0) **[Conclusions](#page-39-0)**

Conclusions about NLO structure functions at low x

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Dipole factorization for DIS now available at NLO.

Conclusions about NLO structure functions at low x

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- Dipole factorization for DIS now available at NLO.
- **• Comparison with other related NLO calculations?**

Conclusions about NLO structure functions at low x

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- Dipole factorization for DIS now available at NLO.
- **• Comparison with other related NLO calculations?** \rightarrow Ask Giovanni II

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0) [Conclusions](#page-42-0)

Conclusions about NLO structure functions at low x

- Dipole factorization for DIS now available at NLO.
- **Comparison with other related NLO calculations?** \rightarrow Ask Giovanni II
- • Before using that in phenomenology: need to understand running coupling effects, and maybe quark mass effects.

KORK EXTERNE PROVIDE

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0) [Conclusions](#page-43-0)

Conclusions about NLO structure functions at low x

- Dipole factorization for DIS now available at NLO.
- **Comparison with other related NLO calculations?** \rightarrow Ask Giovanni II
- Before using that in phenomenology: need to understand running coupling effects, and maybe quark mass effects.
- Ultimately: to be used with (resummed) NLL BK or BFKL evolution.

ADD YEARS ARA YOUR

Conclusions about NLO structure functions at low x

- Dipole factorization for DIS now available at NLO.
- **Comparison with other related NLO calculations?** \rightarrow Ask Giovanni II
- Before using that in phenomenology: need to understand running coupling effects, and maybe quark mass effects.
- Ultimately: to be used with (resummed) NLL BK or BFKL evolution.
- Other DIS observables (diffractive, exclusive, . . .) with dipole factorization?

ADD YEARS ARA YOUR

Conclusions about NLO structure functions at low x

- Dipole factorization for DIS now available at NLO.
- **Comparison with other related NLO calculations?** \rightarrow Ask Giovanni II
- Before using that in phenomenology: need to understand running coupling effects, and maybe quark mass effects.
- Ultimately: to be used with (resummed) NLL BK or BFKL evolution.
- Other DIS observables (diffractive, exclusive, . . .) with dipole factorization?
- NLO result gives interesting insight into exact kinematics of parton cascades in mixed space.

[NLO corrections to the dipole factorization of F2 and FL at low x](#page-0-0) [Conclusions](#page-46-0)

Conclusions about kcBK

- **•** Strict (naive) Regge kinematics leads to large higher corrections to the low x evolution kernels and to the impact factors of all observables.
- Kinematical improvement solves those problems: kcBK equation.
- Warning! Kinematical constraint is factorization scheme dependent. Here, only *rigid cut-off* in k^+ has been considered.
- What about kinematical constraint for *conformal dipole* factorization scheme?
- The state of the art for phenomenology should now move from rcBK to rckcBK!

However, before full NLO/NLL practical studies, one should probably also resum other (less) large higher [o](#page-45-0)r[de](#page-46-0)[r](#page-45-0) [cor](#page-46-0)[r](#page-38-0)[e](#page-39-0)[cti](#page-46-0)[o](#page-38-0)[n](#page-39-0)[s.](#page-46-0) \equiv ΩQ